Comptes Rendus
Entropy of metallic glasses and the size effect on glass transition
[Entropie des verres métalliques et effet de taille sur la transition vitreuse]
Comptes Rendus. Physique, Volume 24 (2023) no. S1, pp. 155-164.

Une description statistique des verres métalliques est proposée, basée sur l’évaluation d’une entropie et utilisant le concept de paysage du potentiel énergétique (PEL). Le PEL est sondé en utilisant la nano-indentation, en supposant que les serrations observées sont liées aux niveaux d’énergie locaux. La taille des serrations suit une distribution de Poisson cohérente avec la dynamique des événements rares. Une entropie est dérivée révélant des paramètres caractérisant la structure du verre. La pertinence de l’approche est testée sur l’effet de taille sur les propriétés mécaniques du verre métallique. On constate que les relations expliquent l’effet de l’épaisseur du film sur la température de transition vitreuse observée pour les polymères vitreux.

A statistical description of metallic glasses is proposed based on evaluation of an entropy and using the concept of potential energy landscape (PEL). The PEL is probed using nano-indentation, assuming that serrations observed are related to local energy levels. Serrations sizes follow a Poisson distribution consistent with, that their formation is a rare events. An entropy is derived revealing parameters characterizing the glass structure. The relevance of the approach is tested on the size effect on mechanical properties of metallic glass. It is noticed that the relations explain the effect of film thickness on the glass transition temperature observed for glass polymers.

Reçu le :
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crphys.130
Keywords: Metallic glass, Entropy, Nano-indentation, Mechanical behavior, Glass transition
Mot clés : Verre métallique, Entropie, Nano-indentation, Comportement mécanique, Transition vitreuse

Yannick Champion 1

1 Univ. Grenoble Alpes, CNRS, Grenoble-INP, SIMaP, 38000 Grenoble, France.
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2023__24_S1_155_0,
     author = {Yannick Champion},
     title = {Entropy of metallic glasses and the size effect on glass transition},
     journal = {Comptes Rendus. Physique},
     pages = {155--164},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {24},
     number = {S1},
     year = {2023},
     doi = {10.5802/crphys.130},
     language = {en},
}
TY  - JOUR
AU  - Yannick Champion
TI  - Entropy of metallic glasses and the size effect on glass transition
JO  - Comptes Rendus. Physique
PY  - 2023
SP  - 155
EP  - 164
VL  - 24
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.130
LA  - en
ID  - CRPHYS_2023__24_S1_155_0
ER  - 
%0 Journal Article
%A Yannick Champion
%T Entropy of metallic glasses and the size effect on glass transition
%J Comptes Rendus. Physique
%D 2023
%P 155-164
%V 24
%N S1
%I Académie des sciences, Paris
%R 10.5802/crphys.130
%G en
%F CRPHYS_2023__24_S1_155_0
Yannick Champion. Entropy of metallic glasses and the size effect on glass transition. Comptes Rendus. Physique, Volume 24 (2023) no. S1, pp. 155-164. doi : 10.5802/crphys.130. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.130/

[1] F. H. Stillinger; T. A. Weber Packing structures and transitions in liquids and solids, Science, Volume 225 (1984), pp. 983-989 | DOI

[2] P. K. Gupta; W. Kob Basis glass states: New insights from the potential energy landscape, J. Non-Cryst. Solids X, Volume 3 (2019), 100031

[3] D. L. Malandro; D. J. Lacks Relationships of shear-induced changes in the potential energy landscape to the mechanical properties of ductile glasses, J. Chem. Phys., Volume 110 (1999), pp. 4593-4601 | DOI

[4] C. E. Shannon A mathematical theory of communication, Bell Syst. Tech. J., Volume 27 (1948), pp. 379-423 | DOI | MR | Zbl

[5] J. P. K. Doye; C. P. Massen Characterizing the network topology of the energy landscapes of atomic clusters, J. Chem. Phys., Volume 122 (2005), pp. 1-13

[6] P. H. Cao; M. P. Short; S. Yip Potential energy landscape activations governing plastic flows in glass rheology, Proc. Natl. Acad. Sci. USA, Volume 116 (2019), pp. 18790-18797 | DOI

[7] R. Limbach; K. Kosiba; S. Pauly; U. Kuhn; L. Wondraczek Serrated flow of CuZr-based bulk metallic glasses probed by nanoindentation: Role of the activation barrier, size and distribution of shear transformation zones, J. Non-Cryst. Solids, Volume 459 (2017), pp. 130-141 | DOI

[8] C. A. Schuh; T. G. Nieh A nanoindentation study of serrated flow in bulk metallic glasses, Acta Mater., Volume 51 (2003), pp. 87-99 | DOI

[9] C. Q. Chen; Y. T. Pei; O. Kuzmin; Z. F. Zhang; E. Ma; J. T. M. De Hosson Intrinsic size effects in the mechanical response of taper-free nanopillars of metallic glass, Phys. Rev. B, Volume 83 (2011), pp. 1-4

[10] N. Thurieau; L. Perriere; M. Laurent-Brocq; Y. Champion Activation volume in heterogeneous deformation of Mg 65 Cu 12.5 Ni 12.5 (Ce 75 La 25 ) 10 metallic glass, J. Appl. Phys., Volume 118 (2015), pp. 1-5 | DOI

[11] P. Schall; D. A. Weitz; F. Spaepen Structural rearrangements that govern flow in colloidal glasses, Science, Volume 318 (2007), pp. 1895-1899 | DOI

[12] J. D. Ju; D. Jang; A. Nwankpa; M. Atzmon An atomically quantized hierarchy of shear transformation zones in a metallic glass, J. Appl. Phys., Volume 109 (2011), pp. 1-8

[13] G. Adam; J. H. Gibbs On the temperature dependence of cooperative relaxtion properties in glass-forming liquids, J. Chem. Phys., Volume 43 (1965), pp. 139-146 | DOI

[14] E. W. Taylor Plastic deformation of optical glass, Nature, Volume 63 (1949), p. 323 | DOI

[15] G. Kermouche; G. Guillonneau; J. Michler; J. Teisseire; E. Barthel Perfectly plastic flow in silica glass, Acta Mater., Volume 114 (2016), pp. 146-153 | DOI

[16] C. A. Volkert; A. Donohue; F. Spaepen Effect of sample size on deformation in amorphous metals, J. Appl. Phys., Volume 103 (2008), pp. 1-6 | DOI

[17] Y. F. Shi Size-dependent mechanical responses of metallic glasses, Int. Mater. Rev., Volume 64 (2019), pp. 163-180 | DOI

[18] H. Guo; P. F. Yan; Y. B. Wang; J. Tan; Z. F. Zhang; M. L. Sui; E. Ma Tensile ductility and necking of metallic glass, Nat. Mater., Volume 6 (2007), pp. 735-739 | DOI

[19] J. H. Gibbs; E. A. DiMarzio Nature of the glass transition and the glassy state, J. Chem. Phys., Volume 28 (1958), pp. 373-383 | DOI

[20] Y. Champion; N. Thurieau The sample size effect in metallic glass deformation, Sci. Rep., Volume 10 (2020), pp. 1-7 | DOI

[21] F. H. Stillinger Exponential multiplicity of inherent structures, Phys. Rev. E, Volume 59 (1999), pp. 48-51

[22] R. Busch; W. Liu; W. L. Johnson Thermodynamics and kinetics of the Mg 65 Cu 25 Y 10 bulk metallic glass forming liquid, J. Appl. Phys., Volume 83 (1998), pp. 4134-4141 | DOI

[23] C. J. Lee; J. C. Huang; T. G. Nieh Sample size effect and microcompression of Mg 65 Cu 25 Gd 10 metallic glass, Appl. Phys. Lett., Volume 91 (2007), pp. 1-3

[24] J. L. Keddie; R. A. L. Jones; R. A. Cory Size-dependent depression of the glass-transition temperature in polymer-films, Europhys. Lett., Volume 27 (1994), pp. 59-64 | DOI

[25] J. A. Forrest; J. Mattsson Reductions of the glass transition temperature in thin polymer films: Probing the length scale of cooperative dynamics, Phys. Rev. E, Volume 61 (2000), p. R53-R56

Cité par Sources :

Commentaires - Politique