Comptes Rendus
Towards a spin-ensemble quantum memory for superconducting qubits
[Vers une mémoire quantique à ensemble de spins pour qubits supraconducteurs]
Comptes Rendus. Physique, Volume 17 (2016) no. 7, pp. 693-704.

Cet article porte sur la réalisation d'un nouveau type de dispositif quantique, dans lequel un ensemble de spins électroniques avec des temps de cohérence longs est associé à un processeur quantique supraconducteur à quelques qubits. Le but est de stocker les états des qubits dans les degrés de liberté collectifs de l'ensemble de spins, et de les récupérer à la demande, bénéficiant ainsi d'une meilleure protection contre la décohérence. En première partie, nous présentons le protocole mis au point pour une telle mémoire quantique multi-mode. Nous décrivons ensuite une série de résultats expérimentaux utilisant des centres NV dans le diamant, démontrant les briques de base de ce protocole : le transfert d'états quantiques arbitraires d'un qubit vers l'ensemble de spins, et la récupération de champs micro-ondes classiques au niveau du photon unique par application d'une séquence de refocalisation de type écho de Hahn. La réinitialisation de la mémoire entre deux séquences successives est réalisée par repompage optique des spins.

This article reviews efforts to build a new type of quantum device, which combines an ensemble of electronic spins with long coherence times, and a small-scale superconducting quantum processor. The goal is to store over long times arbitrary qubit states in orthogonal collective modes of the spin-ensemble, and to retrieve them on-demand. We first present the protocol devised for such a multi-mode quantum memory. We then describe a series of experimental results using NV (as in nitrogen vacancy) center spins in diamond, which demonstrate its main building blocks: the transfer of arbitrary quantum states from a qubit into the spin ensemble, and the multi-mode retrieval of classical microwave pulses down to the single-photon level with a Hahn-echo like sequence. A reset of the spin memory is implemented in-between two successive sequences using optical repumping of the spins.

Publié le :
DOI : 10.1016/j.crhy.2016.07.006
Keywords: Quantum memory, Superconducting qubits, NV centers in diamond, Spin qubits
Mot clés : Mémoire quantique, Qubits supraconducteurs, Centres NV du diamant, Qubits de spin
Cécile Grezes 1, 2 ; Yuimaru Kubo 1, 3 ; Brian Julsgaard 4 ; Takahide Umeda 5 ; Junichi Isoya 6 ; Hitoshi Sumiya 7 ; Hiroshi Abe 8 ; Shinobu Onoda 8 ; Takeshi Ohshima 8 ; Kazuo Nakamura 9 ; Igor Diniz 10 ; Alexia Auffeves 10 ; Vincent Jacques 11, 12 ; Jean-François Roch 11 ; Denis Vion 1 ; Daniel Esteve 1 ; Klaus Moelmer 4 ; Patrice Bertet 1

1 Quantronics Group, SPEC, CEA, CNRS, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
2 Department of Electrical Engineering, University of California, Los Angeles, CA 90095, USA
3 Okinawa Institute of Science and Technology (OIST) Graduate University, Onna, Okinawa 904-0495, Japan
4 Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
5 Institute of Applied Physics, University of Tsukuba, Tsukuba 305-8573, Japan
6 Research Center for Knowledge Communities, University of Tsukuba, Tsukuba 305-8550, Japan
7 Sumitomo Electric Industries Ltd., Itami 664-001, Japan
8 Japan Atomic Energy Agency, Takasaki 370-1292, Japan
9 Energy System Research Institute, Fundamental Technology Department, Tokyo Gas Co., Ltd., Yokohama, 230-0045, Japan
10 Institut Néel, CNRS, BP 166, 38042 Grenoble, France
11 Laboratoire Aimé-Cotton, CNRS, Université Paris-Sud and ENS Cachan, 91405 Orsay, France
12 Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
@article{CRPHYS_2016__17_7_693_0,
     author = {C\'ecile Grezes and Yuimaru Kubo and Brian Julsgaard and Takahide Umeda and Junichi Isoya and Hitoshi Sumiya and Hiroshi Abe and Shinobu Onoda and Takeshi Ohshima and Kazuo Nakamura and Igor Diniz and Alexia Auffeves and Vincent Jacques and Jean-Fran\c{c}ois Roch and Denis Vion and Daniel Esteve and Klaus Moelmer and Patrice Bertet},
     title = {Towards a spin-ensemble quantum memory for superconducting qubits},
     journal = {Comptes Rendus. Physique},
     pages = {693--704},
     publisher = {Elsevier},
     volume = {17},
     number = {7},
     year = {2016},
     doi = {10.1016/j.crhy.2016.07.006},
     language = {en},
}
TY  - JOUR
AU  - Cécile Grezes
AU  - Yuimaru Kubo
AU  - Brian Julsgaard
AU  - Takahide Umeda
AU  - Junichi Isoya
AU  - Hitoshi Sumiya
AU  - Hiroshi Abe
AU  - Shinobu Onoda
AU  - Takeshi Ohshima
AU  - Kazuo Nakamura
AU  - Igor Diniz
AU  - Alexia Auffeves
AU  - Vincent Jacques
AU  - Jean-François Roch
AU  - Denis Vion
AU  - Daniel Esteve
AU  - Klaus Moelmer
AU  - Patrice Bertet
TI  - Towards a spin-ensemble quantum memory for superconducting qubits
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 693
EP  - 704
VL  - 17
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.07.006
LA  - en
ID  - CRPHYS_2016__17_7_693_0
ER  - 
%0 Journal Article
%A Cécile Grezes
%A Yuimaru Kubo
%A Brian Julsgaard
%A Takahide Umeda
%A Junichi Isoya
%A Hitoshi Sumiya
%A Hiroshi Abe
%A Shinobu Onoda
%A Takeshi Ohshima
%A Kazuo Nakamura
%A Igor Diniz
%A Alexia Auffeves
%A Vincent Jacques
%A Jean-François Roch
%A Denis Vion
%A Daniel Esteve
%A Klaus Moelmer
%A Patrice Bertet
%T Towards a spin-ensemble quantum memory for superconducting qubits
%J Comptes Rendus. Physique
%D 2016
%P 693-704
%V 17
%N 7
%I Elsevier
%R 10.1016/j.crhy.2016.07.006
%G en
%F CRPHYS_2016__17_7_693_0
Cécile Grezes; Yuimaru Kubo; Brian Julsgaard; Takahide Umeda; Junichi Isoya; Hitoshi Sumiya; Hiroshi Abe; Shinobu Onoda; Takeshi Ohshima; Kazuo Nakamura; Igor Diniz; Alexia Auffeves; Vincent Jacques; Jean-François Roch; Denis Vion; Daniel Esteve; Klaus Moelmer; Patrice Bertet. Towards a spin-ensemble quantum memory for superconducting qubits. Comptes Rendus. Physique, Volume 17 (2016) no. 7, pp. 693-704. doi : 10.1016/j.crhy.2016.07.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.006/

[1] R. Barends; J. Kelly; A. Megrant; D. Sank; E. Jeffrey; Y. Chen; Y. Yin; B. Chiaro; J. Mutus; C. Neill; P. O'Malley; P. Roushan; J. Wenner; T.C. White; A.N. Cleland; John M. Martinis Coherent Josephson qubit suitable for scalable quantum integrated circuits, Phys. Rev. Lett., Volume 111 (2013)

[2] Ze-Liang Xiang; Sahel Ashhab; J.Q. You; F. Nori Hybrid quantum circuits: superconducting circuits interacting with other quantum systems, Rev. Mod. Phys., Volume 85 (2013), pp. 623-653

[3] G. Kurizki; P. Bertet; Y. Kubo; K. Mølmer; D. Petrosyan; P. Rabl; J. Schmiedmayer Quantum technologies with hybrid systems, Proc. Natl. Acad. Sci. USA, Volume 112 (2015) no. 13, pp. 3866-3873

[4] A.I. Lvovsky; B.C. Sanders; W. Tittel Optical quantum memory, Nat. Photonics, Volume 3 (2009), pp. 706-714

[5] M. Afzelius; N. Sangouard; G. Johansson; M.U. Staudt; C.M. Wilson Proposal for a coherent quantum memory for propagating microwave photons, New J. Phys., Volume 15 (2013) no. 6

[6] H. Wu; R.E. George; J.H. Wesenberg; K. Mølmer; D.I. Schuster; R.J. Schoelkopf; K.M. Itoh; A. Ardavan; J.J.L. Morton; G. Andrew D. Briggs Storage of multiple coherent microwave excitations in an electron spin ensemble, Phys. Rev. Lett., Volume 105 (2010)

[7] N. Bar-Gill; L. Pham; A. Jarmola; D. Budker; R. Walsworth Solid-state electronic spin coherence time approaching one second, Nat. Commun., Volume 4 (2013), p. 1743

[8] N.B. Manson; J.P. Harrison; M.J. Sellars Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics, Phys. Rev. B, Volume 74 (2006)

[9] B. Julsgaard; C. Grezes; P. Bertet; K. Mølmer Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble, Phys. Rev. Lett., Volume 110 (2013)

[10] V. Damon; M. Bonarota; A. Louchet-Chauvet; T. Chanelière; J.-L. Le Gouët Revival of silenced echo and quantum memory for light, New J. Phys., Volume 13 (2011)

[11] D.L. McAuslan; P.M. Ledingham; W.R. Naylor; S.E. Beavan; M.P. Hedges; M.J. Sellars; J.J. Longdell Photon-echo quantum memories in inhomogeneously broadened two-level atoms, Phys. Rev. A, Volume 84 (2011)

[12] J.H. Wesenberg; A. Ardavan; G.A.D. Briggs; J.J.L. Morton; R.J. Schoelkopf; D.I. Schuster; K. Mølmer Quantum computing with an electron spin ensemble, Phys. Rev. Lett., Volume 103 (2009)

[13] Max Hofheinz; H. Wang; M. Ansmann; Radoslaw C. Bialczak; Erik Lucero; M. Neeley; A.D. O'Connell; D. Sank; J. Wenner; John M. Martinis; A.N. Cleland Synthesizing arbitrary quantum states in a superconducting resonator, Nature, Volume 459 (2009) no. 7246, pp. 546-549

[14] A. Palacios-Laloy; F. Nguyen; F. Mallet; P. Bertet; D. Vion; D. Esteve Tunable resonators for quantum circuits, J. Low Temp. Phys., Volume 151 (2008), p. 1034

[15] M. Sandberg; C.M. Wilson; F. Persson; T. Bauch; G. Johansson; V. Shumeiko; T. Duty; P. Delsing Tuning the field in a microwave resonator faster than the photon lifetime, Appl. Phys. Lett., Volume 92 (2008) no. 20, pp. 203501-203503

[16] Yi Yin; Yu Chen; D. Sank; P.J.J. O'Malley; T.C. White; R. Barends; J. Kelly; E. Lucero; M. Mariantoni; A. Megrant; C. Neill; A. Vainsencher; J. Wenner; A.N. Korotkov; A.N. Cleland; J.M. Martinis Catch and release of microwave photon states, Phys. Rev. Lett., Volume 110 (2013)

[17] J. Wenner; Yi Yin; Yu Chen; R. Barends; B. Chiaro; E. Jeffrey; J. Kelly; A. Megrant; J.Y. Mutus; C. Neill; P.J.J. O'Malley; P. Roushan; D. Sank; A. Vainsencher; T.C. White; A. Korotkov; A. Cleland; J.M. Martinis Catching time-reversed microwave coherent state photons with 99.4 absorption efficiency, Phys. Rev. Lett., Volume 112 (2014)

[18] R.H. Dicke Coherence in spontaneous radiation processes, Phys. Rev., Volume 93 (1954), p. 99

[19] Y. Kubo; I. Diniz; A. Dewes; V. Jacques; A. Dréau; J.-F. Roch; A. Auffeves; D. Vion; D. Esteve; P. Bertet Storage and retrieval of a microwave field in a spin ensemble, Phys. Rev. A, Volume 85 (2012)

[20] E.L. Hahn Spin echoes, Phys. Rev., Volume 80 (1950), pp. 580-594

[21] J. Ruggiero; J.-L. Le Gouët; C. Simon; T. Chanelière Why the two-pulse photon echo is not a good quantum memory protocol, Phys. Rev. A, Volume 79 (2009)

[22] B. Julsgaard; K. Mølmer Fundamental limitations in spin-ensemble quantum memories for cavity fields, Phys. Rev. A, Volume 88 (2013)

[23] B. Julsgaard; K. Mølmer Dynamical evolution of an inverted spin ensemble in a cavity: inhomogeneous broadening as a stabilizing mechanism, Phys. Rev. A, Volume 86 (2012)

[24] A. Gruber; A. Dräbenstedt; C. Tietz; L. Fleury; J. Wrachtrup; C. Von Borczyskowski Scanning confocal optical microscopy and magnetic resonance on single defect centers, Science, Volume 276 (1997) no. 5321, pp. 2012-2014

[25] P. Neumann; R. Kolesov; V. Jacques; J. Beck; J. Tisler; A. Batalov; L. Rogers; N.B. Manson; G. Balasubramanian; F. Jelezko; J. Wrachtrup Excited-state spectroscopy of single nv defects in diamond using optically detected magnetic resonance, New J. Phys., Volume 11 (2009) no. 1

[26] Y. Kubo; C. Grezes; A. Dewes; T. Umeda; J. Isoya; H. Sumiya; N. Morishita; H. Abe; S. Onoda; T. Ohshima; V. Jacques; A. Dréau; J.-F. Roch; I. Diniz; A. Auffeves; D. Vion; D. Esteve; P. Bertet Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble, Phys. Rev. Lett., Volume 107 (2011)

[27] L. Robledo; L. Childress; H. Bernien; B. Hensen; P.F.A. Alkemade; R. Hanson High-fidelity projective read-out of a solid-state spin quantum register, Nature, Volume 477 (2011), p. 574

[28] J.A. van Wyk; E.C. Reynhardt; G.L. High; I. Kiflawi The dependences of esr line widths and spin–spin relaxation times of single nitrogen defects on the concentration of nitrogen defects in diamond, J. Phys. D, Appl. Phys., Volume 30 (1997) no. 12, p. 1790

[29] Nan Zhao; Sai-Wah Ho; Ren-Bao Liu Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths, Phys. Rev. B, Volume 85 (2012)

[30] P.C. Maurer; G. Kucsko; C. Latta; L. Jiang; N.Y. Yao; S.D. Bennett; F. Pastawski; D. Hunger; N. Chrisholm; M. Markham; D.J. Twitchen; J.I. Cirac; M.D. Lukin Room-temperature quantum bit memory exceeding one second, Science, Volume 336 (2012), p. 1283

[31] G. Balasubramian; P. Neumann; D. Twitchen; M. Markham; R. Koselov; N. Mizuochi; J. Isoya; J. Achard; J. Beck; J. Tissler; V. Jacques; P.R. Hemmer; F. Jelezko; J. Wrachtrup Ultralong spin coherence time in isotopically engineered diamond, Nat. Mater., Volume 8 (2009), p. 383

[32] Y. Kubo; F.R. Ong; P. Bertet; D. Vion; V. Jacques; D. Zheng; A. Dreau; J.-F. Roch; A. Auffeves; F. Jelezko; J. Wrachtrup; M.F. Barthe; P. Bergonzo; D. Esteve Strong coupling of a spin ensemble to a superconducting resonator, Phys. Rev. Lett., Volume 105 (2010)

[33] C. Grezes Towards a spin-ensemble quantum memory for superconducting qubits, Springer International Publishing, 2014 (PhD thesis, Université Pierre-et-Marie-Curie)

[34] R. Amsüss; C. Koller; T. Nöbauer; S. Putz; S. Rotter; K. Sandner; S. Schneider; M. Schramböck; G. Steinhauser; H. Ritsch; J. Schmiedmayer; J. Majer Cavity qed with magnetically coupled collective spin states, Phys. Rev. Lett., Volume 107 (2011)

[35] D.I. Schuster; A.P. Sears; E. Ginossar; L. DiCarlo; L. Frunzio; J.J.L. Morton; H. Wu; G.A.D. Briggs; B.B. Buckley; D.D. Awschalom; R.J. Schoelkopf High-cooperativity coupling of electron-spin ensembles to superconducting cavities, Phys. Rev. Lett., Volume 105 (2010)

[36] V. Ranjan; G. de Lange; R. Schutjens; T. Debelhoir; J.P. Groen; D. Szombati; D.J. Thoen; T.M. Klapwijk; R. Hanson; L. DiCarlo Probing dynamics of an electron-spin ensemble via a superconducting resonator, Phys. Rev. Lett., Volume 110 (2013)

[37] S. Probst; H. Rotzinger; S. Wünsch; P. Jung; M. Jerger; M. Siegel; A.V. Ustinov; P.A. Bushev Anisotropic rare-earth spin ensemble strongly coupled to a superconducting resonator, Phys. Rev. Lett., Volume 110 (2013)

[38] Hans Huebl; Christoph W. Zollitsch; Johannes Lotze; Fredrik Hocke; Moritz Greifenstein; Achim Marx; Rudolf Gross; Sebastian T.B. Goennenwein High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids, Phys. Rev. Lett., Volume 111 (2013)

[39] Y. Tabuchi; S. Ishino; Toyofumi Ishikawa; T. Ishikawa; R. Yamazaki; K. Usami; Y. Nakamura Hybridizing ferromagnetic magnons and microwave photons in the quantum limit, Phys. Rev. Lett., Volume 113 (2014)

[40] F. Mallet; F.R. Ong; A. Palacios-Laloy; F. Nguyen; P. Bertet; D. Vion; D. Esteve Single-shot qubit readout in circuit quantum electrodynamics, Nat. Phys., Volume 5 (2009) no. 11, pp. 791-795

[41] Y. Kubo; I. Diniz; C. Grezes; T. Umeda; J. Isoya; H. Sumiya; T. Yamamoto; H. Abe; S. Onoda; T. Ohshima; V. Jacques; A. Dréau; J.-F. Roch; A. Auffeves; D. Vion; D. Esteve; P. Bertet Electron spin resonance detected by a superconducting qubit, Phys. Rev. B, Volume 86 (2012)

[42] Z. Kurucz; J.H. Wesenberg; K. Mølmer Spectroscopic properties of inhomogeneously broadened spin ensembles in a cavity, Phys. Rev. A, Volume 83 (2011)

[43] I. Diniz; S. Portolan; R. Ferreira; J.-M. Gérard; P. Bertet; A. Auffèves Strongly coupling a cavity to inhomogeneous ensembles of emitters: potential for long-lived solid-state quantum memories, Phys. Rev. A, Volume 84 (2011)

[44] X. Zhu; S. Saito; A. Kemp; K. Kakuyanagi; S.-i. Karimoto; H. Nakano; W.J. Munro; Y. Tokura; M.S. Everitt; K. Nemoto; M. Kasu; N. Mizuochi; K. Semba Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond, Nature, Volume 478 (2011) no. 7368, pp. 221-224

[45] S. Saito; X. Zhu; R. Amsüss; Y. Matsuzaki; K. Kakuyanagi; T. Shimo-Oka; N. Mizuochi; K. Nemoto; W.J. Munro; K. Semba Towards realizing a quantum memory for a superconducting qubit: storage and retrieval of quantum states, Phys. Rev. Lett., Volume 111 (2013)

[46] Y. Tabuchi; S. Ishino; A. Noguchi; T. Ishikawa; R. Yamazaki; K. Usami; Y. Nakamura Coherent coupling between a ferromagnetic magnon and a superconducting qubit, Science, Volume 349 (2015), pp. 405-408

[47] A.G. Anderson; R.L. Garwin; E.L. Hahn; J.W. Horton; G.L. Tucker; R.M. Walker Spin echo serial storage memory, J. Appl. Phys., Volume 26 (1955), p. 1324

[48] S. Probst; H. Rotzinger; A.V. Ustinov; P.A. Bushev Microwave multimode memory with an erbium spin ensemble, Phys. Rev. B, Volume 92 (2015)

[49] C. Grezes; B. Julsgaard; Y. Kubo; M. Stern; T. Umeda; J. Isoya; H. Sumiya; S. Abe; S. Onoda; T. Ohshima; V. Jacques; J. Esteve; D. Vion; D. Esteve; K. Moelmer; P. Bertet Multimode storage and retrieval of microwave fields in a spin ensemble, Phys. Rev. X, Volume 4 (2014)

[50] C. Grezes; B. Julsgaard; Y. Kubo; W.L. Ma; M. Stern; A. Bienfait; K. Nakamura; J. Isoya; S. Onoda; T. Ohshima; V. Jacques; D. Vion; D. Esteve; R.B. Liu; K. Mølmer; P. Bertet Storage and retrieval of microwave fields at the single-photon level in a spin ensemble, Phys. Rev. A, Volume 92 (2015)

[51] B. Julsgaard; K. Mølmer Reflectivity and transmissivity of a cavity coupled to two-level systems: coherence properties and the influence of phase decay, Phys. Rev. A, Volume 85 (2012)

[52] A. Bienfait; J.J. Pla; Y. Kubo; X. Zhou; M. Stern; C.-C. Lo; C.D. Weis; T. Schenkel; D. Vion; D. Esteve; J.J.L. Morton; P. Bertet Controlling spin relaxation with a cavity, Nature, Volume 531 (2016), p. 74

[53] A. Bienfait; J.J. Pla; Y. Kubo; M. Stern; X. Zhou; C.-C. Lo; C.D. Weis; T. Schenkel; M.L.W. Thewalt; D. Vion; D. Esteve; B. Julsgaard; K. Moelmer; J.J.L. Morton; P. Bertet Reaching the quantum limit of sensitivity in electron spin resonance, Nat. Nanotechnol., Volume 11 (2015), pp. 253-257

[54] J.S. Waugh; L.M. Huber; U. Haeberlen Approach to high-resolution nmr in solids, Phys. Rev. Lett., Volume 20 (1968), pp. 180-182

[55] G. Wolfowicz; A.M. Tyryshkin; R.E. George; H. Riemann; N.V. Abrosimov; P. Becker; H.-J. Pohl; M.L.W. Thewalt; S.A. Lyon; J.J.L. Morton Atomic clock transitions in silicon-based spin qubits, Nat. Nanotechnol., Volume 8 (2013) no. 8, pp. 561-564

[56] M. Zhong; M.P. Hedges; R.L. Ahlefeldt; J.G. Bartholomew; S.E. Beavan; S.M. Wittig; J.J. Longdell; M.J. Sellars Optically addressable nuclear spins in a solid with a six-hour coherence time, Nature, Volume 517 (2015) no. 7533, pp. 177-180

[57] F. Dolde; H. Fedder; M.W. Doherty; T. Nöbauer; F. Rempp; G. Balasubramanian; T. Wolf; F. Reinhard; L.C.L. Hollenberg; F. Jelezko et al. Electric-field sensing using single diamond spins, Nat. Phys., Volume 7 (2011) no. 6, pp. 459-463

[58] Brian Julsgaard; Klaus Mølmer Fidelity of Fock-state-encoded qubits subjected to continuous-variable Gaussian processes, Phys. Rev. A, Volume 89 (2014)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Cat-qubits for quantum computation

Mazyar Mirrahimi

C. R. Phys (2016)


Many-body quantum electrodynamics networks: Non-equilibrium condensed matter physics with light

Karyn Le Hur; Loïc Henriet; Alexandru Petrescu; ...

C. R. Phys (2016)