The very large telescopes and the various optical interferometers provide access to unparalleled angular resolutions and provide scientific data of primary importance, but at the price of instrumental constraints that require complex equipment. The correction of the atmospheric dispersion (i.e. of the variation of the air refractive index versus the wavelength) is one of these constraints. This dispersion comes in three forms: the angular dispersion (the image of a star is spread out into a small spectrum); the dispersion in optical path difference in an interferometer (for the correction of which we propose a new technique to our knowledge); and the lateral dispersion that is related to the apparition of colours in the scintillation. The question of stabilizing the optical path difference in optical interferometers is also raised.
Les très grands télescopes et les divers interféromètres optiques permettent d’accéder à des résolutions angulaires inégalées et fournissent des données scientifiques de première importance, mais au prix de contraintes instrumentales qui demandent des équipements complexes. La correction de la dispersion atmosphérique (i.e. de la variation d’indice de l’air avec la longueur d’onde) est l’une d’elles. Cette dispersion se présente sous trois formes : la dispersion angulaire (l’image d’une étoile est étalée en un petit spectre) ; la dispersion longitudinale (i.e. en différence de marche entre voies d’un interféromètre, pour la correction de laquelle nous proposons une technique nouvelle à notre connaissance) ; enfin la dispersion latérale, liée à la coloration de la scintillation. On évoque aussi la question de la stabilisation de la différence de marche dans les interféromètres optiques.
@article{CRPHYS_2022__23_S1_345_0, author = {Laurent Koechlin and Luc Dettwiller}, title = {Correction de la dispersion atmosph\'erique dans l{\textquoteright}imagerie par les grands t\'elescopes et les interf\'erom\`etres astronomiques}, journal = {Comptes Rendus. Physique}, pages = {345--364}, publisher = {Acad\'emie des sciences, Paris}, volume = {23}, number = {S1}, year = {2022}, doi = {10.5802/crphys.112}, language = {fr}, }
TY - JOUR AU - Laurent Koechlin AU - Luc Dettwiller TI - Correction de la dispersion atmosphérique dans l’imagerie par les grands télescopes et les interféromètres astronomiques JO - Comptes Rendus. Physique PY - 2022 SP - 345 EP - 364 VL - 23 IS - S1 PB - Académie des sciences, Paris DO - 10.5802/crphys.112 LA - fr ID - CRPHYS_2022__23_S1_345_0 ER -
%0 Journal Article %A Laurent Koechlin %A Luc Dettwiller %T Correction de la dispersion atmosphérique dans l’imagerie par les grands télescopes et les interféromètres astronomiques %J Comptes Rendus. Physique %D 2022 %P 345-364 %V 23 %N S1 %I Académie des sciences, Paris %R 10.5802/crphys.112 %G fr %F CRPHYS_2022__23_S1_345_0
Laurent Koechlin; Luc Dettwiller. Correction de la dispersion atmosphérique dans l’imagerie par les grands télescopes et les interféromètres astronomiques. Comptes Rendus. Physique, Volume 23 (2022) no. S1, pp. 345-364. doi : 10.5802/crphys.112. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.112/
[1] La construction du télescope d’amateur, Société Astronomique de France, Paris, 1961
[2] L’observation en astrophysique, EDP Sciences, Les Ulis, 2008
[3] Panorama historique de l’étude de la réfraction astronomique : une histoire méconnue entre optique, mathématiques et géodésie, C. R. Phys., Volume 23 (2022) no. S1, pp. 13-62 | DOI
[4] Short review on the refractive index of air as a function of temperature, pressure, humidity and ionization, 2022 (preprint) | arXiv
[5] Differential path considerations in optical stellar interferometry, Appl. Opt., Volume 34 (1994), pp. 2214-2219 | DOI
[6] Atmospheric dispersion compensation for extremely large telescopes, Opt. Express, Volume 15 (2007), pp. 1534-1542 | DOI
[7] Zenith-distance dependence of chromatic shear effect : a limiting factor for an extreme adaptive optics system, Astrophys. J., Volume 652 (2006), pp. 1782-1786 | DOI
[8] On the theory of stellar scintillation, Phil. Mag., Volume 36 (1893), pp. 129-142 | Zbl
[9] Chromatic effects of the atmosphere on astronomical adaptive optics, Appl. Opt., Volume 47 (2008), pp. 1072-1081 | DOI
[10] Strehl ratios with various types of anisoplanatism, J. Opt. Soc. Am. A, Volume 9 (1992), pp. 1398-1406 | DOI
[11] Computation of the lateral shift due to atmospheric refraction, Astron. Astrophys., Volume 662 (2022) article n° A61, (15 p.) | DOI
[12] On an achromatic stellar interferometer, Astron. J., Volume 56 (1951), pp. 140-141 | DOI
[13] An achromatic stellar interferometer, Astron. J., Volume 59 (1954), pp. 369-375 | DOI
[14] A critical evaluation of Sinton’s achromatic interferometer, J. Observateurs, Volume 38 (1955), pp. 217-220
[15] On the interferometric measurement of small angular distances, Vist. Astron., Volume 1 (1955), pp. 377-385 | DOI
[16] Optique adaptative : correction des effets de la turbulence atmosphérique sur les images astronomiques, C. R. Phys., Volume 23 (2022) no. S1, pp. 293-344 | DOI
[17] Saturation of scintillation, J. Opt. Soc. Am., Volume 60 (1970), pp. 1495-1500 | DOI
[18] Quantification of the expected residual dispersion of the MICADO Near-IR imaging instrument, Mon. Not. R. Astron. Soc., Volume 496 (2020), pp. 4266-4275 | DOI
[19] The Palomar testbed interferometer, Astrophys. J., Volume 510 (1999), pp. 505-521 | DOI
[20] et al. First light for GRAVITY : Phase referencing optical interferometry for the Very Large Telescope Interferometer, Astron. Astrophys., Volume 602 (2017) article n° A94, (23 p.) | DOI
[21] Sur la mesure du diamètre des plus grandes planètes, Hist. Acad. R. Sci. année 1748 (1752), pp. 87-94
[22] L’invariant de Bouguer et ses conséquences : commentaire historique, C. R. Phys., Volume 23 (2022) no. S1, pp. 415-452 | DOI
[23] De la mesure du diamètre des plus grandes planètes : Description d’un nouvel Instrument qu’on peut nommer Héliomètre, propre à les déterminer ; & Observations sur le Soleil, Mém. Acad. R. Sci. année 1748 (1752), pp. 11-34
[24] Propriétés remarquables de la réfraction astronomique dans une atmosphère à symétrie sphérique, C. R. Phys., Volume 23 (2022) no. S1, pp. 63-102 | DOI
[25] Sur les pouvoirs dispersifs, Œuvres complètes, t. 11 (J.-A. Barral, ed.), Volume 2, Gide, Paris, 1859, pp. 733-748
[26] On the Eye-piece for correction of atmospheric dispersion, Mon. Not. R. Astron. Soc., Volume 30 (1870), pp. 57-59 | DOI
[27] Mieux voir les étoiles – 1 siècle de l’interférométrie optique, EDP Sciences, Les Ulis, 2019
[28] Applications of Michelson’s interferometer method to the measurememnt of close double stars, Astrophys. J., Volume 51 (1920), pp. 263-275 | DOI
[29] Double stars measured by interference method, Popular Astron., Volume 36 (1928), pp. 385-387
[30] Compensation for atmospheric dispersion in double star interferometry, Mon. Notes Astron. Soc. S. Afr., Volume 10 (1951), pp. 7-8
[31] The significance of atmospheric dispersion in astronomical interferometry, Circ. Union Observ. Johannesburg, Volume 112 (1951), pp. 82-86
[32] The Airy-Simms eyepiece for neutralizing atmospheric dispersion, Observatory, Volume 87 (1967), pp. 41-42
[33] Construction and use of an interferometer for measurement of close double stars with the eighteen-inch refractor. Continuation of the use of the interferometer for close double star measurements at Flower Observatory, Publications of the University of Pennsylvania (Astronomical Series), Volume 6, University of Pennsylvania Press, Philadelphie, 1941, pp. 1-32 (part IV)
[34] Measures of double stars, Lick Obs. Bull., Volume 19 (1947), pp. 175-181
[35] Correction of atmospheric dispersion in the infrared, Mon. Not. R. Astron. Soc., Volume 282 (1996), pp. 863-867 | DOI
[36] Speckle interferometry : diffraction-limited measurements of nine stars with the 200-inch telescope, Astrophys. J., Volume 173 (1972), p. L1-L5 | DOI
[37] Speckle interferometry : color-dependent limb darkening evidenced on alpha Orionis and omicron Ceti, Astrophys. J., Volume 181 (1973), p. L1-L4 | DOI
[38] Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images, Astron. Astrophys., Volume 6 (1970), pp. 85-87
[39] Atmospheric dispersion correctors at the Cassegrain focus, Mon. Not. R. Astron. Soc., Volume 220 (1986), pp. 657-670 | DOI
[40] A new form of atmospheric dispersion corrector, Mon. Not. R. Astron. Soc., Volume 262 (1993), pp. 741-748 | DOI
[41] Atmospheric dispersion in very large telescopes with adaptive optics, Mon. Not. R. Astron. Soc., Volume 285 (1997), pp. 130-134 | DOI
[42] Atmospheric dispersion correction for the FORS focal reducers at ESO VLT, Proc. SPIE, Volume 2871 (1996), pp. 1135-1143 | DOI
[43] Ueber die Dispersion des Lichts in den Gasen, Ann. Phys. (Leipzig), Volume 200 (1865), pp. 390-406 | DOI
[44] Some recent application of interference methods, Proc. Phys. Soc. Lond., Volume 33 (1920), pp. 275-285 | DOI
[45] Interference fringes obtained on Vega with two optical telescopes, Astrophys. J., Volume 196 (1975), p. L71-L75 | DOI
[46] Very high precision orbit of Capella by long baseline interferometry, Astron. J., Volume 107 (1994), pp. 1859-1867 | DOI
[47] The first images from an optical aperture synthesis array : mapping of Capella with COAST at two epochs, Astron. Astrophys., Volume 306 (1996), p. L1-L16
[48] The navy prototype optical interferometer, Astrophys. J., Volume 496 (1998), pp. 550-571 | DOI
[49] First results from the CHARA array. II. A description of the instrument, Astrophys. J., Volume 628 (2005), pp. 453-465 | DOI
[50] Triple correlation as a phase closure technique, Opt. Commun., Volume 60 (1986), pp. 145-148 | DOI
[51] Phase-referenced interferometry and narrow-angle astrometry with SUSI, J. Astron. Instrum., Volume 2 (2013), p. 1340011-1–1340011-32 | DOI
[52] GRAVITY : the adaptive-optics-assisted two-object beam combiner for the VLTI, Proc. SPIE, Volume 6268 (2006), p. 626811-1–626811-9 | DOI
[53] et al. Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA*, Astron. Astrophys., Volume 618 (2018) article n° L10, (15 p.) | DOI
[54] et al. Direct confirmation of the radial velocity planet Pictoris c, Astron. Astrophys., Volume 642 (2020) article n° L2, (8 p.)
[55] The Berkeley infrared spatial interferometer : a heterodyne stellar interferometer for the mid-infrared, Astrophys. J., Volume 537 (2000), pp. 998-1012 | DOI
[56] et al. The VLTI – A status report, Proc. SPIE, Volume 4838 (2003), pp. 89-100 | DOI
[57] The Large Binocular Telescope, Proc. SPIE, Volume 6267 (2006), pp. 1-15
[58] Une histoire de flou – Miroirs, trous noirs et autres mondes, Le Pommier, Paris, 2019 | Numdam
[59] Glass compensation for an air filled delay line, High-Resolution Imaging by Interferometry (F. Merkle, ed.) (European Southern Observatory), Garching bei München (RFA), 1988, pp. 959-970
[60] Dispersion in stellar interferometry, Appl. Opt., Volume 29 (1990), pp. 516-521 | DOI
[61] Compensation of differential dispersion : application to multiband stellar interferometry, Mon. Not. R. Astron. Soc., Volume 507 (2021), pp. 1369-1380 | DOI
[62] Dispersion compensation in stellar interferometry, Appl. Opt., Volume 35 (1996), pp. 612-620 | DOI
[63] Dispersed fringe tracking with the multi-r apertures of the Grand Interféromètre à 2 Télescopes, Appl. Opt., Volume 35 (1996), pp. 3002-3009 | DOI
[64] Minimizing atmospheric dispersion effects in compensated imaging, J. Opt. Soc. Am., Volume 67 (1977), pp. 407-409 | DOI
[65] The polychromatic artificial sodium star : a new concept for correcting the atmospheric tilt, Astron. Astrophys. Suppl. Ser., Volume 111 (1995), pp. 569-578
[66] Optique géométrique et ondulatoire, Masson, Paris, 1994 | Numdam
[67] Principles of Optics – Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Pergamon Press, Oxford, 1980
Cited by Sources:
Les effets optiques de la turbulence atmosphérique dans les images astronomiques
Daniel Bonneau
C. R. Phys (2022)
Gérard Rousset; Thierry Fusco
C. R. Phys (2022)
Propriétés remarquables de la réfraction astronomique dans une atmosphère à symétrie sphérique
Luc Dettwiller
C. R. Phys (2022)