Comptes Rendus
Astrometry of directly imaged exoplanets with optical interferometry
[Astrométrie des exoplanètes par interférométrie optique astronomique]
Comptes Rendus. Physique, Online first (2023), pp. 1-14.

L’interférométrie aux longueurs d’ondes visibles a toujours été considérée comme une technique prometteuse mais difficile pour l’astronomie. Jusqu’à l’année 2018, sa sensibilité était limitée aux objets célestes les plus brillants, avec des magnitudes inférieures à 10. L’instrument GRAVITY, installé derrière le VLTI au Chili, a changé cela — grâce notamment à sa capacité de suivre et corriger le déplacement des franges et à son interféromètre double champ. Avec GRAVITY, l’on peut désormais observer des cibles très faibles. Cet article présente les différentes façons de faire de l’astrométrie avec un interféromètre optique. Il montre pourquoi l’interférométrie à double champ est devenue la technique clé pour les compagnons faibles. En prenant l’exemple de l’exoplanète HD 95086 b, nous montrons comment l’interférométrie à double champ peut détecter des exoplanètes aussi faibles que la magnitude 19,5. Nous expliquons également comment nous obtenons des précisions astrométriques de 10μas, et décrivons les biais restants qui peuvent entraver la mesure. Enfin, nous terminons en présentant les orbites de 10 exoplanètes dans 4 systèmes, et concluons sur les perspectives à plus long terme de cette technique.

Optical interferometry has always been seen as a promising but difficult technique for astronomy. Until the year 2018, it was excrucially limited in sensitivity to magnitudes below 10. However, thanks to the advent of the GRAVITY instrument, fringe tracking and dual field interferometry made it possible to observe very faint target. This paper presents the different techniques used by optical interferometry to perform astrometry. It shows why dual field interferometry has become the key technique for faint companions. Taking the exemple of the HD 95086 b exoplanet, we show how dual field interferomtry can detect an exoplanet as faint as magnitude 19.5, and how its astrometry was extracted. Use this example this paper explains how and why an astrometric accuracy of 10μas is possible, and describes the remaining biases that can hinder this measurement. Last, we conclude by presenting the orbital trajectory of 10 exoplanets in 4 systems, and conclude with the short and longer term perspectives of the technique.

Reçu le :
Accepté le :
Première publication :
DOI : 10.5802/crphys.144
Keywords: Astrometry, Exoplanets, Direct detection, Interferometry, High angular resolution
Mot clés : Astrométrie, Exoplanètes, Détection directe, Interferométrie, Haute résolution angulaire
Sylvestre Lacour 1

1 LESIA, Observatoire de Paris, Université PSL, CNRS, Université Paris Cité, Sorbonne Université, 5 place Jules Janssen, 92195 Meudon, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2023__24_S2_A6_0,
     author = {Sylvestre Lacour},
     title = {Astrometry of directly imaged exoplanets with optical interferometry},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2023},
     doi = {10.5802/crphys.144},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Sylvestre Lacour
TI  - Astrometry of directly imaged exoplanets with optical interferometry
JO  - Comptes Rendus. Physique
PY  - 2023
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.144
LA  - en
ID  - CRPHYS_2023__24_S2_A6_0
ER  - 
%0 Journal Article
%A Sylvestre Lacour
%T Astrometry of directly imaged exoplanets with optical interferometry
%J Comptes Rendus. Physique
%D 2023
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.144
%G en
%F CRPHYS_2023__24_S2_A6_0
Sylvestre Lacour. Astrometry of directly imaged exoplanets with optical interferometry. Comptes Rendus. Physique, Online first (2023), pp. 1-14. doi : 10.5802/crphys.144.

[1] A. Kellerer Beating the diffraction limit in astronomy via quantum cloning, Astron. Astrophys., Volume 561 (2014), A118 | DOI

[2] GRAVITY Collaboration; R. Abuter; M. Accardo; A. Amorim et al. First light for GRAVITY: Phase referencing optical interferometry for the very large telescope interferometer, Astron. Astrophys., Volume 602 (2017), A94 | DOI

[3] Gaia Collaboration; T. Prusti; J. H. J. de Bruijne; A. G. A. Brown et al. The Gaia mission, Astron. Astrophys., Volume 595 (2016), A1 | DOI

[4] J. T. Armstrong; D. Mozurkewich; L. J. Rickard et al. The navy prototype optical interferometer, Astrophys. J., Volume 496 (1998) no. 1, pp. 550-571 | DOI

[5] J. R. North; P. G. Tuthill; W. J. Tango; J. Davis γ 2 Velorum: orbital solution and fundamental parameter determination with SUSI, Mon. Notices Royal Astron. Soc., Volume 377 (2007) no. 1, pp. 415-424 | DOI

[6] J. Rameau; G. Chauvin; A.-M. Lagrange et al. Discovery of a probable 4-5 jupiter-mass exoplanet to HD 95086 by direct imaging, Astrophys. J. Lett., Volume 772 (2013) no. 2, L15 | DOI

[7] J. Woillez; S. Lacour Wide-angle, narrow-angle, and imaging baselines of optical long-baseline interferometers, Astrophys. J., Volume 764 (2013) no. 1, 109 | DOI

[8] S. Lacour; F. Eisenhauer; S. Gillessen et al. Reaching micro-arcsecond astrometry with long baseline optical interferometry. Application to the GRAVITY instrument, Astron. Astrophys., Volume 567 (2014), A75 | DOI

[9] GRAVITY Collaboration; R. Abuter; A. Amorim; M. Bauböck et al. Improved GRAVITY astrometric accuracy from modeling optical aberrations, Astron. Astrophys., Volume 647 (2021), A59 | DOI

[10] F. Eisenhauer GRAVITY+: Towards faint science, The Very Large Telescope in 2030, ESO Garching, Germany (2019), L11, p. 30 | DOI

[11] GRAVITY Collaboration; S. Lacour; M. Nowak; J. Wang et al. First direct detection of an exoplanet by optical interferometry. Astrometry and K-band spectroscopy of HR 8799 e, Astron. Astrophys., Volume 623 (2019), L11 | DOI

[12] C. Marois; B. Zuckerman; Q. M. Konopacky; B. Macintosh; T. Barman Images of a fourth planet orbiting HR 8799, Nature, Volume 468 (2010) no. 7327, pp. 1080-1083 | DOI

[13] S. Y. Haffert; A. J. Bohn; J. de Boer et al. Two accreting protoplanets around the young star PDS 70, Nat. Astron., Volume 3 (2019), pp. 749-754 | DOI

[14] A.-M. Lagrange; N. Meunier; P. Rubini et al. Evidence for an additional planet in the β Pictoris system, Nat. Astron., Volume 3 (2019), A18, pp. 1135-1142 | DOI

[15] A. M. Lagrange; P. Rubini; M. Nowak et al. Unveiling the β Pictoris system, coupling high contrast imaging, interferometric, and radial velocity data, Astron. Astrophys., Volume 642 (2020), A18, L2 | DOI

[16] M. Nowak; S. Lacour; A.-M. Lagrange et al. Direct confirmation of the radial-velocity planet β Pictoris c, Astron. Astrophys., Volume 642 (2020), L2 | DOI

[17] J. Milli; P. Hibon; V. Christiaens et al. Discovery of a low-mass companion inside the debris ring surrounding the F5V star HD 206893, Astron. Astrophys., Volume 597 (2017), L2, L9 | DOI

[18] A. Grandjean; A.-M. Lagrange; H. Beust et al. Constraining the properties of HD 206893 B. A combination of radial velocity, direct imaging, and astrometry data, Astron. Astrophys., Volume 627 (2019), L9, A57 | DOI

[19] J. Kammerer; S. Lacour; T. Stolker et al. GRAVITY K-band spectroscopy of HD 206893 B. Brown dwarf or exoplanet, Astron. Astrophys., Volume 652 (2021), A57, L5 | DOI

[20] S. Hinkley; S. Lacour; G.-D. Marleau et al. Direct discovery of the inner exoplanet in the HD206893 system, Astron. Astrophys., Volume 671 (2023), L5, 148 | DOI

[21] J. J. Wang; A. Vigan; S. Lacour et al. Constraining the nature of the PDS 70 protoplanets with VLTI/GRAVITY, Astron. J., Volume 161 (2021) no. 3, 148 | DOI

[22] S. Lacour; J. J. Wang; M. Nowak et al. The ExoGRAVITY project: using single mode interferometry to characterize exoplanets, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 11446, 2020, 89, p. 1144600 | DOI

[23] S. Blunt; J. J. Wang; I. Angelo et al. orbitize!: A comprehensive orbit-fitting software package for the high-contrast imaging community, Astron. J., Volume 159 (2020) no. 3, 89, L2 | DOI

[24] S. Lacour; J. J. Wang; L. Rodet et al. The mass of β Pictoris c from β Pictoris b orbital motion, Astron. Astrophys., Volume 654 (2021), L2 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Metrology of angles in astronomy

Jean Kovalevsky

C. R. Phys (2004)


Direct imaging of exoplanets: Legacy and prospects

Gael Chauvin

C. R. Phys (2023)


Detection of exoplanets: exploiting each property of light

Daniel Rouan; Anne-Marie Lagrange

C. R. Phys (2023)