Comptes Rendus
From nanoscale heterogeneities to nanolites: cation clustering in glasses
Comptes Rendus. Physique, Volume 24 (2023) no. S1, pp. 199-214.

The structural behavior of cations in multicomponent oxide glasses cannot be described within a random network model, due to the presence of cation clusters that provide original properties. These clustering processes are even observed for cations that may occur at a percent level concentration, which makes it all the more spectacular. In particular, the structural and chemical characteristics of Zr 4+ - and Fe 2+ /Fe 3+ -based clusters in (alumino)silicate glasses illustrate the link between the short-range order around cations and the formation of nanoscale heterogeneities. The structural characteristics of these Zr- or Fe-rich clusters are similar, as both are based on edge-sharing cation polyhedra. Cations may also occur in a network-forming position. In that case, cation sites are corner-linked with the silicate network. In such positioning, Pauling rules and local charge balance requirements will favor cations be diluted at a nanoscale. The topological constraints of these two types of local structure are stronger for the former than for the latter, as disorder effects are smaller for edge-sharing than for corner-sharing polyhedra. This may explain crystal nucleation during the growth of such ordered heterogeneities, giving rise to original properties that are illustrated in a large diversity of glassy materials encompassing high-tech glass-ceramics and volcanic glasses.

Le comportement structural des cations dans les verres d’oxydes multicomposants ne peut pas être décrit dans un modèle de réseau aléatoire, en raison de la présence d’agrégats de cations à l’origine de propriétés originales. Ces processus de regroupement sont même observés pour les cations en faible concentration, ce qui le rend d’autant plus spectaculaire. En particulier, les caractéristiques structurales et chimiques des agrégats à base de Zr 4+ - et de Fe 2+ /Fe 3+ dans des verres (alumino)silicates illustrent le lien entre l’ordre à courte portée autour des cations et la formation dhétérogénéités nanométriques. Les caractéristiques structurales de ces amas riches en Zr ou en Fe sont similaires, car les deux sont basées sur des polyèdres cationiques partageant des arêtes. Les cations peuvent également se trouver en position de formateur de réseau. Dans ce cas, les sites cationiques sont reliés au réseau silicaté. Dans un tel positionnement, les règles de Pauling et les exigences locales d’équilibrage des charges favoriseront la dilution des cations à l’échelle nanométrique. Les contraintes topologiques de ces deux types de structure locale sont plus fortes pour le premier que pour le second, car les effets de désordre sont plus faibles pour le partage des polyèdres par arêtes que pour le partage par sommets. Cela peut expliquer la nucléation du cristal pendant la croissance de ces hétérogénéités ordonnées, donnant lieu à des propriétés originales qui sont illustrées dans une grande diversité de matériaux vitreux englobant les vitrocéramiques de haute technologie et les verres volcaniques.

Received:
Revised:
Accepted:
Online First:
Published online:
DOI: 10.5802/crphys.150
Keywords: Glass, Structure, Heterogeneities, Nucleation, Spectrocopy
Mot clés : Verre, Structure, Hétérogénéités, Nucléation, Spectroscopie

Laurent Cormier 1; Laurence Galoisy 1; Gérald Lelong 1; Georges Calas 1

1 Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC) (Sorbonne Université, CNRS UMR 7590, Muséum national d’Histoire naturelle, IRD UMR 206), 4 place Jussieu, 75005 Paris, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2023__24_S1_199_0,
     author = {Laurent Cormier and Laurence Galoisy and G\'erald Lelong and Georges Calas},
     title = {From nanoscale heterogeneities to nanolites: cation clustering in glasses},
     journal = {Comptes Rendus. Physique},
     pages = {199--214},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {24},
     number = {S1},
     year = {2023},
     doi = {10.5802/crphys.150},
     language = {en},
}
TY  - JOUR
AU  - Laurent Cormier
AU  - Laurence Galoisy
AU  - Gérald Lelong
AU  - Georges Calas
TI  - From nanoscale heterogeneities to nanolites: cation clustering in glasses
JO  - Comptes Rendus. Physique
PY  - 2023
SP  - 199
EP  - 214
VL  - 24
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.150
LA  - en
ID  - CRPHYS_2023__24_S1_199_0
ER  - 
%0 Journal Article
%A Laurent Cormier
%A Laurence Galoisy
%A Gérald Lelong
%A Georges Calas
%T From nanoscale heterogeneities to nanolites: cation clustering in glasses
%J Comptes Rendus. Physique
%D 2023
%P 199-214
%V 24
%N S1
%I Académie des sciences, Paris
%R 10.5802/crphys.150
%G en
%F CRPHYS_2023__24_S1_199_0
Laurent Cormier; Laurence Galoisy; Gérald Lelong; Georges Calas. From nanoscale heterogeneities to nanolites: cation clustering in glasses. Comptes Rendus. Physique, Volume 24 (2023) no. S1, pp. 199-214. doi : 10.5802/crphys.150. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.150/

[1] G. Calas; L. Cormier; L. Galoisy; P. Jollivet Structure-property relationships in multicomponent oxide glasses, C. R. Chim., Volume 5 (2002), pp. 831-843 | DOI

[2] G. N. Greaves; S. Sen Inorganic glasses, glass-forming liquids and amorphizing solids, Adv. Phys., Volume 56 (2007), pp. 1-166 | DOI

[3] G. N. Greaves EXAFS and the structure of glass, J. Non-Cryst. Solids, Volume 71 (1985), pp. 203-217 | DOI

[4] W. H. Zachariasen The atomic arrangement in glass, J. Am. Ceram. Soc., Volume 54 (1932), pp. 3841-3851 | DOI

[5] S. R. Elliott Medium-range structural order in covalent amorphous solids, Nature, Volume 354 (1991), pp. 445-452 | DOI

[6] G. N. Greaves EXAFS for studying corrosion of glass surfaces, J. Non-Cryst. Solids, Volume 120 (1990), pp. 108-116 | DOI

[7] G. N. Greaves; K. L. Ngai Reconciling ionic-transport properties with atomic structure in oxide glasses, Phys. Rev. B, Volume 52 (1995), pp. 6358-6380 | DOI

[8] L. Cormier; L. Galoisy; J.-M. Delaye; D. Ghaleb; G. Calas Short- and medium-range structural order around cations in glasses: a multidisciplinary approach, C. R. Acad. Sci. Sér. IV, Volume 2 (2001), pp. 249-262 | DOI

[9] L. Galoisy; L. Cormier; G. Calas; V. Briois Environment of Ni, Co and Zn in low alkali borate glasses: information from EXAFS and XANES spectra, J. Non-Cryst. Solids, Volume 293–295 (2001), pp. 105-111 | DOI

[10] K. D. Vargheese; A. Tandia; J. C. Mauro Origin of dynamical heterogeneities in calcium aluminosilicate liquids, J. Chem. Phys., Volume 132 (2010), 194501 | DOI

[11] O. Dargaud; L. Cormier; N. Menguy; G. Patriarche Multi-scale structuration of glasses: Observations of phase separation and nanoscale heterogeneities in glasses by Z-contrast scanning electron transmission microscopy, J. Non-Cryst. Solids, Volume 358 (2012), pp. 1257-1262 | DOI

[12] K. A. Kirchner; D. R. Cassar; E. D. Zanotto; M. Ono; S. H. Kim; K. Doss; M. L. Bødker; M. M. Smedskjaer; S. Kohara; L. Tang; M. Bauchy; C. J. Wilkinson; Y. Yang; R. S. Welch; M. Mancini; J. C. Mauro Beyond the average: spatial and temporal fluctuations in oxide glass-forming systems, Chem. Rev., Volume 123 (2023) no. 4, pp. 1774-1840 | DOI

[13] T. Komatsu; T. Honma Nanoscale composition fluctuations and crystallization process: case study in Li 2 O–SiO 2 based glasses, Int. J. Appl. Glass Sci., Volume 13 (2022) no. 4, pp. 591-609 | DOI

[14] W. Vogel Phase separation in glass, J. Non-Cryst. Solids, Volume 25 (1977), pp. 170-214 | DOI

[15] W. Feng; D. Bonamy; F. Célarié; P. C. M. Fossati; S. Gossé; P. Houizot; C. L. Rountree Stress corrosion cracking in amorphous phase separated oxide glasses: a holistic review of their structures, physical, mechanical and fracture properties, Corros. Mater. Degrad., Volume 2 (2021), pp. 412-446 | DOI

[16] K. Nakazawa; T. Miyata; S. Amma; T. Mizoguchi Identification of nanometer-scale compositional fluctuations in silicate glass using electron microscopy and spectroscopy, Scr. Mater., Volume 154 (2018), pp. 197-201 | DOI

[17] F. Zhu; S. Song; K. M. Reddy; A. Hirata; M. Chen Spatial heterogeneity as the structure feature for structure–property relationship of metallic glasses, Nat. Commun., Volume 9 (2018), 3965 | DOI

[18] L. Galoisy X-ray absorption spectroscopy in geosciences: Information from the EXAFS region, Spectroscopic Methods in Mineralogy (G. Papp; T. G. Weiszburg; A. Beran; E. Libowitzky, eds.), Mineralogical Society of Great Britain and Ireland, Germany, 2004, pp. 553-587 | DOI

[19] G. Calas; L. Galoisy; L. Cormier; G. Ferlat; G. Lelong The structural properties of cations in nuclear glasses, Procedia Mater. Sci., Volume 7 (2014), pp. 23-31 | DOI

[20] O. Dargaud; L. Cormier; N. Menguy; L. Galoisy; G. Calas; S. Papin; G. Querel; L. Olivi Structural role of Zr 4+ as a nucleating agent in a MgO–Al 2 O 3 –SiO 2 glass-ceramics: A combined XAS and HRTEM approach, J. Non-Cryst. Solids, Volume 356 (2010), pp. 2928-2934 | DOI

[21] P. Jollivet; L. Galoisy; G. Calas; F. Angeli; S. Gin; M. P. Ruffoni; N. Trcera Zirconium local environment in simplified nuclear glasses altered in basic, neutral or acidic conditions: Evidence of a double-layered gel, J. Non-Cryst. Solids, Volume 503–504 (2019), pp. 268-278 | DOI

[22] L. Cormier; O. Dargaud; G. Calas; C. Jousseaume; S. Papin; N. Trcera; A. Cognigni Zr environment and nucleation role in aluminosilicate glasses, Mater. Chem. Phys., Volume 152 (2015), pp. 41-47 | DOI

[23] L. Cormier; B. Cochain; A. Dugué; O. Dargaud Transition elements and nucleation in glasses using X-ray absorption spectroscopy, Int. J. Appl. Glass Sci., Volume 5 (2014), pp. 126-135 | DOI

[24] S. Bhattacharyya; T. Hoche; J. R. Jinschek; I. Avramov; R. Wurth; M. Muller; C. Russel Direct evidence of Al-rich layers around nanosized ZrTiO 4 in glass: putting the role of nucleation agents in perspective, Cryst. Growth Des., Volume 10 (2010), pp. 379-385 | DOI

[25] O. Dargaud; L. Cormier; N. Menguy; G. Patriarche; G. Calas Mesoscopic scale description of nucleation processes in glasses, Appl. Phys. Lett., Volume 99 (2011), 021904 | DOI

[26] D. R. Neuville; L. Cormier; V. Montouillout; P. Florian; F. Millot; J.-C. Rifflet; D. Massiot Structure of Mg- and Mg/Ca aluminosilicate glasses: 27 Al NMR and Raman spectroscopy investigations, Am. Mineral., Volume 93 (2008), pp. 1721-1731 | DOI

[27] K. Liao; A. Masuno; A. Taguchi; H. Moriwake; H. Inoue; T. Mizoguchi Revealing spatial distribution of Al-coordinated species in a phase-separated aluminosilicate glass by STEM-EELS, J. Phys. Chem. Lett., Volume 11 (2020), pp. 9637-9642 | DOI

[28] L. Cormier; D. Ghaleb; J. M. Delaye; G. Calas Competition for charge compensation in borosilicate glasses: wide-angle X-ray scattering and molecular dynamics calculations, Phys. Rev. B, Volume 61 (2000), pp. 14495-14999 | DOI

[29] M. Ficheux; E. Burov; G. Aquilanti; N. Trcera; V. Montouillout; L. Cormier Structural evolution of high zirconia aluminosilicate glasses, J. Non-Cryst. Solids, Volume 539 (2020), 120050 | DOI

[30] A. Zandona; M. Moustrous; C. Genevois; E. Véron; A. Canizarès; M. Allix Glass-forming ability and ZrO e saturation limits in the magnesium aluminosilicate system, Ceram. Int., Volume 48 (2022), pp. 8433-8439 | DOI

[31] Y. Yu; Z. Fang; C. Ma; H. Inoue; G. Yang; S. Zheng; D. Chen; Z. Yang; A. Masuno; J. Orava; S. Zhou; J. Qiu Mesoscale engineering of photonic glass for tunable luminescence, NPG Asia Mater., Volume 8 (2016), e318 | DOI

[32] K. D. Burgess; R. M. Stroud; M. D. Dyar; M. C. McCanta Submicrometer-scale spatial heterogeneity in silicate glasses using aberration-corrected scanning transmission electron microscopy, Am. Mineral., Volume 101 (2016), pp. 2677-2688 | DOI

[33] W. Jiao; P. Liu; H. Lin; W. Zhou; Z. Wang; T. Fujita; A. Hirata; H.-W. Li; M. Chen Tunable Nanoporous metallic glasses fabricated by selective phase dissolution and passivation for ultrafast hydrogen uptake, Chem. Mater., Volume 29 (2017), pp. 4478-4483 | DOI

[34] K. Liao; M. Haruta; A. Masuno; H. Inoue; H. Kurata; T. Mizoguchi Real-space mapping of oxygen coordination in phase-separated aluminosilicate glass: Implication for glass stability, ACS Appl. Nano Mater., Volume 3 (2020), pp. 5053-5060 | DOI

[35] T. I. Barry; J. M. Cox; R. Morrell Cordierite glass-ceramics - effect of TiO 2 and ZrO 2 content on phase sequence during heat treatment, J. Mater. Sci., Volume 13 (1978), pp. 594-610 | DOI

[36] V. V. Golubkov; O. S. Dymshits; A. A. Zhilin; T. I. Chuvaeva; A. V. Shashkin On the phase separation and crystallization of glasses in the MgO–Al 2 O 3 –SiO 2 –TiO 2 system, Glass Phys. Chem., Volume 29 (2003), pp. 254-266 | DOI

[37] P. F. James Liquid-phase separation in glass-forming systems, J. Mater. Sci., Volume 10 (1975), pp. 1802-1825 | DOI

[38] G. H. Beall; B. R. Karstetter; H. L. Rittler Crystallization and chemical strenghtening of stuffed β-quartz glass-ceramics, J. Am. Ceram. Soc., Volume 50 (1967), pp. 182-190 | DOI

[39] V. G. Karpov; D. W. Oxtoby Nucleation in disordered systems, Phys. Rev. B, Volume 54 (1996), pp. 9734-9745 | DOI

[40] I. Alekseeva; O. Dymshits; V. Golubkov; A. Shashkin; M. Tsenter; A. Zhilin Phase transformation in NiO and CoO doped magnesium aluminosilicate glasses nucleated by ZrO 2 , Glass Technol., Volume 46 (2005), pp. 187-191

[41] P. Li; I. W. Chen; J. E. Penner-Hahn X-ray-absorption studies of zirconia polymorphs. II. Effect of Y 2 O 3 dopant on ZrO 2 structure, Phys. Rev. B, Volume 48 (1993), pp. 10074-10081 | DOI

[42] T. Kawasaki; H. Tanaka Formation of a crystal nucleus from liquid, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), pp. 14036-14041 | DOI

[43] P. R. ten Wolde; D. Frenkel Enhancement of protein crystal nucleation by critical density fluctuations, Science, Volume 277 (1997), pp. 1975-1978 | DOI

[44] L. Cormier; S. Zhou Transition metals as optically active dopants in glass-ceramics, Appl. Phys. Lett., Volume 116 (2020), 260503 | DOI

[45] C. Weigel; L. Cormier; G. Calas; L. Galoisy; D. T. Bowron Nature and distribution of iron sites in a sodium silicate glass investigated by neutron diffraction and EPSR simulation, J. Non-Cryst. Solids, Volume 354 (2008), pp. 5378-5385 | DOI

[46] C. Weigel; L. Cormier; G. Calas; L. Galoisy; D. T. Bowron Intermediate-range order in the silicate network glasses NaFe x Al 1-x Si 2 O 6 (x = 0, 0.5, 0.8, 1): a neutron diffraction and empirical potential structure refinment modeling investigation, Phys. Rev. B, Volume 78 (2008), 064202 | DOI

[47] M. Ahmadzadeh; A. Scrimshire; L. Mottram; M. C. Stennett; N. C. Hyatt; P. A. Bingham; J. S. McCloy Structure of NaFeSiO 4 , NaFeSi 2 O 6 , and NaFeSi 3 O 8 glasses and glass-ceramics, Am. Mineral., Volume 105 (2020), pp. 1375-1384 | DOI

[48] Z. Yang; B. Wang; A. N. Cormack The local structure of Fe in Li(Al, Fe)Si 2 O 6 glasses from molecular dynamics simulations, J. Non-Cryst. Solids, Volume 444 (2016), pp. 16-22 | DOI

[49] P. A. Bingham; J. M. Parker; T. Searle; J. M. Williams; K. Fyles Redox and clustering of iron in silicate glasses, J. Non-Cryst. Solids, Volume 253 (1999), pp. 203-209 | DOI

[50] A. Montenero; M. Friggeri; D. C. Giori; N. Belkhiria; L. D. Pye Iron-soda-silica glasses: Preparation, properties, structure, J. Non-Cryst. Solids, Volume 84 (1986), pp. 45-60 | DOI

[51] G. Calas Electron paramagnetic resonance, Rev. Mineral., Volume 18 (1988), pp. 513-572 | DOI

[52] K. Sakaguchi; T. Uchino Compositional dependence of infrared absorption of iron-doped silicate glasses, J. Non-Cryst. Solids, Volume 353 (2007), pp. 4753-4761 | DOI

[53] V. Vercamer; G. Lelong; H. Hijiya; Y. Kondo; L. Galoisy; G. Calas Diluted Fe 3+ in silicate glasses: structural effects of Fe-redox state and matrix composition. An optical absorption and X-band/Q-band EPR study, J. Non-Cryst. Solids, Volume 428 (2015), pp. 138-145 | DOI

[54] M. Wilke; F. Farges; P.-E. Petit; G. E. Brown; F. Martin Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study, Am. Mineral., Volume 86 (2001), pp. 714-730 | DOI

[55] V. Vercamer Spectroscopic and structural properties of iron in silicate glasses, Ph. D. Thesis, Université Pierre et Marie Curie - Paris VI (2016) https://tel.archives-ouvertes.fr/tel-01458771

[56] G. Vankó; F. M. F. de Groot; S. Huotari; R. J. Cava; T. Lorenz; M. Reuther Intersite 4p-3d hybridization in cobalt oxides: a resonant X-ray emission spectroscopy study, 2008 (preprint) | arXiv

[57] R. G. Burns Mineralogical Applications of Crystal Field Theory, Cambridge University Press, Cambridge, 1993 | DOI

[58] W. Loewenstein The distribution of aluminum in the tetrahedra of silicates and aluminates, Am. Mineral., Volume 39 (1954), pp. 92-96

[59] R. McMillan; M. Amini; D. Weis Splitting obsidian: assessing a multiproxy approach for sourcing obsidian artifacts in British Columbia, J. Archaeol. Sci. Rep., Volume 28 (2019), 102040 | DOI

[60] M. Duttine; G. Villeneuve; G. Poupeau; A. M. Rossi; R. B. Scorzelli Electron spin resonance of Fe 3+ ion in obsidians from Mediterranean islands. Application to provenance studies, J. Non-Cryst. Solids, Volume 323 (2003), pp. 193-199 | DOI

[61] J. R. Regnard; F. Chavez-Rivas; J. Chappert Study of the oxidation states and magnetic properties of iron in volcanic glasses: Lipari and Teotohuacan obsidians, Bull. Minéral., Volume 104 (1981), pp. 204-210 | DOI

[62] D. Di Genova; A. Caracciolo; S. Kolzenburg Measuring the degree of “nanotilization” of volcanic glasses: understanding syn-eruptive processes recorded in melt inclusions, Lithos, Volume 318–319 (2018), pp. 209-218 | DOI

[63] A. Ferk; R. Leonhardt; K.-U. Hess; D. B. Dingwell Paleointensities on 8 ka obsidian from Mayor Island, New Zealand, Solid Earth, Volume 2 (2011), pp. 259-270 | DOI

[64] F. Caceres; F. B. Wadsworth; B. Scheu; M. Colombier; C. Madonna; C. Cimarelli; K.-U. Hess; M. Kaliwoda; B. Ruthensteiner; D. B. Dingwell Can nanolites enhance eruption explosivity?, Geology, Volume 48 (2020), pp. 997-1001 | DOI

[65] L. Galoisy; G. Calas The unique speciation of iron in calc-alkaline obsidians, Chem. Geol., Volume 559 (2021), 119925 | DOI

[66] B. Wang; S. Qu Discrete dipole approximation simulations of absorption spectra and local electric field distributions of superparamagnetic magnetite nanoparticles, Laser Phys., Volume 23 (2013), 045901 | DOI

[67] G. Amthauer; G. R. Rossman Mixed valence of iron in minerals with cation clusters, Phys. Chem. Miner., Volume 11 (1984), pp. 37-51 | DOI

[68] S. M. Mattson; G. R. Rossman Identifying characteristics of charge transfer transitions in minerals, Phys. Chem. Miner., Volume 14 (1987), pp. 94-99 | DOI

[69] P. A. Cox Electron transfer between exchange-coupled ions in a mixed-valency compound, Chem. Phys. Lett., Volume 69 (1980), pp. 340-343 | DOI

[70] X. Lu; L. Deng; J. Du Effect of ZrO 2 on the structure and properties of soda-lime silicate glasses from molecular dynamics simulations, J. Non-Cryst. Solids, Volume 491 (2018), pp. 141-150 | DOI

[71] P. H. Gaskell Structure, glass formation and properties, J. Non-Cryst. Solids, Volume 192–193 (1995), pp. 9-22 | DOI

[72] G. S. Henderson; G. Calas; J. F. Stebbins The structure of silicate glasses and melts, Elements, Volume 2 (2006), pp. 269-273 | DOI

[73] B. E. Warren; J. Biscoe Fourier analysis of X-ray patterns of soda-silica glass, J. Am. Ceram. Soc., Volume 21 (1938), pp. 259-265 | DOI

[74] A. F. Wells Structural Inorganic Chemistry, Clarendon Press, Oxford, 1975

Cited by Sources:

Comments - Policy