Comptes Rendus
Vibrations and Heat Transfer in Glasses: The Role Played by Disorder
[Vibrations et transferts de chaleur dans les verres : le rôle du désordre]
Comptes Rendus. Physique, Volume 24 (2023) no. S1, pp. 73-97.

Les matériaux amorphes se distinguent aussi des cristaux par leurs propriétés thermiques. Le désordre structural semble être responsable à la fois d’une augmentation importante de la capacité calorifique par rapport aux cristaux de même composition, mais aussi d’une diminution importante de la conductivité thermique. La dépendance en température de la conductivité thermique, inhabituelle pour les interprétations usuelles de la physique du solide, a fait couler beaucoup d’encre. Nous passons en revue dans cet article différentes interprétations de la conductivité thermique dans les matériaux amorphes. Nous montrons que la dépendance en température dans les matériaux diélectriques peut aussi être comprise à l’aide de l’effet du désordre structural sur les modes propres de vibration.

Amorphous materials are also distinguished from crystals by their thermal properties. The structural disorder seems to be responsible both for a significant increase in heat capacity compared to crystals of the same composition, but also for a significant decrease in thermal conductivity. The temperature dependence of thermal conductivity, unusual for common interpretations of solid-state physics, gave rise to a lot of debates. We review in this article different interpretations of thermal conductivity in amorphous materials. We show finally that the temperature dependence of thermal conductivity in dielectric materials can be understood by relating it to the disorder-dependent harmonic vibrational eigenmodes.

Reçu le :
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crphys.162
Keywords: amorphous materials, glasses, acoustic attenuation, thermal Properties, thermo-mechanical behaviour, plasticity
Mot clés : matériaux amorphes, verres, atténuation acoustique, propriétés thermiques, comportement thermo-mécanique, plasticité
Anne Tanguy 1, 2

1 Univ. Lyon, INSA Lyon, CNRS, LaMCoS, UMR5259, Villeurbanne, 69621, France
2 ONERA, University Paris-Saclay, Chemin de la Hunière, BP 80100, Palaiseau, 92123, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2023__24_S1_73_0,
     author = {Anne Tanguy},
     title = {Vibrations and {Heat} {Transfer} in {Glasses:} {The} {Role} {Played} by {Disorder}},
     journal = {Comptes Rendus. Physique},
     pages = {73--97},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {24},
     number = {S1},
     year = {2023},
     doi = {10.5802/crphys.162},
     language = {en},
}
TY  - JOUR
AU  - Anne Tanguy
TI  - Vibrations and Heat Transfer in Glasses: The Role Played by Disorder
JO  - Comptes Rendus. Physique
PY  - 2023
SP  - 73
EP  - 97
VL  - 24
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.162
LA  - en
ID  - CRPHYS_2023__24_S1_73_0
ER  - 
%0 Journal Article
%A Anne Tanguy
%T Vibrations and Heat Transfer in Glasses: The Role Played by Disorder
%J Comptes Rendus. Physique
%D 2023
%P 73-97
%V 24
%N S1
%I Académie des sciences, Paris
%R 10.5802/crphys.162
%G en
%F CRPHYS_2023__24_S1_73_0
Anne Tanguy. Vibrations and Heat Transfer in Glasses: The Role Played by Disorder. Comptes Rendus. Physique, Volume 24 (2023) no. S1, pp. 73-97. doi : 10.5802/crphys.162. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.162/

[1] Johannes Oltmanns; David Sauerwein; Frank Dammel; Peter Stephan; Christoph Kuhn Potential for waste heat utilization of hotwater-cooled data centers: A case study, Energy Science and Engineering, Volume 8 (2020) no. 5, pp. 1793-1810 | DOI

[2] Charles Kittel Introduction to Solid State Physics, John Wiley & Sons, 2004

[3] C. L. Tien; G. Chen Challenges in Microscale Conductive and Radiative Heat Transfer, J. Heat Transfer, Volume 116 (1994) no. 4, pp. 799-807 | DOI

[4] B. Haberl; A. C. Y. Liu; J. E. Bradby; S. Ruffel; J. S. Williams; M. Munroe Structural characterization of pressure-induced amorphous silicon, Phys. Rev. B, Volume 79 (2009) no. 15, 155209 | DOI

[5] Anne Tanguy Vibration Modes and Characteristic Lengthscales in Amorphous Materials, JOM, Volume 67 (2015) no. 8, pp. 1832-1839 | DOI

[6] Anne Tanguy; J. P. Wittmer; F. Leonforte; Jean-Louis Barrat Continuum limit of amorphous elastic bodies: A finite-size study of low-frequency harmonic vibrations, Phys. Rev. B, Volume 66 (2002), 174205

[7] F. Leonforte; Anne Tanguy; Jean-Louis Barrat Inhomogeneous elastic response of silica glass, Phys. Rev. Lett., Volume 97 (2006) no. 5, 055501 | DOI

[8] Y. M. Beltukov; C. Fusco; D. A. Parshin; Anne Tanguy Boson peak and Ioffe–Regel criterion in amorphous siliconlike materials: The effect of bond directionality, Phys. Rev. E, Volume 93 (2016) no. 2, 023006 | DOI

[9] J. P. Rino; I. Ebbso; R. K. Kalia; A. Nakano; P. Vashishta Structure if rings in vitreous SiO 2 , Phys. Rev. B, Volume 47 (1993) no. 6, pp. 3053-3062 | DOI

[10] Hajime Tanaka Roles of local icosahedral chemical ordering in glass and quasicrystal formation in metallic glass formers, J. Phys. Cond. Matt., Volume 15 (2003), p. L491-L498 | DOI

[11] D. Ma; A. D. Stoica; X.-L. Wang Power-law scaling and fractal nature of medium-range order in metallic glasses, Nature Mater., Volume 8 (2008), pp. 30-34 | DOI

[12] E. Bianchi; V. M. Giordano; F. Lund Elastic anomalies in glasses: Elastic string theory understanding of the cases of glycerol and silica, Phys. Rev. B, Volume 101 (2020), 174311 | DOI

[13] Y.-C. Hu; Hajime Tanaka Origin of the boson peak in amorphous solids, Nat. Phys., Volume 18 (2022), pp. 669-677 | DOI

[14] T. Egami Local Dynamics in Liquids and Glassy Materials, J. Phys. Soc. Japan, Volume 88 (2019) no. 8, 081001 | DOI

[15] Craig Maloney; Anaël Lemaître Universal Breakdown of Elasticity at the Onset of Material Failure, Phys. Rev. Lett., Volume 93 (2004) no. 19, 195501 | DOI

[16] Anne Tanguy; F. Leonforte; Jean-Louis Barrat Plastic response of a 2D Lennard–Jones amorphous solid: Detailed analysis of the local rearrangements at very slow strain rate, European Physical Journal E, Volume 20 (2006), pp. 355-364 | DOI

[17] T. Albaret; Anne Tanguy; F. Boioli; D. Rodney Mapping between atomistic simulations and Eshelby inclusions in the shear deformation of an amorphous silicon model, Phys. Rev. E, Volume 93 (2016) no. 5, 053002 | DOI

[18] A. Argon Plastic Deformation in Metallic Glasses, Acta Metall., Volume 27 (1979), pp. 47-58 | DOI

[19] M. L. Falk; J. S. Langer Dynamics of viscoplastic deformation in amorphous solids, Phys. Rev. E, Volume 57 (1998) no. 6, pp. 7192-7205 | DOI

[20] Morrel H. Cohen; David Turnbull Molecular transport in liquids and glasses, J. Chem. Phys., Volume 31 (1959) no. 5, pp. 1164-1169 | DOI

[21] F. Spaepen A Microscopic Mechanism for Steady State Inhomogeneous Flow in Metallic Glasses, Acta Metall., Volume 25 (1979), pp. 407-415 | DOI

[22] C. Fusco; T. Albaret; Anne Tanguy Role of local order in the small-scale plasticity of model amorphous materials, Phys. Rev. E, Volume 82 (2010) no. 6, 066116 | DOI

[23] David Richard; M. Ozawa; S. Patinet; E. Stanifer; B. Shang; S. A. Ridout; B. Xu; G. Zhang; P. K. Morse; Jean-Louis Barrat; L. Berthier; M. L. Falk; P. Guan; Andrea J. Liu; K. Martens; S. Sastry; D. Vandembroucq; Edan Lerner; M. L. Manning Predicting plasticity in disordered solids from structural indicators, Phys. Rev. Mater., Volume 4 (2020) no. 11, 113609 | DOI

[24] C. Martinet; M. Heili; V. Martinez; G. Kermouche; G. Molnar; Nikita S. Shcheblanov; E. Barthel; Anne Tanguy Highlighting the impact of shear strain on the SiO2 glass structure: From experiments to atomistic simulations, J. Non Cryst. Solids, Volume 533 (2020), 119898 | DOI

[25] Nikita S. Shcheblanov; Boris Mantisi; Paolo Umari; Anne Tanguy Detailed analysis of plastic shear in the Raman spectra of SiO 2 glass, J. Non Cryst. Solids, Volume 428 (2015), pp. 6-19 | DOI

[26] Walter Schirmacher The boson peak, Phys. Status Solidi B Basic Res., Volume 250 (2013) no. 5, pp. 937-943 | DOI

[27] Hideyuki Mizuno; Giancarlo Ruocco; Stefano Mossa Sound damping in glasses: Interplay between anharmonicities and elastic heterogeneities, Phys. Rev. B, Volume 101 (2020) no. 17, 174206 | DOI

[28] Edan Lerner; Erans Bouchbinder Low-energy quasilocalized excitations in structural glasses, J. Chem. Phys., Volume 155 (2021), 200901 | DOI

[29] S. Rau; S. Bassler; G. Kasper; G. Weiss; S. Hunklinger Brillouin scattering of vitreous silica under high pressure, Annalen der Physik, Volume 4 (1995), pp. 91-98 | DOI

[30] Boris Mantisi; Anne Tanguy; G. Kermouche; E. Barthel Atomistic response of a model silica glass under shear and pressure, Eur. Phys. J. B, Volume 85 (2012), 304 | DOI

[31] F. Boioli; T. Albaret; D. Rodney Shear transformation distribution and activation in glasses at the atomic scale, Phys. Rev. E, Volume 95 (2017), 033005 | DOI

[32] Anne Tanguy Elasto-plastic behavior of amorphous materials: a brief review, Comptes-Rendus. Physique, Volume 22 (2021), pp. 117-133 | DOI

[33] David Richard; Karina González-López; Geert Kapteijns; Robert Pater; Talya Vaknin; Erans Bouchbinder; Edan Lerner Universality of the Nonphononic Vibrational Spectrum across Different Classes of Computer Glasses, Phys. Rev. Lett., Volume 125 (2020) no. 8, 085502 | DOI

[34] Michel Tsamados; Anne Tanguy; Chay Goldenberg; Jean-Louis Barrat Local elasticity map and plasticity in a model Lennard–Jones glass, Phys. Rev. E, Volume 80 (2009) no. 2, 026112 | DOI

[35] Anne Tanguy; Boris Mantisi; Michel Tsamados Vibrational modes as a predictor for plasticity in a model glass, Europhysics Letters, Volume 90 (2010) no. 1, 16004

[36] Hideyuki Mizuno; Masanari Shimada; Atsushi Ikeda Anharmonic properties of vibrational excitations in amorphous solids, Phys. Rev. Res., Volume 2 (2020) no. 1, 013215 | DOI

[37] S. Hunklinger; W. Arnold 3 - Ultrasonic Properties of Glasses at Low Temperatures (Warren P. Mason; R. N. Thurston, eds.) (Physical Acoustics), Volume 12, Academic Press Inc., 1976, pp. 155-215 | DOI

[38] C. A. Angell Energy Landscapes for Cooperative Processes: Nearly Ideal Glass Transitions, Liquid-Liquid Transitions and Folding Transitions, Phil. Trans. R. Soc. A, Volume 363 (2005) no. 1827, p. 415 | DOI

[39] C. A. Angell Relaxation in liquids, polymers and plastic crystals — strong/fragile patterns and problems, J. Non Cryst. Solids, Volume 131-133 (1991), pp. 13-31 (Proceedings of the International Discussion Meeting on Relaxations in Complex Systems) | DOI

[40] Tina Hecksher; Jeppe C. Dyre A review of experiments testing the shoving model, J. Non Cryst. Solids, Volume 407 (2015), pp. 14-22 (7th IDMRCS: Relaxation in Complex Systems) | DOI

[41] Joyjit Chattoraj; Anaël Lemaître Elastic Signature of Flow Events in Supercooled Liquids Under Shear, Phys. Rev. Lett., Volume 111 (2013) no. 6, 066001 | DOI

[42] Ludovic Berthier; Giulio Biroli Theoretical perspective on the glass transition and amorphous materials, Rev. Mod. Phys., Volume 83 (2011), pp. 587-645 | DOI

[43] Smarajit Karmakar An Overview on Short and Long Time Relaxations in Glass-forming Supercooled Liquids, J. Phys. Conf. Ser., Volume 759 (2016) no. 1, 012008 | DOI

[44] Eric Courtens; Marie Foret; B. Hehlen; B. Rufflé; René Vacher The crossover from propagating to strongly scattered acoustic modes of glasses observed in densified silica, J. Phys. Cond. Matt., Volume 15 (2003) no. 11, S1279 | DOI

[45] Hideyuki Mizuno; Stefano Mossa; Jean-Louis Barrat Acoustic excitations and elastic heterogeneities in disordered solids, Proc. Natl. Acad. Sci. USA, Volume 111 (2014) no. 33, pp. 11949-11954 | DOI

[46] Simon Gelin; Hajime Tanaka; Anaël Lemaître Anomalous phonon scattering and elastic correlations in amorphous solids, Nature Mater., Volume 15 (2016) no. 11, pp. 1177-1181 | DOI

[47] T. Damart; Anne Tanguy; D. Rodney Theory of harmonic dissipation in disordered solids, Phys. Rev. B, Volume 95 (2017) no. 5, 054203 | DOI

[48] H. Luo; V. M. Giordano; A. Gravouil; Anne Tanguy A continuum model reproducing the multiple frequency crossovers in acoustic attenuation in glasses, J. Non Cryst. Solids, Volume 583 (2022), 121472 | DOI

[49] G. Szamel; E. s Flenner Microscopic analysis of sound attenuation in low-temperature amorphous solids reveals quantitative importance of non-affine effects, J. Chem. Phys., Volume 156 (2022), 144502 | DOI

[50] P. W. Anderson; B. I. Halperin; C. M. Varma Anomalous low-temperature thermal properties of glasses and spin glasses, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, Volume 25 (1972) no. 1, pp. 1-9 | DOI

[51] W. A. Phillips Two-level states in glasses, Rep. Prog. Phys., Volume 50 (1987) no. 12, pp. 1657-1708 | DOI

[52] René Vacher; Eric Courtens; Marie Foret Anharmonic versus relaxational sound damping in glasses. II. Vitreous silica, Phys. Rev. B, Volume 72 (2005), 214205 | DOI

[53] Hideyuki Mizuno; Stefano Mossa; Jean-Louis Barrat Relation of vibrational excitations and thermal conductivity to elastic heterogeneities in disordered solids, Phys. Rev. B, Volume 94 (2016) no. 14, 144303 | DOI

[54] R. C. Zeller; Robert O. Pohl Thermal Conductivity and Specific Heat of Noncrystalline Solids, Phys. Rev. B, Volume 4 (1971) no. 6, pp. 2029-2041 | DOI

[55] Robert O. Pohl Amorphous Materials: Thermal Conductivity, Encyclopedia of Materials: Science and Technology, Elsevier, 2001, pp. 232-237 | DOI

[56] Robert O. Pohl; Xiao Liu; EunJoo Thompson Low-temperature thermal conductivity and acoustic attenuation in amorphous solids, Rev. Mod. Phys., Volume 74 (2002) no. 4, pp. 991-1013 | DOI

[57] David G. Cahill; Robert O. Pohl Thermal conductivity of amorphous solids above the plateau, Phys. Rev. B, Volume 35 (1987) no. 8, pp. 4067-4073 | DOI

[58] Philip B. Allen; Joseph L. Feldman Thermal conductivity of disordered harmonic solids, Phys. Rev. B, Volume 48 (1993), pp. 12581-12588 | DOI

[59] Vincenzo Vitelli; Ning Xu; Matthieu Wyart; Andrea J. Liu; Sidney R. Nagel Heat transport in model jammed solids, Phys. Rev. E, Volume 81 (2010) no. 2, 021301 | DOI

[60] Jean-Savin Heron Phonons transport at the nanoscale, Ph. D. Thesis, Université Joseph-Fourier – Grenoble I (2009) (https://tel.archives-ouvertes.fr/tel-00461703)

[61] Jeremie Maire; Roman Anufriev; Ryoto Yanagisawa; Aymeric Ramiere; Sebastian Volz; Masahiro Nomura Heat conduction tuning by wave nature of phonons, Sci. adv., Volume 3 (2017) no. 8, e1700027 | DOI

[62] Y. M. Beltukov; D. A. Parshin; V. M. Giordano; Anne Tanguy Propagative and diffusive regimes of acoustic damping in bulk amorphous material, Phys. Rev. E, Volume 98 (2018) no. 2, 023005 | DOI

[63] Robert J. Hardy Energy-Flux Operator for a Lattice, Phys. Rev., Volume 132 (1963) no. 1, pp. 168-177 | DOI | MR | Zbl

[64] Lv Wei; Henry Asegun Direct calculation of modal contributions to thermal conductivity via Green-–Kubo modal analysis, New J. Phys., Volume 18 (2016) no. 1, 013028 | DOI

[65] Philip B. Allen; Joseph L. Feldman; Fabian Jaroslav; Frederick Wooten Diffusons, locons and propagons: Character of atomic vibrations in amorphous Si, Philos. Mag., B, Volume 79 (1999) no. 11-12, pp. 1715-1731 | DOI

[66] P. W. Anderson Absence of Diffusion in Certain Random Lattices, Phys. Rev., Volume 109 (1958), pp. 1492-1505 | DOI

[67] C. Castellani; L. Peliti Multifractal wavefunction at the localisation threshold, J. Phys. A. Math. Gen., Volume 19 (1986) no. 8, L429 | DOI

[68] H. Hu; A. Strybulevych; J. H. Page; S. E. Skipetrov; B. A. van Tiggelen Localization of ultrasound in a three-dimensional elastic network, Nat. Phys., Volume 4 (2008), pp. 945-948 | DOI

[69] Y. M. Beltukov; S. E. Skipetrov Finite-time scaling at the Anderson transition for vibrations in solids, Phys. Rev. B, Volume 96 (2017), 174209 | DOI

[70] A. Ishimaru Wave Propagation and Scattering in Random Media, Academic Press Inc., 1978 | DOI

[71] Alexander D. Mirlin Statistics of energy levels and eigenfunctions in disordered systems, Phys. Rep., Volume 326 (2000), pp. 259-382 | DOI | MR

[72] Ferdinand Evers; Alexander D. Mirlin Anderson Transitions, Review of Modern Physics, Volume 80 (2008), pp. 1355-1417 | DOI

[73] Frank H. Stillinger; Thomas A. Weber Computer simulation of local order in condensed phases of silicon, Phys. Rev. B, Volume 31 (1985) no. 8, pp. 5262-5271 | DOI

[74] Y. S. Touloukian Thermophysical Properties of High temperature solid materials. Volume 4. Oxides and their solutions and mixtures. Part 2. Solutions and their mixtures of simple oxygen compounds, including glasses and ceramic glasses (1966) no. AD0649952 (Technical report)

[75] S. Kojima; V. N. Novikov Correlation of temperature dependence of quasielastic-light-scattering intensity and α-relaxation time, Phys. Rev. B, Volume 54 (1996) no. 1, pp. 222-227 | DOI

[76] Walter Schirmacher; Gregor Diezemann; Carl Ganter Harmonic Vibrational Excitations in Disordered Solids and the “Boson Peak”, Phys. Rev. Lett., Volume 81 (1998) no. 1, pp. 136-139 | DOI

[77] Walter Schirmacher; Giancarlo Ruocco; T. Scopigno Acoustic Attenuation in Glasses and its Relation with the Boson Peak, Phys. Rev. Lett., Volume 98 (2007) no. 2, 025501 | DOI

[78] Hideyuki Mizuno; Giancarlo Ruocco; Stefano Mossa Sound damping in glasses: interplay between anharmonicities and elastic heterogeneities (2019) (preprint, arXiv:1905.10235) | DOI

[79] Salvatore Torquato Random Heterogeneous Materials, Springer, 2001

[80] Gergely Molnár; Patrick Ganster; János Török; Anne Tanguy Sodium effect on static mechanical behavior of MD-modeled sodium silicate glasses, J. Non Cryst. Solids, Volume 440 (2016), pp. 12-25 | DOI

[81] G. Molnar; Patrick Ganster; Anne Tanguy Effect of composition and pressure on the shear strength of sodium silicate glasses: An atomic scale simulation study, Phys. Rev. E, Volume 95 (2017), 043001 | DOI

[82] D. Rodney; Anne Tanguy; D. Vandembroucq Modeling the mechanics of amorphous solids at different length scale and time scale, Model. Simul. Mat. Sci. Eng., Volume 19 (2011) no. 8, 083001 | DOI

[83] Jason M. Larkin; Alan J. H. McGaughey Thermal conductivity accumulation in amorphous silica and amorphous silicon, Phys. Rev. B, Volume 89 (2014) no. 14, 144303 | DOI

[84] J. B. Sokoloff Theory of the contribution to sliding friction from electronic excitations in the microbalance experiment, Phys. Rev. B, Volume 52 (1995) no. 7, pp. 5318-5322 | DOI

[85] B. N. J. Persson; R. Ryberg Brownian motion and vibrational phase relaxation at surfaces: CO on Ni(111), Phys. Rev. B, Volume 32 (1985) no. 6, pp. 3586-3596 | DOI

[86] R. Kubo The fluctuation-dissipation theorem, Rep. Prog. Phys., Volume 29 (1966) no. 1, pp. 255-284 | DOI | Zbl

[87] Tony Valier-Brasier Ondes élastiques dans les solides isotropes, Ph. D. Thesis, Sorbonne Université, France (Master Sciences pour l’Ingénieur)

[88] Clemens Müller; Jared H Cole; Jürgen Lisenfeld Towards understanding two-level-systems in amorphous solids: insights from quantum circuits, Rep. Prog. Phys., Volume 82 (2019) no. 12, 124501 | DOI

[89] T. Damart; D. Rodney Atomistic study of two-level systems in amorphous silica, Phys. Rev. B, Volume 97 (2018), 014201 | DOI

[90] Y. Fan; T. Iwashita; T. Egami How thermally activated deformation starts in metallic glass, Nat. Commun., Volume 5 (2014), p. 5083 | DOI

[91] S. Ciarella; D. Khomenko; L. Berthier et al. Finding defects in glasses through machine learning, Nat. Commun., Volume 14 (2023), 4229 | DOI

[92] Felix C. Mocanu; Ludovic Berthier; Simone Ciarella et al. Microscopic observatio of two-level systems in a metallic glass model, J. Chem. Phys., Volume 158 (2023), 014501

[93] J. Jäckle; L. Piché; W. Arnold; S. Hunklinger Elastic effects of structural relaxation in glasses at low temperatures, J. Non Cryst. Solids, Volume 20 (1976) no. 3, pp. 365-391 | DOI

[94] H. J. Kreuzer Equilibrium Thermodynamics and Its Statistical Foundations, Oxford University Press, 1981

[95] Leyla Isaeva; Giuseppe Barbalinardo; Davide Donadio; Stefano Baroni Modeling heat transport in crystals and glasses from a unified lattice-dynamical approach, Nat. Commun., Volume 10 (2019), 3853 | DOI

[96] Michele Simoncelli; Francesco Mauri; Nicola Marzari Thermal conductivity of glasses: first-principles theory and applications, npj Comput. Mater., Volume 9 (2023), 106 | DOI

[97] Alexander Churkin; Shlomi Matityahu; Andrii O. Maksymov; Alexander L. Burin; Moshe Schechter Anomalous low-energy properties in amorphous solids and the interplay of electric and elastic interactions of tunneling two-level systems, Phys. Rev. B, Volume 103 (2021) no. 5, 054202 | DOI

[98] U. Buchenau; Yu. M. Galperin; V. L. Gurevich; D. A. Parshin; M. A. Ramos; H. R. Schober Interaction of soft modes and sound waves in glasses, Phys. Rev. B, Volume 46 (1992) no. 5, pp. 2798-2808 | DOI

[99] A. Tlili; V. M. Giordano; Y. M. Beltukov; Paul Desmarchelier; S. Merabia; Anne Tanguy Enhancement and anticipation of the Ioffe–Regel crossover in amorphous/nanocrystalline composites, Nanoscale, Volume 11 (2019) no. 44, pp. 21502-21512 | DOI

[100] Paul Desmarchelier; Alice Carré; Konstantinos Termentzidis; Anne Tanguy Ballistic Heat Transport in Nanocomposite: The Role of the Shape and Interconnection of Nanoinclusions, Nanomaterials, Volume 11 (2021) no. 8, 1982 | DOI

[101] G. Baldi; V. M. Giordano; G. Monaco; B. Ruta Sound Attenuation at Terahertz Frequencies and the Boson Peak of Vitreous Silica, Phys. Rev. Lett., Volume 104 (2010) no. 19, 195501 | DOI

[102] Jaeyun Moon; Raphaël P. Hermann; Michael E. Manley; Ahmet Alatas; Ayman H. Said; Austin J. Minnich Thermal acoustic excitations with atomic-scale wavelengths in amorphous silicon, Phys. Rev. Mater., Volume 3 (2019) no. 6, 065601 | DOI

[103] Paul Desmarchelier; Anne Tanguy; Konstantinos Termentzidis Thermal rectification in asymmetric two-phase nanowires, Phys. Rev. B, Volume 103 (2021) no. 1, 014202 | DOI

[104] Paul Desmarchelier; Efstrátios Nikidis; Yoshiaki Nakamura; Anne Tanguy; Joseph Kioseoglou; Konstantinos Termentzidis Phonon Interference at the Atomic Scale (2022) (preprint, arXiv:2207.14064) | DOI

[105] Justin L. Smoyer; Pamela M. Norris Brief Historical Perspective in Thermal Management and the Shift Toward Management at the Nanoscale, Heat Transfer Engineering, Volume 40 (2019) no. 3-4, pp. 269-282 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

High-resolution inelastic x-ray scattering to study the high-frequency atomic dynamics of disordered systems

Giulio Monaco

C. R. Phys (2008)


Charge transport in carbon nanotubes based materials: a Kubo–Greenwood computational approach

Hiroyuki Ishii; François Triozon; Nobuhiko Kobayashi; ...

C. R. Phys (2009)


Glassy dynamics in strongly anharmonic chains of oscillators

Wojciech De Roeck; François Huveneers

C. R. Phys (2019)