Natural mineral samples often contain small volumes of trapped fluid material. They carry information about the history of the host mineral and its environment, and for this reason are used by geoscientists. Physicists and physico-chemists have successfully harnessed water inclusions in quartz to bring liquid water to a metastable state, at a pressure well below its equilibrium pressure with vapor. The pressure can reach negative values as large as MPa, which exceeds by far the limits of other techniques, and approaches the theoretical threshold for spontaneous nucleation of a vapor bubble. This has enabled a deeper understanding of nucleation and of the anomalies of water. In turn, the optical techniques developed to study water’s properties have recently found a new application in the reconstruction of palaeotemperatures in surface processes. I review here some aspects of fluid inclusions, these fascinating objects at the crossroads between disciplines.
Les échantillons de minéraux naturels contiennent souvent de petits volumes de matière fluide piégée. Ils transmettent des informations sur l’histoire du minéral hôte et de son environnement, ce qui leur vaut d’être utilisés par les géologues. Les physiciens et physico-chimistes ont réussi à exploiter les inclusions d’eau dans le quartz pour porter l’eau liquide dans un état métastable, à une pression bien inférieure à sa pression d’équilibre avec la vapeur. La pression peut atteindre des valeurs négatives aussi élevées que MPa, ce qui dépasse de loin les limites des autres techniques et s’approche du seuil théorique de nucléation spontanée d’une bulle de vapeur. Cela a permis de mieux comprendre la nucléation et les anomalies de l’eau. À leur tour, les techniques optiques développées pour étudier les propriétés de l’eau ont récemment trouvé une nouvelle application dans la reconstruction des paléotempératures des processus de surface. Je passe ici en revue quelques aspects des inclusions fluides, objets fascinants au carrefour des disciplines.
Revised:
Accepted:
Online First:
Published online:
Mot clés : Eau, Métastabilité, Nucléation, Anomalies thermodynamiques, Paléotempératures, Interdisciplinarité
Frédéric Caupin 1
@article{CRPHYS_2022__23_S2_71_0, author = {Fr\'ed\'eric Caupin}, title = {Fluid inclusions in minerals: from geosciences to the physics of water and back}, journal = {Comptes Rendus. Physique}, pages = {71--87}, publisher = {Acad\'emie des sciences, Paris}, volume = {23}, number = {S2}, year = {2022}, doi = {10.5802/crphys.127}, language = {en}, }
Frédéric Caupin. Fluid inclusions in minerals: from geosciences to the physics of water and back. Comptes Rendus. Physique, Volume 23 (2022) no. S2, pp. 71-87. doi : 10.5802/crphys.127. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.127/
[1] Xylem Structure and the Ascent of Sap, Springer Series in Wood Science, Springer, 2002 | DOI
[2] Cavitation in Trees, Comptes Rendus Phys., Volume 7 (2006) no. 9-10, pp. 1018-1026 | DOI
[3] Cavitation Pressure in Water, Phys. Rev. E, Volume 74 (2006) no. 4, 041603 | DOI
[4] Liquids at Large Negative Pressures: Water at the Homogeneous Nucleation Limit, Science, Volume 254 (1991) no. 5033, pp. 829-832 | DOI
[5] Cavitation in Water: A Review, Comptes Rendus Physique, Volume 7 (2006) no. 9-10, pp. 1000-1017 | DOI
[6] The Fracture of Liquids, J. Appl. Phys., Volume 19 (1948) no. 11, pp. 1062-1067 | DOI
[7] Metastable Liquids: Concepts and Principles, Princeton University Press, 1996
[8] Nucleation of First-Order Phase Transitions, Acc. Chem. Res., Volume 31 (1998) no. 2, pp. 91-97 | DOI
[9] Extrait d’une Lettre de M. Hugens de l’Académie Royale Des Sciences à l’auteur de Ce Journal, Touchant Les Phénomènes de l’eau Purgée d’air, J. Sçavans (1672)
[10] An Extract of a Letter of M. Hugens to the Author of the Journal Des Scavans of July 25. 1672. Attempting to Render the Cause of That Odd Phaenomenon of the QuickSilvers Remaining Suspended Far above the Usual Height in the Torricellian Experiments, Philos. Trans. 1665-1678, Volume 7 (1672), pp. 5027-5030
[11] Early Observations of Negative Pressures in Liquids, Am. J. Phys., Volume 51 (1983) no. 11, pp. 1038-1041 | DOI
[12] The Stability Limit and Other Open Questions on Water at Negative Pressure, Liquid Polymorphism: Advances in Chemical Physics (Harry Eugene Stanley; Stuart Rice, eds.), John Wiley Sons, 2013 no. 152, pp. 51-80 | DOI
[13] Water at the Cavitation Limit: Density of the Metastable Liquid and Size of the Critical Bubble, Eur. Phys. Lett., Volume 90 (2010) no. 1, 16002 | DOI
[14] Fiber Optic Probe Hydrophone for the Study of Acoustic Cavitation in Water, Rev. Sci. Instrum., Volume 82 (2011) no. 3, 034904 | DOI
[15] Geofluids: Developments in Microthermometry, Spectroscopy, Thermodynamics, and Stable Isotopes, Elsevier, 2015 | DOI
[16] Evaporites – a Geological Compendium, Springer, 2016 | DOI
[17] Fluid Inclusions, Reviews in Mineralogy Geochemistry, 12, Walter de Gruyter, 2018 (Ebook version of the 1984 edition) | DOI
[18] Environment of Ore Deposition at the Mex-Tex Deposits, Hansonburg District, New Mexico, from Studies of Fluid Inclusions, Econ. Geol., Volume 63 (1968) no. 4, pp. 336-348 | DOI
[19] Microbial Communities in Fluid Inclusions and Long-Term Survival in Halite, GSA Today, Volume 21 (2011) no. 1, pp. 4-9 | DOI
[20] Les Grandes Étapes Du Développement de l’étude Des Inclusions Fluides, Trav. Com. Fr. Hist. Geol., Volume 17 (2003), pp. 1-22
[21] Role of Fluid and Melt Inclusion Studies in Geologic Research, Geofluids, Volume 13 (2013) no. 4, pp. 398-404 | DOI
[22] Sur de l’huile de Pétrole Dans Le Cristal de Roche et Les Fluides Élastiques Tirés Du Quartz, J. Phys. Chim. Hist. Nat. Arts, Volume 40 (1792)
[23] Ancient Fluids in Crystals, Sci. Am., Volume 207 (1962) no. 4, pp. 38-47 | DOI
[24] On the Microscopical, Structure of Crystals, Indicating the Origin of Minerals and Rocks, Q. J. Geol. Soc., Volume 14 (1858) no. 1-2, pp. 453-500 | DOI
[25] Les inclusions fluides : histoire d’un paradoxe, Bull. Minéralogie, Volume 107 (1984) no. 2, pp. 125-137 | DOI
[26] Fluids in Metamorphic Rocks, Lithos, Volume 55 (2001) no. 1-4, pp. 1-25 | DOI
[27] The Role of Evaporites in the Formation of Gems during Metamorphism of Carbonate Platforms: A Review, Miner. Depos., Volume 53 (2018) no. 1, pp. 1-20 | DOI
[28] Porphyry and Epithermal Deposits in Greece: An Overview, New Discoveries, and Mineralogical Constraints on Their Genesis, Ore Geology Reviews, Volume 107 (2019), pp. 654-691 | DOI
[29] Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica, Nature, Volume 399 (1999) no. 6735, pp. 429-436 | DOI
[30] Temperature Reconstruction from 10 to 120 kyr b2k from the NGRIP Ice Core, Clim. Past, Volume 10 (2014) no. 2, pp. 887-902 | DOI
[31] Ice-Core Evidence of Abrupt Climate Changes, Proc. Natl. Acad. Sci. USA, Volume 97 (2000) no. 4, pp. 1331-1334 | DOI
[32] Central Europe Temperature Constrained by Speleothem Fluid Inclusion Water Isotopes over the Past 14,000 Years, Sci. adv., Volume 5 (2019) no. 6, eaav3809 | DOI
[33] Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions, Science, Volume 294 (2001) no. 5544, pp. 1086-1088 | DOI
[34] Seawater Chemistry and the Advent of Biocalcification, Geology, Volume 32 (2004) no. 6, pp. 473-476 | DOI
[35] 830-Million-Year-Old Microorganisms in Primary Fluid Inclusions in Halite, Geology, Volume 50 (2022) no. 8, pp. 918-922 | DOI
[36] Isolation of a 250 Million-Year-Old Halotolerant Bacterium from a Primary Salt Crystal, Nature, Volume 407 (2000) no. 6806, pp. 897-900 | DOI
[37] The Complete Genome of a Viable Archaeum Isolated from 123-Million-Year-Old Rock Salt, Environ. Microbiol., Volume 18 (2016) no. 2, pp. 565-579 | DOI
[38] Ancient Microbes from Halite Fluid Inclusions: Optimized Surface Sterilization and DNA Extraction, PLOS ONE, Volume 6 (2011) no. 6, e20683 | DOI
[39] Ancient Bacteria Show Evidence of DNA Repair, Proc. Natl. Acad. Sci., Volume 104 (2007) no. 36, pp. 14401-14405 | DOI
[40] Ingredients for Microbial Life Preserved in 3.5 Billion-Year-Old Fluid Inclusions, Nat. Commun., Volume 12 (2021) no. 1, p. 1101 | DOI
[41] How to Search for Life in Martian Chemical Sediments and Their Fluid and Solid Inclusions Using Petrographic and Spectroscopic Methods, Front. Environ. Sci., Volume 7 (2019), 108 | DOI
[42] Open Questions on the Structures of Crystalline Water Ices, Commun. Chem., Volume 3 (2020) no. 1, p. 109 | DOI
[43] Evidence for Ice VI as an Inclusion in Cuboid Diamonds from High P-T near Infrared Spectroscopy, Mineral. Mag., Volume 64 (2000) no. 6, pp. 1089-1097 | DOI
[44] Ice-VII Inclusions in Diamonds: Evidence for Aqueous Fluid in Earth’s Deep Mantle, Science, Volume 359 (2018) no. 6380, pp. 1136-1139 | DOI
[45] Sur Quelques Phénomènes de Dilatation Forcée Des Liquides, Ann. Chim. Phys., Volume 30 (1850), pp. 232-237
[46] Temperature of Maximum Density in Water at Negative Pressure, J. Phys. Chem., Volume 91 (1987) no. 11, pp. 3062-3068 | DOI
[47] Zur Kenntnis Des Negativen Druckes in Flüssigkeiten, Abh. Dtsch. Bunsen–Gessellschaft, Volume 6 (1911), pp. 1-53
[48] Studies of Fluid Inclusions; Part 1, Low Temperature Application of a Dual-Purpose Freezing and Heating Stage, Econ. Geol., Volume 57 (1962) no. 7, pp. 1045-1061 | DOI
[49] Metastable Superheated Ice in Liquid-Water Inclusions under High Negative Pressure, Science, Volume 155 (1967) no. 3768, pp. 1413-1417 | DOI
[50] Exploration of the Phase Diagram of Liquid Water in the Low-Temperature Metastable Region Using Synthetic Fluid Inclusions, Phys. Chem. Chem. Phys., Volume 18 (2016) no. 40, pp. 28227-28241 | DOI
[51] Water and Solutions at Negative Pressure: Raman Spectroscopic Study to -80 Megapascals, Science, Volume 249 (1990) no. 4969, pp. 649-652 | DOI
[52] Experimental Superheating of Water and Aqueous Solutions, Geochim. Cosmochim. Acta, Volume 73 (2009) no. 9, pp. 2457-2470 | DOI
[53] A Coherent Picture of Water at Extreme Negative Pressure, Nat. Phys., Volume 9 (2012) no. 1, pp. 38-41 | DOI
[54] A General Relation between the Nucleation Work and the Size of the Nucleus in Multicomponent Nucleation, J. Chem. Phys., Volume 100 (1994) no. 10, pp. 7665-7671 | DOI
[55] Brillouin Scattering from O: Liquid, Ice VI, and Ice VII, Phys. Rev. B, Volume 27 (1983) no. 10, pp. 6409-6412 | DOI
[56] Thermodynamic Properties of Aqueous NaCl Solutions to 1073 K and 4.5 GPa, and Implications for Dehydration Reactions in Subducting Slabs, Geochim. Cosmochim. Acta, Volume 121 (2013), pp. 263-290 | DOI
[57] Compressibility Anomalies in Stretched Water and Their Interplay with Density Anomalies, J. Phys. Chem. Lett., Volume 8 (2017) no. 22, pp. 5519-5522 | DOI
[58] Thermodynamics of Supercooled and Stretched Water: Unifying Two-Structure Description and Liquid-Vapor Spinodal, J. Chem. Phys., Volume 151 (2019) no. 3, 034503 | DOI
[59] Supercooling of Water to under Pressure, Science, Volume 189 (1975) no. 4206, pp. 880-881 | DOI
[60] The Location of the Second Critical Point of Water, Chem. Phys. Lett., Volume 422 (2006) no. 4-6, pp. 507-512 | DOI
[61] Equation of State for Supercooled Water at Pressures up to 400 MPa, J. Phys. Chem. Ref. Data, Volume 43 (2014) no. 4, 043101 | DOI
[62] Elastic Properties of Water under Negative Pressures, J. Chem. Phys., Volume 98 (1993) no. 11, pp. 8392-8396 | DOI
[63] Anomalies in Bulk Supercooled Water at Negative Pressure, Proc. Natl. Acad. Sci. USA, Volume 111 (2014) no. 22, pp. 7936-7941 | DOI
[64] Equation of State for Water and Its Line of Density Maxima down to -120 MPa, Phys. Chem. Chem. Phys., Volume 18 (2016) no. 8, pp. 5896-5900 | DOI
[65] Revised release on the IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use (2018) no. IAPWS R6-95(2018) (http://www.iapws.org/relguide/IAPWS95-2018.pdf) (Technical report)
[66] Phase Behaviour of Metastable Water, Nature, Volume 360 (1992) no. 6402, pp. 324-328 | DOI
[67] Water: A Tale of Two Liquids, Chem. Rev., Volume 116 (2016) no. 13, pp. 7463-7500 | DOI
[68] Experimental Observation of the Liquid-Liquid Transition in Bulk Supercooled Water under Pressure, Science, Volume 370 (2020) no. 6519, pp. 978-982 | DOI
[69] Thermodynamics of Fluid Polyamorphism, Phys. Rev. X, Volume 8 (2018) no. 1, 011004 | DOI
[70] Minimal Microscopic Model for Liquid Polyamorphism and Waterlike Anomalies, Phys. Rev. Lett., Volume 127 (2021) no. 18, 185701 | DOI
[71] Effect of Dissolved Salt on the Anomalies of Water at Negative Pressure, J. Chem. Phys., Volume 152 (2020) no. 19, 194501 | DOI
[72] Geochemistry of a 1.2 Ga Carbonate-Evaporite Succession, Northern Baffin and Bylot Islands: Implications for Mesoproterozoic Marine Evolution, Precambrian Research, Volume 111 (2001) no. 1-4, pp. 203-234 | DOI
[73] Paleotemperatures Preserved in Fluid Inclusions in Halite, Geochim. Cosmochim. Acta, Volume 59 (1995) no. 19, pp. 3929-3942 | DOI
[74] Paleotemperatures from fluid inclusions in halite: method verification and a 100,000 year paleotemperature record, Death Valley, CA, Chem. Geol., Volume 150 (1998) no. 3–4, pp. 223-245 | DOI
[75] Restoring Halite Fluid Inclusions as an Accurate Palaeothermometer: Brillouin Thermometry versus Microthermometry, Geostand. Geoanal. Res., Volume 44 (2020) no. 2, pp. 243-264 | DOI
[76] The Effect of Fluid Inclusion Size on Determination of Homogenization Temperature and Density of Liquid-Rich Aqueous Inclusions, American Mineralogist, Volume 94 (2009) no. 11-12, pp. 1569-1579 | DOI
[77] The Effect of Surface Tension on Liquid–Gas Equilibria in Isochoric Systems and Its Application to Fluid Inclusions, Fluid Phase Equilib., Volume 314 (2012), pp. 13-21 | DOI
[78] Liquid–Vapour Homogenisation of Fluid Inclusions in Stalagmites: Evaluation of a New Thermometer for Palaeoclimate Research, Chem. Geol., Volume 289 (2011) no. 1-2, pp. 39-47 | DOI
[79] Effects of Compressibility and Wetting on the Liquid-Vapor Transition in a Confined Fluid, J. Chem. Phys., Volume 157 (2022) no. 5, 054506 | DOI
[80] Femtosecond Lasers in Fluid-Inclusion Analysis: Overcoming Metastable Phase States, Eur. J. Mineral., Volume 19 (2007) no. 5, pp. 693-706 | DOI
[81] Determining Gypsum Growth Temperatures Using Monophase Fluid Inclusions–Application to the Giant Gypsum Crystals of Naica, Mexico, Geology, Volume 41 (2013) no. 2, pp. 119-122 | DOI
[82] Brillouin Spectroscopy of Fluid Inclusions Proposed as a Paleothermometer for Subsurface Rocks, Sci. Rep., Volume 5 (2015) no. 1, 13168 | DOI
[83]
(in preparation)[84] Temperature Seasonality Control on Modern Halite Layers in the Dead Sea: In Situ Observations, GSA Bulletin, Volume 129 (2017) no. 9-10, pp. 1181-1194 | DOI
[85] Reconstructing Lake Bottom Water Temperatures and Their Seasonal Variability in the Dead Sea Basin during MIS5e, Depositional Rec., Volume 8 (2022) no. 2, pp. 616-627 | DOI
Cited by Sources:
Comments - Policy