[Des hétérogénéités nanométriques aux nanolites : les agrégats cationiques dans les verres]
The structural behavior of cations in multicomponent oxide glasses cannot be described within a random network model, due to the presence of cation clusters that provide original properties. These clustering processes are even observed for cations that may occur at a percent level concentration, which makes it all the more spectacular. In particular, the structural and chemical characteristics of Zr
Le comportement structural des cations dans les verres d’oxydes multicomposants ne peut pas être décrit dans un modèle de réseau aléatoire, en raison de la présence d’agrégats de cations à l’origine de propriétés originales. Ces processus de regroupement sont même observés pour les cations en faible concentration, ce qui le rend d’autant plus spectaculaire. En particulier, les caractéristiques structurales et chimiques des agrégats à base de Zr
Révisé le :
Accepté le :
Première publication :
Publié le :
Mots-clés : Verre, Structure, Hétérogénéités, Nucléation, Spectroscopie
Laurent Cormier 1 ; Laurence Galoisy 1 ; Gérald Lelong 1 ; Georges Calas 1

@article{CRPHYS_2023__24_S1_199_0, author = {Laurent Cormier and Laurence Galoisy and G\'erald Lelong and Georges Calas}, title = {From nanoscale heterogeneities to nanolites: cation clustering in glasses}, journal = {Comptes Rendus. Physique}, pages = {199--214}, publisher = {Acad\'emie des sciences, Paris}, volume = {24}, number = {S1}, year = {2023}, doi = {10.5802/crphys.150}, language = {en}, }
TY - JOUR AU - Laurent Cormier AU - Laurence Galoisy AU - Gérald Lelong AU - Georges Calas TI - From nanoscale heterogeneities to nanolites: cation clustering in glasses JO - Comptes Rendus. Physique PY - 2023 SP - 199 EP - 214 VL - 24 IS - S1 PB - Académie des sciences, Paris DO - 10.5802/crphys.150 LA - en ID - CRPHYS_2023__24_S1_199_0 ER -
%0 Journal Article %A Laurent Cormier %A Laurence Galoisy %A Gérald Lelong %A Georges Calas %T From nanoscale heterogeneities to nanolites: cation clustering in glasses %J Comptes Rendus. Physique %D 2023 %P 199-214 %V 24 %N S1 %I Académie des sciences, Paris %R 10.5802/crphys.150 %G en %F CRPHYS_2023__24_S1_199_0
Laurent Cormier; Laurence Galoisy; Gérald Lelong; Georges Calas. From nanoscale heterogeneities to nanolites: cation clustering in glasses. Comptes Rendus. Physique, From everyday glass to disordered solids, Volume 24 (2023) no. S1, pp. 199-214. doi : 10.5802/crphys.150. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.150/
[1] Structure-property relationships in multicomponent oxide glasses, C. R. Chim., Volume 5 (2002), pp. 831-843 | DOI
[2] Inorganic glasses, glass-forming liquids and amorphizing solids, Adv. Phys., Volume 56 (2007), pp. 1-166 | DOI
[3] EXAFS and the structure of glass, J. Non-Cryst. Solids, Volume 71 (1985), pp. 203-217 | DOI
[4] The atomic arrangement in glass, J. Am. Ceram. Soc., Volume 54 (1932), pp. 3841-3851 | DOI
[5] Medium-range structural order in covalent amorphous solids, Nature, Volume 354 (1991), pp. 445-452 | DOI
[6] EXAFS for studying corrosion of glass surfaces, J. Non-Cryst. Solids, Volume 120 (1990), pp. 108-116 | DOI
[7] Reconciling ionic-transport properties with atomic structure in oxide glasses, Phys. Rev. B, Volume 52 (1995), pp. 6358-6380 | DOI
[8] Short- and medium-range structural order around cations in glasses: a multidisciplinary approach, C. R. Acad. Sci. Sér. IV, Volume 2 (2001), pp. 249-262 | DOI
[9] Environment of Ni, Co and Zn in low alkali borate glasses: information from EXAFS and XANES spectra, J. Non-Cryst. Solids, Volume 293–295 (2001), pp. 105-111 | DOI
[10] Origin of dynamical heterogeneities in calcium aluminosilicate liquids, J. Chem. Phys., Volume 132 (2010), 194501 | DOI
[11] Multi-scale structuration of glasses: Observations of phase separation and nanoscale heterogeneities in glasses by Z-contrast scanning electron transmission microscopy, J. Non-Cryst. Solids, Volume 358 (2012), pp. 1257-1262 | DOI
[12] Beyond the average: spatial and temporal fluctuations in oxide glass-forming systems, Chem. Rev., Volume 123 (2023) no. 4, pp. 1774-1840 | DOI
[13] Nanoscale composition fluctuations and crystallization process: case study in Li
[14] Phase separation in glass, J. Non-Cryst. Solids, Volume 25 (1977), pp. 170-214 | DOI
[15] Stress corrosion cracking in amorphous phase separated oxide glasses: a holistic review of their structures, physical, mechanical and fracture properties, Corros. Mater. Degrad., Volume 2 (2021), pp. 412-446 | DOI
[16] Identification of nanometer-scale compositional fluctuations in silicate glass using electron microscopy and spectroscopy, Scr. Mater., Volume 154 (2018), pp. 197-201 | DOI
[17] Spatial heterogeneity as the structure feature for structure–property relationship of metallic glasses, Nat. Commun., Volume 9 (2018), 3965 | DOI
[18] X-ray absorption spectroscopy in geosciences: Information from the EXAFS region, Spectroscopic Methods in Mineralogy (G. Papp; T. G. Weiszburg; A. Beran; E. Libowitzky, eds.), Mineralogical Society of Great Britain and Ireland, Germany, 2004, pp. 553-587 | DOI
[19] The structural properties of cations in nuclear glasses, Procedia Mater. Sci., Volume 7 (2014), pp. 23-31 | DOI
[20] Structural role of Zr
[21] Zirconium local environment in simplified nuclear glasses altered in basic, neutral or acidic conditions: Evidence of a double-layered gel, J. Non-Cryst. Solids, Volume 503–504 (2019), pp. 268-278 | DOI
[22] Zr environment and nucleation role in aluminosilicate glasses, Mater. Chem. Phys., Volume 152 (2015), pp. 41-47 | DOI
[23] Transition elements and nucleation in glasses using X-ray absorption spectroscopy, Int. J. Appl. Glass Sci., Volume 5 (2014), pp. 126-135 | DOI
[24] Direct evidence of Al-rich layers around nanosized ZrTiO
[25] Mesoscopic scale description of nucleation processes in glasses, Appl. Phys. Lett., Volume 99 (2011), 021904 | DOI
[26] Structure of Mg- and Mg/Ca aluminosilicate glasses:
[27] Revealing spatial distribution of Al-coordinated species in a phase-separated aluminosilicate glass by STEM-EELS, J. Phys. Chem. Lett., Volume 11 (2020), pp. 9637-9642 | DOI
[28] Competition for charge compensation in borosilicate glasses: wide-angle X-ray scattering and molecular dynamics calculations, Phys. Rev. B, Volume 61 (2000), pp. 14495-14999 | DOI
[29] Structural evolution of high zirconia aluminosilicate glasses, J. Non-Cryst. Solids, Volume 539 (2020), 120050 | DOI
[30] Glass-forming ability and ZrO
[31] Mesoscale engineering of photonic glass for tunable luminescence, NPG Asia Mater., Volume 8 (2016), e318 | DOI
[32] Submicrometer-scale spatial heterogeneity in silicate glasses using aberration-corrected scanning transmission electron microscopy, Am. Mineral., Volume 101 (2016), pp. 2677-2688 | DOI
[33] Tunable Nanoporous metallic glasses fabricated by selective phase dissolution and passivation for ultrafast hydrogen uptake, Chem. Mater., Volume 29 (2017), pp. 4478-4483 | DOI
[34] Real-space mapping of oxygen coordination in phase-separated aluminosilicate glass: Implication for glass stability, ACS Appl. Nano Mater., Volume 3 (2020), pp. 5053-5060 | DOI
[35] Cordierite glass-ceramics - effect of TiO
[36] On the phase separation and crystallization of glasses in the MgO–Al
[37] Liquid-phase separation in glass-forming systems, J. Mater. Sci., Volume 10 (1975), pp. 1802-1825 | DOI
[38] Crystallization and chemical strenghtening of stuffed
[39] Nucleation in disordered systems, Phys. Rev. B, Volume 54 (1996), pp. 9734-9745 | DOI
[40] Phase transformation in NiO and CoO doped magnesium aluminosilicate glasses nucleated by ZrO
[41] X-ray-absorption studies of zirconia polymorphs. II. Effect of Y
[42] Formation of a crystal nucleus from liquid, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), pp. 14036-14041 | DOI
[43] Enhancement of protein crystal nucleation by critical density fluctuations, Science, Volume 277 (1997), pp. 1975-1978 | DOI
[44] Transition metals as optically active dopants in glass-ceramics, Appl. Phys. Lett., Volume 116 (2020), 260503 | DOI
[45] Nature and distribution of iron sites in a sodium silicate glass investigated by neutron diffraction and EPSR simulation, J. Non-Cryst. Solids, Volume 354 (2008), pp. 5378-5385 | DOI
[46] Intermediate-range order in the silicate network glasses NaFe
[47] Structure of NaFeSiO
[48] The local structure of Fe in Li(Al, Fe)Si
[49] Redox and clustering of iron in silicate glasses, J. Non-Cryst. Solids, Volume 253 (1999), pp. 203-209 | DOI
[50] Iron-soda-silica glasses: Preparation, properties, structure, J. Non-Cryst. Solids, Volume 84 (1986), pp. 45-60 | DOI
[51] Electron paramagnetic resonance, Rev. Mineral., Volume 18 (1988), pp. 513-572 | DOI
[52] Compositional dependence of infrared absorption of iron-doped silicate glasses, J. Non-Cryst. Solids, Volume 353 (2007), pp. 4753-4761 | DOI
[53] Diluted Fe
[54] Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study, Am. Mineral., Volume 86 (2001), pp. 714-730 | DOI
[55] Spectroscopic and structural properties of iron in silicate glasses, Ph. D. Thesis, Université Pierre et Marie Curie - Paris VI (2016) https://tel.archives-ouvertes.fr/tel-01458771
[56] Intersite 4p-3d hybridization in cobalt oxides: a resonant X-ray emission spectroscopy study, 2008 (preprint) | arXiv
[57] Mineralogical Applications of Crystal Field Theory, Cambridge University Press, Cambridge, 1993 | DOI
[58] The distribution of aluminum in the tetrahedra of silicates and aluminates, Am. Mineral., Volume 39 (1954), pp. 92-96
[59] Splitting obsidian: assessing a multiproxy approach for sourcing obsidian artifacts in British Columbia, J. Archaeol. Sci. Rep., Volume 28 (2019), 102040 | DOI
[60] Electron spin resonance of Fe
[61] Study of the oxidation states and magnetic properties of iron in volcanic glasses: Lipari and Teotohuacan obsidians, Bull. Minéral., Volume 104 (1981), pp. 204-210 | DOI
[62] Measuring the degree of “nanotilization” of volcanic glasses: understanding syn-eruptive processes recorded in melt inclusions, Lithos, Volume 318–319 (2018), pp. 209-218 | DOI
[63] Paleointensities on 8 ka obsidian from Mayor Island, New Zealand, Solid Earth, Volume 2 (2011), pp. 259-270 | DOI
[64] Can nanolites enhance eruption explosivity?, Geology, Volume 48 (2020), pp. 997-1001 | DOI
[65] The unique speciation of iron in calc-alkaline obsidians, Chem. Geol., Volume 559 (2021), 119925 | DOI
[66] Discrete dipole approximation simulations of absorption spectra and local electric field distributions of superparamagnetic magnetite nanoparticles, Laser Phys., Volume 23 (2013), 045901 | DOI
[67] Mixed valence of iron in minerals with cation clusters, Phys. Chem. Miner., Volume 11 (1984), pp. 37-51 | DOI
[68] Identifying characteristics of charge transfer transitions in minerals, Phys. Chem. Miner., Volume 14 (1987), pp. 94-99 | DOI
[69] Electron transfer between exchange-coupled ions in a mixed-valency compound, Chem. Phys. Lett., Volume 69 (1980), pp. 340-343 | DOI
[70] Effect of ZrO
[71] Structure, glass formation and properties, J. Non-Cryst. Solids, Volume 192–193 (1995), pp. 9-22 | DOI
[72] The structure of silicate glasses and melts, Elements, Volume 2 (2006), pp. 269-273 | DOI
[73] Fourier analysis of X-ray patterns of soda-silica glass, J. Am. Ceram. Soc., Volume 21 (1938), pp. 259-265 | DOI
[74] Structural Inorganic Chemistry, Clarendon Press, Oxford, 1975
- Nanoscale chemical heterogeneities control the viscosity of andesitic magmas, Communications Earth Environment, Volume 6 (2025) no. 1 | DOI:10.1038/s43247-025-02424-9
- From everyday glass to disordered solids: Foreword, Comptes Rendus. Physique, Volume 24 (2024) no. S1, p. 5 | DOI:10.5802/crphys.165
- Influences of La2O3 Addition on Connectivity of Phase Compositions and Microstructural Evolution of Weld Slag, Crystals, Volume 14 (2024) no. 10, p. 841 | DOI:10.3390/cryst14100841
- Understanding the Influence of Copper on the Color of Glasses and Glazes: Copper Environment and Redox, Glass Europe, Volume 2 (2024), p. 55 | DOI:10.52825/glass-europe.v2i.1274
- Rheology of a sodium‐molybdenum borosilicate melt undergoing phase separation, International Journal of Applied Glass Science, Volume 15 (2024) no. 2, p. 127 | DOI:10.1111/ijag.16650
- The rheological response of magma to nanolitisation, Journal of Volcanology and Geothermal Research, Volume 448 (2024), p. 108039 | DOI:10.1016/j.jvolgeores.2024.108039
- Metastable liquid immiscibility in the 2018–2021 Fani Maoré lavas as a mechanism for volcanic nanolite formation, Communications Earth Environment, Volume 4 (2023) no. 1 | DOI:10.1038/s43247-023-01158-w
Cité par 7 documents. Sources : Crossref
Commentaires - Politique