[Vers une mémoire quantique à ensemble de spins pour qubits supraconducteurs]
This article reviews efforts to build a new type of quantum device, which combines an ensemble of electronic spins with long coherence times, and a small-scale superconducting quantum processor. The goal is to store over long times arbitrary qubit states in orthogonal collective modes of the spin-ensemble, and to retrieve them on-demand. We first present the protocol devised for such a multi-mode quantum memory. We then describe a series of experimental results using NV (as in nitrogen vacancy) center spins in diamond, which demonstrate its main building blocks: the transfer of arbitrary quantum states from a qubit into the spin ensemble, and the multi-mode retrieval of classical microwave pulses down to the single-photon level with a Hahn-echo like sequence. A reset of the spin memory is implemented in-between two successive sequences using optical repumping of the spins.
Cet article porte sur la réalisation d'un nouveau type de dispositif quantique, dans lequel un ensemble de spins électroniques avec des temps de cohérence longs est associé à un processeur quantique supraconducteur à quelques qubits. Le but est de stocker les états des qubits dans les degrés de liberté collectifs de l'ensemble de spins, et de les récupérer à la demande, bénéficiant ainsi d'une meilleure protection contre la décohérence. En première partie, nous présentons le protocole mis au point pour une telle mémoire quantique multi-mode. Nous décrivons ensuite une série de résultats expérimentaux utilisant des centres NV dans le diamant, démontrant les briques de base de ce protocole : le transfert d'états quantiques arbitraires d'un qubit vers l'ensemble de spins, et la récupération de champs micro-ondes classiques au niveau du photon unique par application d'une séquence de refocalisation de type écho de Hahn. La réinitialisation de la mémoire entre deux séquences successives est réalisée par repompage optique des spins.
Mots-clés : Mémoire quantique, Qubits supraconducteurs, Centres NV du diamant, Qubits de spin
Cécile Grezes 1, 2 ; Yuimaru Kubo 1, 3 ; Brian Julsgaard 4 ; Takahide Umeda 5 ; Junichi Isoya 6 ; Hitoshi Sumiya 7 ; Hiroshi Abe 8 ; Shinobu Onoda 8 ; Takeshi Ohshima 8 ; Kazuo Nakamura 9 ; Igor Diniz 10 ; Alexia Auffeves 10 ; Vincent Jacques 11, 12 ; Jean-François Roch 11 ; Denis Vion 1 ; Daniel Esteve 1 ; Klaus Moelmer 4 ; Patrice Bertet 1
@article{CRPHYS_2016__17_7_693_0, author = {C\'ecile Grezes and Yuimaru Kubo and Brian Julsgaard and Takahide Umeda and Junichi Isoya and Hitoshi Sumiya and Hiroshi Abe and Shinobu Onoda and Takeshi Ohshima and Kazuo Nakamura and Igor Diniz and Alexia Auffeves and Vincent Jacques and Jean-Fran\c{c}ois Roch and Denis Vion and Daniel Esteve and Klaus Moelmer and Patrice Bertet}, title = {Towards a spin-ensemble quantum memory for superconducting qubits}, journal = {Comptes Rendus. Physique}, pages = {693--704}, publisher = {Elsevier}, volume = {17}, number = {7}, year = {2016}, doi = {10.1016/j.crhy.2016.07.006}, language = {en}, }
TY - JOUR AU - Cécile Grezes AU - Yuimaru Kubo AU - Brian Julsgaard AU - Takahide Umeda AU - Junichi Isoya AU - Hitoshi Sumiya AU - Hiroshi Abe AU - Shinobu Onoda AU - Takeshi Ohshima AU - Kazuo Nakamura AU - Igor Diniz AU - Alexia Auffeves AU - Vincent Jacques AU - Jean-François Roch AU - Denis Vion AU - Daniel Esteve AU - Klaus Moelmer AU - Patrice Bertet TI - Towards a spin-ensemble quantum memory for superconducting qubits JO - Comptes Rendus. Physique PY - 2016 SP - 693 EP - 704 VL - 17 IS - 7 PB - Elsevier DO - 10.1016/j.crhy.2016.07.006 LA - en ID - CRPHYS_2016__17_7_693_0 ER -
%0 Journal Article %A Cécile Grezes %A Yuimaru Kubo %A Brian Julsgaard %A Takahide Umeda %A Junichi Isoya %A Hitoshi Sumiya %A Hiroshi Abe %A Shinobu Onoda %A Takeshi Ohshima %A Kazuo Nakamura %A Igor Diniz %A Alexia Auffeves %A Vincent Jacques %A Jean-François Roch %A Denis Vion %A Daniel Esteve %A Klaus Moelmer %A Patrice Bertet %T Towards a spin-ensemble quantum memory for superconducting qubits %J Comptes Rendus. Physique %D 2016 %P 693-704 %V 17 %N 7 %I Elsevier %R 10.1016/j.crhy.2016.07.006 %G en %F CRPHYS_2016__17_7_693_0
Cécile Grezes; Yuimaru Kubo; Brian Julsgaard; Takahide Umeda; Junichi Isoya; Hitoshi Sumiya; Hiroshi Abe; Shinobu Onoda; Takeshi Ohshima; Kazuo Nakamura; Igor Diniz; Alexia Auffeves; Vincent Jacques; Jean-François Roch; Denis Vion; Daniel Esteve; Klaus Moelmer; Patrice Bertet. Towards a spin-ensemble quantum memory for superconducting qubits. Comptes Rendus. Physique, Quantum microwaves / Micro-ondes quantiques, Volume 17 (2016) no. 7, pp. 693-704. doi : 10.1016/j.crhy.2016.07.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.006/
[1] Coherent Josephson qubit suitable for scalable quantum integrated circuits, Phys. Rev. Lett., Volume 111 (2013)
[2] Hybrid quantum circuits: superconducting circuits interacting with other quantum systems, Rev. Mod. Phys., Volume 85 (2013), pp. 623-653
[3] Quantum technologies with hybrid systems, Proc. Natl. Acad. Sci. USA, Volume 112 (2015) no. 13, pp. 3866-3873
[4] Optical quantum memory, Nat. Photonics, Volume 3 (2009), pp. 706-714
[5] Proposal for a coherent quantum memory for propagating microwave photons, New J. Phys., Volume 15 (2013) no. 6
[6] Storage of multiple coherent microwave excitations in an electron spin ensemble, Phys. Rev. Lett., Volume 105 (2010)
[7] Solid-state electronic spin coherence time approaching one second, Nat. Commun., Volume 4 (2013), p. 1743
[8] Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics, Phys. Rev. B, Volume 74 (2006)
[9] Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble, Phys. Rev. Lett., Volume 110 (2013)
[10] Revival of silenced echo and quantum memory for light, New J. Phys., Volume 13 (2011)
[11] Photon-echo quantum memories in inhomogeneously broadened two-level atoms, Phys. Rev. A, Volume 84 (2011)
[12] Quantum computing with an electron spin ensemble, Phys. Rev. Lett., Volume 103 (2009)
[13] Synthesizing arbitrary quantum states in a superconducting resonator, Nature, Volume 459 (2009) no. 7246, pp. 546-549
[14] Tunable resonators for quantum circuits, J. Low Temp. Phys., Volume 151 (2008), p. 1034
[15] Tuning the field in a microwave resonator faster than the photon lifetime, Appl. Phys. Lett., Volume 92 (2008) no. 20, pp. 203501-203503
[16] Catch and release of microwave photon states, Phys. Rev. Lett., Volume 110 (2013)
[17] Catching time-reversed microwave coherent state photons with 99.4 absorption efficiency, Phys. Rev. Lett., Volume 112 (2014)
[18] Coherence in spontaneous radiation processes, Phys. Rev., Volume 93 (1954), p. 99
[19] Storage and retrieval of a microwave field in a spin ensemble, Phys. Rev. A, Volume 85 (2012)
[20] Spin echoes, Phys. Rev., Volume 80 (1950), pp. 580-594
[21] Why the two-pulse photon echo is not a good quantum memory protocol, Phys. Rev. A, Volume 79 (2009)
[22] Fundamental limitations in spin-ensemble quantum memories for cavity fields, Phys. Rev. A, Volume 88 (2013)
[23] Dynamical evolution of an inverted spin ensemble in a cavity: inhomogeneous broadening as a stabilizing mechanism, Phys. Rev. A, Volume 86 (2012)
[24] Scanning confocal optical microscopy and magnetic resonance on single defect centers, Science, Volume 276 (1997) no. 5321, pp. 2012-2014
[25] Excited-state spectroscopy of single nv defects in diamond using optically detected magnetic resonance, New J. Phys., Volume 11 (2009) no. 1
[26] Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble, Phys. Rev. Lett., Volume 107 (2011)
[27] High-fidelity projective read-out of a solid-state spin quantum register, Nature, Volume 477 (2011), p. 574
[28] The dependences of esr line widths and spin–spin relaxation times of single nitrogen defects on the concentration of nitrogen defects in diamond, J. Phys. D, Appl. Phys., Volume 30 (1997) no. 12, p. 1790
[29] Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths, Phys. Rev. B, Volume 85 (2012)
[30] Room-temperature quantum bit memory exceeding one second, Science, Volume 336 (2012), p. 1283
[31] Ultralong spin coherence time in isotopically engineered diamond, Nat. Mater., Volume 8 (2009), p. 383
[32] Strong coupling of a spin ensemble to a superconducting resonator, Phys. Rev. Lett., Volume 105 (2010)
[33] Towards a spin-ensemble quantum memory for superconducting qubits, Springer International Publishing, 2014 (PhD thesis, Université Pierre-et-Marie-Curie)
[34] Cavity qed with magnetically coupled collective spin states, Phys. Rev. Lett., Volume 107 (2011)
[35] High-cooperativity coupling of electron-spin ensembles to superconducting cavities, Phys. Rev. Lett., Volume 105 (2010)
[36] Probing dynamics of an electron-spin ensemble via a superconducting resonator, Phys. Rev. Lett., Volume 110 (2013)
[37] Anisotropic rare-earth spin ensemble strongly coupled to a superconducting resonator, Phys. Rev. Lett., Volume 110 (2013)
[38] High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids, Phys. Rev. Lett., Volume 111 (2013)
[39] Hybridizing ferromagnetic magnons and microwave photons in the quantum limit, Phys. Rev. Lett., Volume 113 (2014)
[40] Single-shot qubit readout in circuit quantum electrodynamics, Nat. Phys., Volume 5 (2009) no. 11, pp. 791-795
[41] Electron spin resonance detected by a superconducting qubit, Phys. Rev. B, Volume 86 (2012)
[42] Spectroscopic properties of inhomogeneously broadened spin ensembles in a cavity, Phys. Rev. A, Volume 83 (2011)
[43] Strongly coupling a cavity to inhomogeneous ensembles of emitters: potential for long-lived solid-state quantum memories, Phys. Rev. A, Volume 84 (2011)
[44] Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond, Nature, Volume 478 (2011) no. 7368, pp. 221-224
[45] Towards realizing a quantum memory for a superconducting qubit: storage and retrieval of quantum states, Phys. Rev. Lett., Volume 111 (2013)
[46] Coherent coupling between a ferromagnetic magnon and a superconducting qubit, Science, Volume 349 (2015), pp. 405-408
[47] Spin echo serial storage memory, J. Appl. Phys., Volume 26 (1955), p. 1324
[48] Microwave multimode memory with an erbium spin ensemble, Phys. Rev. B, Volume 92 (2015)
[49] Multimode storage and retrieval of microwave fields in a spin ensemble, Phys. Rev. X, Volume 4 (2014)
[50] Storage and retrieval of microwave fields at the single-photon level in a spin ensemble, Phys. Rev. A, Volume 92 (2015)
[51] Reflectivity and transmissivity of a cavity coupled to two-level systems: coherence properties and the influence of phase decay, Phys. Rev. A, Volume 85 (2012)
[52] Controlling spin relaxation with a cavity, Nature, Volume 531 (2016), p. 74
[53] Reaching the quantum limit of sensitivity in electron spin resonance, Nat. Nanotechnol., Volume 11 (2015), pp. 253-257
[54] Approach to high-resolution nmr in solids, Phys. Rev. Lett., Volume 20 (1968), pp. 180-182
[55] Atomic clock transitions in silicon-based spin qubits, Nat. Nanotechnol., Volume 8 (2013) no. 8, pp. 561-564
[56] Optically addressable nuclear spins in a solid with a six-hour coherence time, Nature, Volume 517 (2015) no. 7533, pp. 177-180
[57] et al. Electric-field sensing using single diamond spins, Nat. Phys., Volume 7 (2011) no. 6, pp. 459-463
[58] Fidelity of Fock-state-encoded qubits subjected to continuous-variable Gaussian processes, Phys. Rev. A, Volume 89 (2014)
- Photon echo in a ring cavity: pulse area approach, Journal of the Optical Society of America B, Volume 42 (2025) no. 5, p. 1001 | DOI:10.1364/josab.551471
- Quantum thermal machine as a rectifier, Quantum Science and Technology, Volume 10 (2025) no. 2, p. 025018 | DOI:10.1088/2058-9565/adaee0
- Characterization and optimized engineering of bosonic quantum interfaces under single-mode operational constraints, Physical Review Research, Volume 6 (2024) no. 1 | DOI:10.1103/physrevresearch.6.013204
- Room-Temperature Solid-State Maser Amplifier, Physical Review X, Volume 14 (2024) no. 4 | DOI:10.1103/physrevx.14.041066
- Quantum amplification and simulation of strong and ultrastrong coupling of light and matter, Physics Reports, Volume 1078 (2024), p. 1 | DOI:10.1016/j.physrep.2024.05.003
- Research progress of optoelectronic devices based on diamond materials, Frontiers in Physics, Volume 11 (2023) | DOI:10.3389/fphy.2023.1226374
- Multiple electron spin resonance echoes observed for paramagnetic defects in diamond at room temperature, Journal of Magnetic Resonance Open, Volume 16-17 (2023), p. 100133 | DOI:10.1016/j.jmro.2023.100133
- Strain-mediated ion–ion interaction in rare-earth-doped solids, Journal of Physics: Condensed Matter, Volume 35 (2023) no. 30, p. 305501 | DOI:10.1088/1361-648x/acce17
- Piezoelectric Nanocavity Interface for Strong Coupling between a Superconducting Circuit, Phonon, and Spin, Physical Review Applied, Volume 19 (2023) no. 6 | DOI:10.1103/physrevapplied.19.064051
- Electron-spin spectral diffusion in an erbium doped crystal at millikelvin temperatures, Physical Review B, Volume 106 (2022) no. 14 | DOI:10.1103/physrevb.106.144412
- Coherent spin dynamics of rare-earth doped crystals in the high-cooperativity regime, Physical Review B, Volume 106 (2022) no. 24 | DOI:10.1103/physrevb.106.245416
- Heat transport and rectification via quantum statistical and coherence asymmetries, Physical Review E, Volume 106 (2022) no. 5 | DOI:10.1103/physreve.106.054114
- Controllable magnon–magnon entanglement and one-way EPR steering with two cascaded cavities, Quantum Information Processing, Volume 21 (2022) no. 12 | DOI:10.1007/s11128-022-03731-2
- Room‐Temperature Quantum Memories Based on Molecular Electron Spin Ensembles, Advanced Materials, Volume 33 (2021) no. 30 | DOI:10.1002/adma.202101673
- Quantum computer based on color centers in diamond, Applied Physics Reviews, Volume 8 (2021) no. 1 | DOI:10.1063/5.0007444
- Quantum Engineering With Hybrid Magnonic Systems and Materials (Invited Paper), IEEE Transactions on Quantum Engineering, Volume 2 (2021), p. 1 | DOI:10.1109/tqe.2021.3057799
- Realization of Precise Tuning the Superconducting Properties of Mn-Doped Al Films for Transition Edge Sensors, Journal of Low Temperature Physics, Volume 202 (2021) no. 1-2, p. 71 | DOI:10.1007/s10909-020-02534-y
- Radiation eigenmodes of Dicke superradiance, Physical Review A, Volume 103 (2021) no. 3 | DOI:10.1103/physreva.103.033713
- Factoring 2048-bit RSA Integers in 177 Days with 13 436 Qubits and a Multimode Memory, Physical Review Letters, Volume 127 (2021) no. 14 | DOI:10.1103/physrevlett.127.140503
- Donor Spins in Silicon for Quantum Technologies, Advanced Quantum Technologies, Volume 3 (2020) no. 11 | DOI:10.1002/qute.202000005
- Detection of narrow lines in the inhomogeneously broadened line of P1 centers in diamond by double modulation EPR spectroscopy, Applied Physics Letters, Volume 117 (2020) no. 15 | DOI:10.1063/5.0025833
- , Conference on Lasers and Electro-Optics (2020), p. FTh3D.1 | DOI:10.1364/cleo_qels.2020.fth3d.1
- Hybrid quantum systems with circuit quantum electrodynamics, Nature Physics, Volume 16 (2020) no. 3, p. 257 | DOI:10.1038/s41567-020-0797-9
- Spin-Resonance Linewidths of Bismuth Donors in Silicon Coupled to Planar Microresonators, Physical Review Applied, Volume 14 (2020) no. 6 | DOI:10.1103/physrevapplied.14.064050
- Coherent multimode conversion from microwave to optical wave via a magnon-cavity hybrid system, Physical Review B, Volume 102 (2020) no. 6 | DOI:10.1103/physrevb.102.064418
- Echo Trains in Pulsed Electron Spin Resonance of a Strongly Coupled Spin Ensemble, Physical Review Letters, Volume 125 (2020) no. 13 | DOI:10.1103/physrevlett.125.137701
- Multimode Storage of Quantum Microwave Fields in Electron Spins over 100 ms, Physical Review Letters, Volume 125 (2020) no. 21 | DOI:10.1103/physrevlett.125.210505
- Storage and retrieval of microwave pulses with molecular spin ensembles, npj Quantum Information, Volume 6 (2020) no. 1 | DOI:10.1038/s41534-020-00296-9
- Hybrid quantum systems based on magnonics, Applied Physics Express, Volume 12 (2019) no. 7, p. 070101 | DOI:10.7567/1882-0786/ab248d
- Critical phenomena and nonlinear dynamics in a spin ensemble strongly coupled to a cavity. II. Semiclassical-to-quantum boundary, Physical Review A, Volume 100 (2019) no. 1 | DOI:10.1103/physreva.100.013856
- Microwave Rabi resonances beyond the small-signal regime, Physical Review A, Volume 99 (2019) no. 4 | DOI:10.1103/physreva.99.043402
- Tunable Nb Superconducting Resonator Based on a Constriction Nano-SQUID Fabricated with a Ne Focused Ion Beam, Physical Review Applied, Volume 11 (2019) no. 1 | DOI:10.1103/physrevapplied.11.014006
- , Volume 1936 (2018), p. 020030 | DOI:10.1063/1.5025468
- Storing quantum information in spins and high-sensitivity ESR, Journal of Magnetic Resonance, Volume 287 (2018), p. 128 | DOI:10.1016/j.jmr.2017.11.015
- Negative-temperature-state relaxation and reservoir-assisted quantum entanglement in double-spin-domain systems, Physical Review A, Volume 98 (2018) no. 5 | DOI:10.1103/physreva.98.052133
- Coupling ultracold atoms to a superconducting coplanar waveguide resonator, Nature Communications, Volume 8 (2017) no. 1 | DOI:10.1038/s41467-017-02439-7
Cité par 36 documents. Sources : Crossref
Commentaires - Politique