[Adaptive optics: correcting atmospheric turbulence effects on astronomical images]
Today, adaptive optics (AO) is installed on all very large astronomical telescopes. It allows to overcome the limitation in angular resolution imposed on large ground-based telescopes by the atmospheric turbulence perturbations. This review paper presents the state of the art of the field for astronomical applications. It gives the principles of AO and describes its main components which are the deformable mirrors, the wavefront sensors and the control algorithms. The paper also presents the main recent achievements and ongoing projects. First, for the direct imaging of extra-solar planets by extreme AO and coronography, taking as example the SPHERE instrument. Then to solve the problem of the very limited sky coverage by using laser guide star and to extend the AO correction beyond the isoplanatic patch. Thus, the various laser-assisted tomographic AO concepts are presented with examples of each realization as for the laser tomography AO, the multi-conjugate AO and the multi-object AO. Finally, the challenges of the new generation of giant telescopes are discussed at the end of the paper with a particular focus on the European Extremely Large Telescope (ELT) project.
L’optique adaptative (OA), installée aujourd’hui sur tous les très grands télescopes astronomiques, permet de s’affranchir de la limitation en résolution angulaire imposée aux grands télescopes au sol par les perturbations de la turbulence atmosphérique. Cet article de revue présente l’état de l’art du domaine pour les applications astronomiques. Il donne les principes de l’OA et décrit ses composants principaux que sont les miroirs déformables, les analyseurs de surface d’onde et les algorithmes de commande. L’article présente aussi les principales réalisations récentes et les projets en cours. D’abord pour l’imagerie directe des planètes extrasolaires par OA extrême et coronographie, en prenant comme exemple l’instrument SPHERE. Ensuite pour résoudre par étoile guide laser la problématique de la couverture du ciel trop faible et étendre la correction de l’OA au-delà du domaine isoplanétique. Ainsi les systèmes d’OA tomographiques assistées par laser sont présentés avec à chaque fois des exemples de réalisation comme pour l’OA à tomographie laser, l’OA multiconjuguée et l’OA multi-objet. Enfin les défis des télescopes géants, dits extrêmes, sont abordés en fin d’article avec un focus particulier sur le projet européen de l’Extremely Large Telescope (ELT).
Revised:
Accepted:
Online First:
Published online:
Keywords: atmospheric turbulence, imaging, adaptive optics, wavefront sensing, tomography, laser guide star, deformable mirror
Gérard Rousset 1; Thierry Fusco 2, 3
@article{CRPHYS_2022__23_S1_293_0, author = {G\'erard Rousset and Thierry Fusco}, title = {Optique adaptative~~: correction des effets de la turbulence atmosph\'erique sur les images astronomiques}, journal = {Comptes Rendus. Physique}, pages = {293--344}, publisher = {Acad\'emie des sciences, Paris}, volume = {23}, number = {S1}, year = {2022}, doi = {10.5802/crphys.111}, language = {fr}, }
TY - JOUR AU - Gérard Rousset AU - Thierry Fusco TI - Optique adaptative : correction des effets de la turbulence atmosphérique sur les images astronomiques JO - Comptes Rendus. Physique PY - 2022 SP - 293 EP - 344 VL - 23 IS - S1 PB - Académie des sciences, Paris DO - 10.5802/crphys.111 LA - fr ID - CRPHYS_2022__23_S1_293_0 ER -
%0 Journal Article %A Gérard Rousset %A Thierry Fusco %T Optique adaptative : correction des effets de la turbulence atmosphérique sur les images astronomiques %J Comptes Rendus. Physique %D 2022 %P 293-344 %V 23 %N S1 %I Académie des sciences, Paris %R 10.5802/crphys.111 %G fr %F CRPHYS_2022__23_S1_293_0
Gérard Rousset; Thierry Fusco. Optique adaptative : correction des effets de la turbulence atmosphérique sur les images astronomiques. Comptes Rendus. Physique, Astronomy, Atmospheres and Refraction, Volume 23 (2022) no. S1, pp. 293-344. doi : 10.5802/crphys.111. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.111/
[1] The effects of atmospheric turbulence in optical astronomy (Progress in Optics), Volume 19, Elsevier, 1981, pp. 281-376 | DOI
[2] The Possibility of Compensating Astronomical Seeing, Publ. Astron. Soc. Pac., Volume 65 (1953) no. 386, pp. 229-236 | DOI
[3] Possible development of astronomy from the instrumental viewpoint, Transactions of the Twelfth Astrometric Conference of the USSR (December 7–9, 1955, Pulkovo) Leningrad (1957), pp. 179-185
[4] Real-time atmospheric compensation, J. Opt. Soc. Am., Volume 67 (1977), pp. 360-369 | DOI
[5] First diffraction-limited astronomical images with adaptive optics, Astron. Astrophys., Volume 230 (1990) no. 2, p. L29-L32
[6] First Light Adaptive Optics Images from the Keck II Telescope : A New Era of High Angular Resolution Imagery, Publ. Astron. Soc. Pac., Volume 112 (2000) no. 769, pp. 315-319 | DOI
[7] Performance of Subaru adaptive optics system and the scientific results, Adaptive Optical System Technologies II (Peter L. Wizinowich; Domenico Bonaccini, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 4839, SPIE (2003), pp. 21-31 | DOI
[8] NAOS, the first AO system of the VLT : on-sky performance, Adaptive Optical System Technologies II (Peter L. Wizinowich; Domenico Bonaccini, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 4839, SPIE, International Society for Optics and Photonics (2003), pp. 140-149 | DOI
[9] Preliminary Commissioning Results of Altair, Science with Adaptive Optics (Wolfgang Brandner; Markus E. Kasper, eds.) (ESO Astrophysics Symposia), Springer (2005), pp. 19-25 | DOI
[10] First light AO (FLAO) system for LBT : final integration, acceptance test in Europe, and preliminary on-sky commissioning results, Adaptive Optics Systems II (Brent L. Ellerbroek; Michael Hart; Norbert Hubin; Peter L. Wizinowich, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 7736, SPIE, International Society for Optics and Photonics (2010), 773609 | DOI
[11] Les effets optiques de la turbulence atmosphérique dans les images en astronomie, C. R. Phys., Volume 23 (2022) no. S1, pp. 269-291 | DOI
[12] Statistics of a Geometric Representation of Wavefront Distortion, J. Opt. Soc. Am., Volume 55 (1965) no. 11, pp. 1427-1435 | DOI | MR
[13] Adaptive Optics for Astronomical Telescopes, Oxford series on optical sciences, 16, Oxford University Press, 1998
[14] Adaptive optics in astronomy, Cambridge University Press, 1999 | DOI
[15] Overview of deformable mirror technologies for adaptive optics and astronomy, Adaptive Optics Systems III (Brent L. Ellerbroek; Enrico Marchetti; Jean-Pierre Véran, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 8447, SPIE, International Society for Optics and Photonics (2012), 844705, pp. 22-39 | DOI
[16] A Study of an Adaptive Secondary Mirror, Proceedings of the ICO-16 (International Commission for Optics) Satellite Conference on Active and adaptive optics, held August 2-5, 1993 (European Southern Observatory Conference and Workshop Proceedings), Volume 48, European Southern Observatory (1994), pp. 247-253
[17] MMT adaptive secondary : performance evaluation and field testing, Adaptive Optical System Technologies II (Peter L. Wizinowich; Domenico Bonaccini, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 4839, SPIE, International Society for Optics and Photonics (2003), pp. 691-702 | DOI
[18] MagAO : Status and on-sky performance of the Magellan adaptive optics system, Adaptive Optics Systems IV (Enrico Marchetti; Laird M. Close; Jean-Pierre Véran, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 9148, SPIE, International Society for Optics and Photonics (2014), 914804, pp. 25-37 | DOI
[19] VLT deformable secondary mirror : integration and electromechanical tests results, Adaptive Optics Systems III (Brent L. Ellerbroek; Enrico Marchetti; Jean-Pierre Véran, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 8447, SPIE, International Society for Optics and Photonics (2012), 84472G, pp. 925-934 | DOI
[20] Production and use of a lenticular Hartmann screen, J. Opt. Soc. Am., Volume 61 (1971), pp. 656-661
[21] On the nature of the measurements provided by a pyramid wave-front sensor, Optics Communications, Volume 233 (2004) no. 1-3, pp. 27-38 | DOI
[22] Pupil plane wavefront sensing with an oscillating prism, J. Mod. Opt., Volume 43 (1996) no. 2, pp. 289-293 | DOI
[23] Sensitivity of a pyramidic Wave Front sensor in closed loop Adaptive Optics, Astron. Astrophys., Volume 350 (1999), p. L23-L26
[24] Kernel formalism applied to Fourier-based wave-front sensing in presence of residual phases, J. Opt. Soc. Am. A, Volume 36 (2019) no. 7, p. 1241 | DOI
[25] Comparison of centroid computation algorithms in a Shack–Hartmann sensor, Mon. Not. Roy. Astron. Soc., Volume 371 (2006) no. 1, pp. 323-336 | DOI
[26] Zernike polynomials and atmospheric turbulence, J. Opt. Soc. Am., Volume 66 (1976) no. 3, pp. 207-211 | DOI
[27] Modal compensation of atmospheric turbulence phase distortion, J. Opt. Soc. Am., Volume 68 (1978) no. 1, pp. 78-87 | DOI
[28] Astronomical adaptive optics. I. Modal control optimization, Astron. Astrophys., Volume 291 (1994) no. 1, pp. 337-347
[29] Optimization of a Predictive Controller for Closed-Loop Adaptive Optics, Appl. Opt., Volume 37 (1998) no. 21, pp. 4623-4633 | DOI
[30] Optimal control for Multi-Conjugate Adaptive Optics, C. R. Physique, Volume 6 (2005) no. 10, pp. 1059-1069 | DOI
[31] Prototyping AO RTC using emerging high performance computing technologies with the Green Flash project, Adaptive Optics Systems VI (Laird M. Close; Laura Schreiber; Dirk Schmidt, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 10703, SPIE, International Society for Optics and Photonics (2018), 1070318, pp. 404-418 | DOI
[32] Analytical model for Shack–Hartmann-based adaptive optics systems, Adaptive Optical System Technologies (Domenico Bonaccini; Robert K. Tyson, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 3353, SPIE (1998), pp. 1038-1048 | DOI
[33] Limits of Adaptive Optics for High-Contrast Imaging, Astrophys. J., Volume 629 (2005) no. 1, pp. 592-614 | DOI
[34] High-order adaptive optics requirements for direct detection of extrasolar planets : Application to the SPHERE instrument, Optics Express, Volume 14 (2006) no. 17, p. 7515 | DOI
[35] Étude de la correction partielle en optique adaptative, Ph. D. Thesis, Université Paris XI, Paris, France (1994)
[36] Wave-front compensation error due to finite corrector-element size, J. Opt. Soc. Am., Volume 67 (1977), pp. 393-395 | DOI
[37] Spatially filtered wave-front sensor for high-order adaptive optics, J. Opt. Soc. Am. A, Volume 21 (2004) no. 5, pp. 810-819 | DOI
[38] Bandwidth specification for adaptive optics systems, J. Opt. Soc. Am., Volume 67 (1977), pp. 390-393 | DOI
[39] Wave-front estimation from wave-front slope measurements, J. Opt. Soc. Am., Volume 7 (1980) no. 8, pp. 998-1006 | DOI
[40] Anisoplanatism in adaptive optics, J. Opt. Soc. Am., Volume 72 (1982) no. 1, pp. 52-61 | DOI
[41] Calibration of NAOS and CONICA static aberrations. Application of the phase diversity technique, Astron. Astrophys., Volume 399 (2003), pp. 373-383 | DOI
[42] Calibration and precompensation of noncommon path aberrations for extreme adaptive optics, J. Opt. Soc. Am. A, Volume 24 (2007) no. 8, pp. 2334-2346 | DOI
[43] Review of small-angle coronagraphic techniques in the wake of ground-based second-generation adaptive optics systems, Space Telescopes and Instrumentation 2012 : Optical, Infrared, and Millimeter Wave (Mark C. Clampin; Giovanni G. Fazio; Howard A. MacEwen; Jr. Oschmann, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 8442, SPIE, International Society for Optics and Photonics (2012), 844204, pp. 62-82 | DOI
[44] Speckle Noise and the Detection of Faint Companions, Publ. Astron. Soc. Pac., Volume 111 (1999) no. 759, pp. 587-594 | DOI
[45] Angular Differential Imaging : A Powerful High-Contrast Imaging Technique, Astrophys. J., Volume 641 (2006) no. 1, pp. 556-564 | DOI
[46] The Structure of High Strehl Ratio Point-Spread Functions, Astrophys. J., Volume 596 (2003) no. 1, pp. 702-712 | DOI
[47] SPHERE : the exoplanet imager for the Very Large Telescope, Astron. Astrophys., Volume 631 (2019), A155 | DOI
[48] Orbital and atmospheric characterization of the planet within the gap of the PDS 70 transition disk, Astron. Astrophys., Volume 617 (2018), L2 | DOI
[49] First light of the Gemini Planet Imager, Proc. Natl. Acad. Sci. USA, Volume 111 (2014) no. 35, pp. 12661-12666 | DOI
[50] SCExAO, an instrument with a dual purpose : perform cutting-edge science and develop new technologies, Adaptive Optics Systems VI (Laird M. Close; Laura Schreiber; Dirk Schmidt, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 10703, SPIE, International Society for Optics and Photonics (2018), 1070359, pp. 1266-1277 | DOI
[51] SPHERE+ : Imaging young Jupiters down to the snowline (2020) (https://arxiv.org/abs/2003.05714)
[52] High-Contrast Imaging from Space : Speckle Nulling in a Low-Aberration Regime, Astrophys. J., Volume 638 (2006) no. 1, pp. 488-498 | DOI
[53] High-contrast imaging in polychromatic light with the self-coherent camera, Astron. Astrophys., Volume 564 (2014), L1 | DOI
[54] Experimental validation of joint phase and amplitude wave-front sensing with coronagraphic phase diversity for high-contrast imaging, Astron. Astrophys., Volume 614 (2018), A142 | DOI
[55] Strehl ratios with various types of anisoplanatism, J. Opt. Soc. Am. A, Volume 9 (1992) no. 8, pp. 1398-1405 | DOI
[56] Sky coverage estimation for multiconjugate adaptive optics systems : strategies and results, Mon. Not. Roy. Astron. Soc., Volume 370 (2006) no. 1, pp. 174-184 | DOI
[57] Feasibility of adaptive telescope with laser probe, Astron. Astrophys., Volume 152 (1985) no. 2, p. L29-L31
[58] The W. M. Keck Observatory Laser Guide Star Adaptive Optics System : Overview, Publ. Astron. Soc. Pac., Volume 118 (2006) no. 840, pp. 297-309 | DOI
[59] Adaptive Optics Facility : from an amazing present to a brilliant future..., Adaptive Optics Systems VI (Laird M. Close; Laura Schreiber; Dirk Schmidt, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 10703, SPIE, International Society for Optics and Photonics (2018), 1070302, pp. 1-13 | DOI
[60] Laser guide star in adaptive optics : the tilt determination problem, Astron. Astrophys., Volume 261 (1992), pp. 677-684
[61] The polychromatic artificial sodium star : a new concept for correcting the atmospheric tilt, Astron. Astrophys. Suppl. Ser., Volume 111 (1995), pp. 569-578
[62] High resolution mesospheric sodium properties for adaptive optics applications, Astron. Astrophys., Volume 565 (2014), A102 | DOI
[63] A story of errors and bias : The optimization of the LGS WFS for HARMONI, AO4ELT6 (2019) (HAL_ID = hal-02614095, https://hal.archives-ouvertes.fr/hal-02614095/file/DOTA20078.1589983213.pdf)
[64] Analysis of fundamental limits to artificial-guide-star adaptive-optics-system performance for astronomical imaging, J. Opt. Soc. Am. A, Volume 11 (1994) no. 1, pp. 277-287 | DOI
[65] Adaptive telescope with laser probe : isoplanatism and cone effect, Astron. Astrophys., Volume 235 (1990), pp. 549-557
[66] First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes, J. Opt. Soc. Am. A, Volume 11 (1994) no. 2, pp. 783-805 | DOI
[67] Optimal wave-front reconstruction strategies for multiconjugate adaptive optics, J. Opt. Soc. Am. A, Volume 18 (2001) no. 10, pp. 2527-2538 | DOI
[68] The MUSE second-generation VLT instrument, Ground-based and Airborne Instrumentation for Astronomy III (Ian S. McLean; Suzanne K. Ramsay; Hideki Takami, eds.), Volume 7735, SPIE, International Society for Optics and Photonics (2010), pp. 131-139 | DOI
[69] Multiconjugate Adaptive Optics for Astronomy (2020) (https://arxiv.org/abs/2003.03097)
[70] MAD On-Sky Results in Star Oriented Mode, Adaptive Optics : Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, Optical Society of America (2007), AMA2 | DOI
[71] GeMS first on-sky results, Adaptive Optics Systems III (Brent L. Ellerbroek; Enrico Marchetti; Jean-Pierre Véran, eds.), Volume 8447, SPIE, International Society for Optics and Photonics (2012), pp. 149-163 | DOI
[72] MAVIS conceptual design, Ground-based and Airborne Instrumentation for Astronomy VIII (Christopher J. Evans; Julia J. Bryant; Kentaro Motohara, eds.), Volume 11447, SPIE, International Society for Optics and Photonics (2020), pp. 378-393 | DOI
[73] Principles, limitations, and performance of multiconjugate adaptive optics, Adaptive Optical Systems Technology (Peter L. Wizinowich, ed.), Volume 4007, SPIE, International Society for Optics and Photonics (2000), pp. 1022-1031 | DOI
[74] MOAO first on-sky demonstration with CANARY, Astron. Astrophys., Volume 529 (2011), L2 | DOI
[75] Final two-stage MOAO on-sky demonstration with CANARY, Adaptive Optics Systems V (Enrico Marchetti; Laird M. Close; Jean-Pierre Véran, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 9909, SPIE, International Society for Optics and Photonics (2016), 99090C, pp. 126 - 142 | DOI
[76] First demo science with MOAO : observations of distant merging galaxies with CANARY, Adaptive Optics Systems IV (Enrico Marchetti; Laird M. Close; Jean-Pierre Véran, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 9148, SPIE, International Society for Optics and Photonics (2014), pp. 609-616 | DOI
[77] The Giant Magellan Telescope (GMT), Extremely Large Telescopes : Which Wavelengths ? Retirement Symposium for Arne Ardeberg (Torben E. Andersen, ed.), Volume 6986, SPIE, International Society for Optics and Photonics (2008), pp. 25-36 | DOI
[78] The Thirty Meter Telescope (TMT) : An International Observatory, J. Astrophys. Astron., Volume 34 (2013), p. 81–86 | DOI
[79] The E-ELT program status, Ground-based and Airborne Telescopes VI (Helen J. Hall; Roberto Gilmozzi; Heather K. Marshall, eds.), Volume 9906, SPIE, International Society for Optics and Photonics (2016), pp. 350-362 | DOI
[80] Specifications and design of the E-ELT M4 adaptive unit, Adaptive Optics Systems III (Brent L. Ellerbroek; Enrico Marchetti; Jean-Pierre Véran, eds.), Volume 8447, SPIE, International Society for Optics and Photonics (2012), pp. 1991-1998 | DOI
[81] The ESO ELT armazones instrumentation programme, Ground-based and Airborne Instrumentation for Astronomy VIII (Christopher J. Evans; Julia J. Bryant; Kentaro Motohara, eds.), Volume 11447, SPIE, International Society for Optics and Photonics (2020), pp. 451-456 | DOI
[82] MICADO : first light imager for the E-ELT, Ground-based and Airborne Instrumentation for Astronomy VI (Christopher J. Evans; Luc Simard; Hideki Takami, eds.), Volume 9908, SPIE, International Society for Optics and Photonics (2016), pp. 621-632 | DOI
[83] The E-ELT first light spectrograph HARMONI : capabilities and modes, Ground-based and Airborne Instrumentation for Astronomy VI (Christopher J. Evans; Luc Simard; Hideki Takami, eds.), Volume 9908, SPIE, International Society for Optics and Photonics (2016), pp. 595-605 | DOI
[84] Status of the mid-infrared E-ELT imager and spectrograph METIS, Ground-based and Airborne Instrumentation for Astronomy VI (Christopher J. Evans; Luc Simard; Hideki Takami, eds.), Volume 9908, SPIE, International Society for Optics and Photonics (2016), pp. 633-647 | DOI
[85] MAORY : adaptive optics module for the E-ELT, Adaptive Optics Systems V (Enrico Marchetti; Laird M. Close; Jean-Pierre Véran, eds.), Volume 9909, SPIE, International Society for Optics and Photonics (2016), pp. 768-774 | DOI
[86] The adaptive optics modes for HARMONI : from Classical to Laser Assisted Tomographic AO, Adaptive Optics Systems V (Enrico Marchetti; Laird M. Close; Jean-Pierre Véran, eds.), Volume 9909, SPIE, International Society for Optics and Photonics (2016), pp. 92-106 | DOI
[87] Single conjugate adaptive optics for METIS, Adaptive Optics Systems VI (Laird M. Close; Laura Schreiber; Dirk Schmidt, eds.), Volume 10703, SPIE, International Society for Optics and Photonics (2018), pp. 357-367 | DOI
[88] Instrumentation for ESO Extremely Large Telescope, Messenger (Mariya Lyubenova; Gaitee A. J. Hussain, eds.), Volume 182, European Southern Observatory (2021) | DOI
[89] Adaptive Optics for Free Space Laser Communications, Lasers, Sources and Related Photonic Devices, OSA, Optica Publishing Group (2010), LSMA1 | DOI
[90] First Experimental Demonstration of Adaptive Optics Pre-Compensation for GEO Feeder Links in a Relevant Environment, 2019 IEEE International Conference on Space Optical Systems and Applications (ICSOS) (2019), pp. 1-5 | DOI
[91] Adaptive Optics Ophthalmoscopy, Annu. Rev. Vis. Sci., Volume Nov (2015) no. 1, pp. 19-50 (PMID : 26973867) | DOI
[92] Adaptive optical microscopy : the ongoing quest for a perfect image, Light : Science & Applications, Volume 3 (2014) no. 4, p. e165 | DOI
Cited by Sources:
Comments - Policy