[Étalon de fréquence à largeur de raie étroite par mesure et rétroaction]
L’obtention de sources lumineuses à largeur de raie étroite revêt une grande importance dans la science moderne. Une de ces sources est le laser superradiant, qui met en jeu des dipôles à très longue durée de vie interagissant collectivement et forcés par un champ lumineux incohérent. Nous discutons ici d’une autre manière d’obtenir une source spectralement pure, par forçage cohérent de tels dipôles dans une cavité optique QED (en régime de couplage fort). Le champ qui sort de la cavité est porteur d’informations sur le désaccord en fréquence entre le champ de forçage et la transition atomique, mais il est également affecté par le bruit dû aux processus de décohérence à l’oeuvre dans le système combiné atomes-cavité. Nous tenons compte de ces effets pour déterminer les limites fondamentales sur la mesure de la fréquence et sa stabilisation, en fonction des intensités lumineuses d’entrée et des amplitudes de couplage atomes-champ, puis nous estimons ces limites dans l’état de l’art des expériences en cavité sur des atomes alcalino-terreux et nous déterminons les régimes de fonctionnement favorables. Nous trouvons que les largeurs de raie accessibles sont comparables à celles du laser superradiant.
The generation of very narrow linewidth light sources is of great importance in modern science. One such source is the superradiant laser, which relies on collectively interacting ultra long lived dipoles driven by incoherent light. Here we discuss a different way of generating spectrally pure light by coherently driving such dipoles inside an optical QED cavity. The light exiting cavity carries information about the detuning between the driving light and the atomic transition, but is also affected by the noise originating from all the decoherence processes that act on the combined atom-cavity system. We calculate these effects to obtain fundamental limits for frequency estimation and stabilization across a range of values of input light intensities and atom-light interaction strengths, estimate these limits in state-of-the-art cavity experiments with alkaline-earth atoms and identify favorable operating conditions. We find that the achievable linewidths are comparable to those of the superradiant laser.
Révisé le :
Accepté le :
Première publication :
Publié le :
Mot clés : Optique quantique, Superradiance, Électrodynamique quantique en cavité, Rétroaction, Lasers
Diego Barberena 1, 2 ; Robert J. Lewis-Swan 3, 4 ; Ana Maria Rey 1, 2 ; James K. Thompson 1
@article{CRPHYS_2023__24_S3_55_0, author = {Diego Barberena and Robert J. Lewis-Swan and Ana Maria Rey and James K. Thompson}, title = {Ultra narrow linewidth frequency reference via measurement and feedback}, journal = {Comptes Rendus. Physique}, pages = {55--68}, publisher = {Acad\'emie des sciences, Paris}, volume = {24}, number = {S3}, year = {2023}, doi = {10.5802/crphys.146}, language = {en}, }
TY - JOUR AU - Diego Barberena AU - Robert J. Lewis-Swan AU - Ana Maria Rey AU - James K. Thompson TI - Ultra narrow linewidth frequency reference via measurement and feedback JO - Comptes Rendus. Physique PY - 2023 SP - 55 EP - 68 VL - 24 IS - S3 PB - Académie des sciences, Paris DO - 10.5802/crphys.146 LA - en ID - CRPHYS_2023__24_S3_55_0 ER -
%0 Journal Article %A Diego Barberena %A Robert J. Lewis-Swan %A Ana Maria Rey %A James K. Thompson %T Ultra narrow linewidth frequency reference via measurement and feedback %J Comptes Rendus. Physique %D 2023 %P 55-68 %V 24 %N S3 %I Académie des sciences, Paris %R 10.5802/crphys.146 %G en %F CRPHYS_2023__24_S3_55_0
Diego Barberena; Robert J. Lewis-Swan; Ana Maria Rey; James K. Thompson. Ultra narrow linewidth frequency reference via measurement and feedback. Comptes Rendus. Physique, Volume 24 (2023) no. S3, pp. 55-68. doi : 10.5802/crphys.146. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.146/
[1] Prospects for a Millihertz–Linewidth Laser, Phys. Rev. Lett., Volume 102 (2009) no. 16, 163601 | DOI
[2] Active optical clock, Chinese Sci. Bull., Volume 54 (2009) no. 3, pp. 348-352 | DOI
[3] A steady-state superradiant laser with less than one intracavity photon, Nature, Volume 484 (2012) no. 7392, pp. 78-81 | DOI
[4] Cold-Strontium Laser in the Superradiant Crossover Regime, Phys. Rev. X, Volume 6 (2016) no. 1, 011025 | DOI
[5] Superradiance on the millihertz linewidth strontium clock transition, Sci. adv., Volume 2 (2016) no. 10, e1601231 | DOI
[6] Lasing on a narrow transition in a cold thermal strontium ensemble, Phys. Rev. A, Volume 101 (2020) no. 1, 013819 | DOI
[7] Ultranarrow Superradiant Lasing by Dark Atom-Photon Dressed States, Phys. Rev. Lett., Volume 126 (2021) no. 12, 123602 | DOI
[8] Active optical frequency standard using sequential coupling of atomic ensembles, Phys. Rev. A, Volume 87 (2013) no. 1, 013821 | DOI
[9] Continuous collective strong coupling between atoms and a high finesse optical cavity (2022) (https://arxiv.org/abs/2211.00158) | DOI
[10] Thermal noise in optical cavities revisited, J. Opt. Soc. Am. B, Volume 29 (2012) no. 1, pp. 178-184 | DOI
[11] Frequency Measurements of Superradiance from the Strontium Clock Transition, Phys. Rev. X, Volume 8 (2018) no. 2, 021036 | DOI
[12] Pulse Delay Time Statistics in a Superradiant Laser with Calcium Atoms, Phys. Rev. Lett., Volume 123 (2019) no. 10, 103601 | DOI
[13] Strong coupling on a forbidden transition in strontium and nondestructive atom counting, Phys. Rev. A, Volume 93 (2016) no. 2, 023804 | DOI
[14] Analytical and numerical results for the steady state in cooperative resonance fluorescence, J. Phys. B: At. Mol. Opt. Phys., Volume 13 (1980) no. 18, pp. 3551-3575 | DOI | MR
[15] Observables and moments of cooperative resonance fluorescence, Phys. Rev. A, Volume 22 (1980), pp. 1179-1184 | DOI
[16] Cooperative fluorescence from N coherently driven two-level atoms, J. Phys. B: At. Mol. Opt. Phys., Volume 13 (1980) no. 10, pp. 2001-2009 | DOI
[17] Time response of a coupled atoms–cavity system, Opt. Lett., Volume 22 (1997) no. 5, pp. 325-327 | DOI
[18] Volterra cycles and the cooperative fluorescence critical point, Opt. Commun., Volume 27 (1978) no. 1, pp. 160-164 | DOI
[19] Cooperative effects and bistability for resonance fluorescence, Opt. Commun., Volume 19 (1976) no. 2, pp. 172-176 | DOI
[20] Anharmonicity of the vacuum Rabi peaks in a many-atom system, Phys. Rev. A, Volume 54 (1996) no. 5, p. R3746-R3749 | DOI
[21] Intensity correlations in cavity QED, Phys. Rev. A, Volume 61 (2000) no. 5, 053821 | DOI
[22] Observation of a non-equilibrium superradiant phase transition in free space, 2022 (https://arxiv.org/abs/2207.10361) | DOI
[23] Extreme nonlinear response of ultranarrow optical transitions in cavity QED for laser stabilization, Phys. Rev. A, Volume 84 (2011) no. 6, 063813 | DOI
[24] Observation of Motion-Dependent Nonlinear Dispersion with Narrow-Linewidth Atoms in an Optical Cavity, Phys. Rev. Lett., Volume 114 (2015) no. 9, 093002 | DOI
[25] Laser stabilization using saturated absorption in a cavity-QED system, Phys. Rev. A, Volume 92 (2015) no. 1, 013817 | DOI
[26] Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation, Phys. Rev. A, Volume 31 (1985) no. 6, pp. 3761-3774 | DOI | MR
[27] Dissipation-driven quantum phase transitions and symmetry breaking, Phys. Rev. A, Volume 98 (2018) no. 4, 042113 | DOI
[28] Revealing the nature of nonequilibrium phase transitions with quantum trajectories, Phys. Rev. A, Volume 99 (2019) no. 6, 062120 | DOI
[29] Quantum entangled states of a classically radiating macroscopic spin (2022) (https://arxiv.org/abs/2204.05455) | DOI
[30] Cavity-mediated collective spin-exchange interactions in a strontium superradiant laser, Science, Volume 361 (2018) no. 6399, pp. 259-262 | DOI
[31] Frequency Standards: Basics and Applications, Wiley-VCH Verlag, 2006
[32] Theory of the crossover from lasing to steady state superradiance (2017) (https://arxiv.org/abs/1702.04830) | DOI
[33] Elements of Quantum Optics, Springer, 2007 | DOI
[34] Facilitating spin squeezing generated by collective dynamics with single-particle decoherence, Phys. Rev. A, Volume 102 (2020) no. 5, 051701 | DOI
Cité par Sources :
Commentaires - Politique