The structural behavior of cations in multicomponent oxide glasses cannot be described within a random network model, due to the presence of cation clusters that provide original properties. These clustering processes are even observed for cations that may occur at a percent level concentration, which makes it all the more spectacular. In particular, the structural and chemical characteristics of Zr- and Fe/Fe-based clusters in (alumino)silicate glasses illustrate the link between the short-range order around cations and the formation of nanoscale heterogeneities. The structural characteristics of these Zr- or Fe-rich clusters are similar, as both are based on edge-sharing cation polyhedra. Cations may also occur in a network-forming position. In that case, cation sites are corner-linked with the silicate network. In such positioning, Pauling rules and local charge balance requirements will favor cations be diluted at a nanoscale. The topological constraints of these two types of local structure are stronger for the former than for the latter, as disorder effects are smaller for edge-sharing than for corner-sharing polyhedra. This may explain crystal nucleation during the growth of such ordered heterogeneities, giving rise to original properties that are illustrated in a large diversity of glassy materials encompassing high-tech glass-ceramics and volcanic glasses.
Le comportement structural des cations dans les verres d’oxydes multicomposants ne peut pas être décrit dans un modèle de réseau aléatoire, en raison de la présence d’agrégats de cations à l’origine de propriétés originales. Ces processus de regroupement sont même observés pour les cations en faible concentration, ce qui le rend d’autant plus spectaculaire. En particulier, les caractéristiques structurales et chimiques des agrégats à base de Zr- et de Fe/Fe dans des verres (alumino)silicates illustrent le lien entre l’ordre à courte portée autour des cations et la formation dhétérogénéités nanométriques. Les caractéristiques structurales de ces amas riches en Zr ou en Fe sont similaires, car les deux sont basées sur des polyèdres cationiques partageant des arêtes. Les cations peuvent également se trouver en position de formateur de réseau. Dans ce cas, les sites cationiques sont reliés au réseau silicaté. Dans un tel positionnement, les règles de Pauling et les exigences locales d’équilibrage des charges favoriseront la dilution des cations à l’échelle nanométrique. Les contraintes topologiques de ces deux types de structure locale sont plus fortes pour le premier que pour le second, car les effets de désordre sont plus faibles pour le partage des polyèdres par arêtes que pour le partage par sommets. Cela peut expliquer la nucléation du cristal pendant la croissance de ces hétérogénéités ordonnées, donnant lieu à des propriétés originales qui sont illustrées dans une grande diversité de matériaux vitreux englobant les vitrocéramiques de haute technologie et les verres volcaniques.
Revised:
Accepted:
Online First:
Published online:
Mots-clés : Verre, Structure, Hétérogénéités, Nucléation, Spectroscopie
Laurent Cormier 1; Laurence Galoisy 1; Gérald Lelong 1; Georges Calas 1

@article{CRPHYS_2023__24_S1_199_0, author = {Laurent Cormier and Laurence Galoisy and G\'erald Lelong and Georges Calas}, title = {From nanoscale heterogeneities to nanolites: cation clustering in glasses}, journal = {Comptes Rendus. Physique}, pages = {199--214}, publisher = {Acad\'emie des sciences, Paris}, volume = {24}, number = {S1}, year = {2023}, doi = {10.5802/crphys.150}, language = {en}, }
TY - JOUR AU - Laurent Cormier AU - Laurence Galoisy AU - Gérald Lelong AU - Georges Calas TI - From nanoscale heterogeneities to nanolites: cation clustering in glasses JO - Comptes Rendus. Physique PY - 2023 SP - 199 EP - 214 VL - 24 IS - S1 PB - Académie des sciences, Paris DO - 10.5802/crphys.150 LA - en ID - CRPHYS_2023__24_S1_199_0 ER -
%0 Journal Article %A Laurent Cormier %A Laurence Galoisy %A Gérald Lelong %A Georges Calas %T From nanoscale heterogeneities to nanolites: cation clustering in glasses %J Comptes Rendus. Physique %D 2023 %P 199-214 %V 24 %N S1 %I Académie des sciences, Paris %R 10.5802/crphys.150 %G en %F CRPHYS_2023__24_S1_199_0
Laurent Cormier; Laurence Galoisy; Gérald Lelong; Georges Calas. From nanoscale heterogeneities to nanolites: cation clustering in glasses. Comptes Rendus. Physique, From everyday glass to disordered solids, Volume 24 (2023) no. S1, pp. 199-214. doi : 10.5802/crphys.150. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.150/
[1] Structure-property relationships in multicomponent oxide glasses, C. R. Chim., Volume 5 (2002), pp. 831-843 | DOI
[2] Inorganic glasses, glass-forming liquids and amorphizing solids, Adv. Phys., Volume 56 (2007), pp. 1-166 | DOI
[3] EXAFS and the structure of glass, J. Non-Cryst. Solids, Volume 71 (1985), pp. 203-217 | DOI
[4] The atomic arrangement in glass, J. Am. Ceram. Soc., Volume 54 (1932), pp. 3841-3851 | DOI
[5] Medium-range structural order in covalent amorphous solids, Nature, Volume 354 (1991), pp. 445-452 | DOI
[6] EXAFS for studying corrosion of glass surfaces, J. Non-Cryst. Solids, Volume 120 (1990), pp. 108-116 | DOI
[7] Reconciling ionic-transport properties with atomic structure in oxide glasses, Phys. Rev. B, Volume 52 (1995), pp. 6358-6380 | DOI
[8] Short- and medium-range structural order around cations in glasses: a multidisciplinary approach, C. R. Acad. Sci. Sér. IV, Volume 2 (2001), pp. 249-262 | DOI
[9] Environment of Ni, Co and Zn in low alkali borate glasses: information from EXAFS and XANES spectra, J. Non-Cryst. Solids, Volume 293–295 (2001), pp. 105-111 | DOI
[10] Origin of dynamical heterogeneities in calcium aluminosilicate liquids, J. Chem. Phys., Volume 132 (2010), 194501 | DOI
[11] Multi-scale structuration of glasses: Observations of phase separation and nanoscale heterogeneities in glasses by Z-contrast scanning electron transmission microscopy, J. Non-Cryst. Solids, Volume 358 (2012), pp. 1257-1262 | DOI
[12] Beyond the average: spatial and temporal fluctuations in oxide glass-forming systems, Chem. Rev., Volume 123 (2023) no. 4, pp. 1774-1840 | DOI
[13] Nanoscale composition fluctuations and crystallization process: case study in LiO–SiO based glasses, Int. J. Appl. Glass Sci., Volume 13 (2022) no. 4, pp. 591-609 | DOI
[14] Phase separation in glass, J. Non-Cryst. Solids, Volume 25 (1977), pp. 170-214 | DOI
[15] Stress corrosion cracking in amorphous phase separated oxide glasses: a holistic review of their structures, physical, mechanical and fracture properties, Corros. Mater. Degrad., Volume 2 (2021), pp. 412-446 | DOI
[16] Identification of nanometer-scale compositional fluctuations in silicate glass using electron microscopy and spectroscopy, Scr. Mater., Volume 154 (2018), pp. 197-201 | DOI
[17] Spatial heterogeneity as the structure feature for structure–property relationship of metallic glasses, Nat. Commun., Volume 9 (2018), 3965 | DOI
[18] X-ray absorption spectroscopy in geosciences: Information from the EXAFS region, Spectroscopic Methods in Mineralogy (G. Papp; T. G. Weiszburg; A. Beran; E. Libowitzky, eds.), Mineralogical Society of Great Britain and Ireland, Germany, 2004, pp. 553-587 | DOI
[19] The structural properties of cations in nuclear glasses, Procedia Mater. Sci., Volume 7 (2014), pp. 23-31 | DOI
[20] Structural role of Zr as a nucleating agent in a MgO–AlO–SiO glass-ceramics: A combined XAS and HRTEM approach, J. Non-Cryst. Solids, Volume 356 (2010), pp. 2928-2934 | DOI
[21] Zirconium local environment in simplified nuclear glasses altered in basic, neutral or acidic conditions: Evidence of a double-layered gel, J. Non-Cryst. Solids, Volume 503–504 (2019), pp. 268-278 | DOI
[22] Zr environment and nucleation role in aluminosilicate glasses, Mater. Chem. Phys., Volume 152 (2015), pp. 41-47 | DOI
[23] Transition elements and nucleation in glasses using X-ray absorption spectroscopy, Int. J. Appl. Glass Sci., Volume 5 (2014), pp. 126-135 | DOI
[24] Direct evidence of Al-rich layers around nanosized ZrTiO in glass: putting the role of nucleation agents in perspective, Cryst. Growth Des., Volume 10 (2010), pp. 379-385 | DOI
[25] Mesoscopic scale description of nucleation processes in glasses, Appl. Phys. Lett., Volume 99 (2011), 021904 | DOI
[26] Structure of Mg- and Mg/Ca aluminosilicate glasses: Al NMR and Raman spectroscopy investigations, Am. Mineral., Volume 93 (2008), pp. 1721-1731 | DOI
[27] Revealing spatial distribution of Al-coordinated species in a phase-separated aluminosilicate glass by STEM-EELS, J. Phys. Chem. Lett., Volume 11 (2020), pp. 9637-9642 | DOI
[28] Competition for charge compensation in borosilicate glasses: wide-angle X-ray scattering and molecular dynamics calculations, Phys. Rev. B, Volume 61 (2000), pp. 14495-14999 | DOI
[29] Structural evolution of high zirconia aluminosilicate glasses, J. Non-Cryst. Solids, Volume 539 (2020), 120050 | DOI
[30] Glass-forming ability and ZrO saturation limits in the magnesium aluminosilicate system, Ceram. Int., Volume 48 (2022), pp. 8433-8439 | DOI
[31] Mesoscale engineering of photonic glass for tunable luminescence, NPG Asia Mater., Volume 8 (2016), e318 | DOI
[32] Submicrometer-scale spatial heterogeneity in silicate glasses using aberration-corrected scanning transmission electron microscopy, Am. Mineral., Volume 101 (2016), pp. 2677-2688 | DOI
[33] Tunable Nanoporous metallic glasses fabricated by selective phase dissolution and passivation for ultrafast hydrogen uptake, Chem. Mater., Volume 29 (2017), pp. 4478-4483 | DOI
[34] Real-space mapping of oxygen coordination in phase-separated aluminosilicate glass: Implication for glass stability, ACS Appl. Nano Mater., Volume 3 (2020), pp. 5053-5060 | DOI
[35] Cordierite glass-ceramics - effect of TiO and ZrO content on phase sequence during heat treatment, J. Mater. Sci., Volume 13 (1978), pp. 594-610 | DOI
[36] On the phase separation and crystallization of glasses in the MgO–AlO–SiO–TiO system, Glass Phys. Chem., Volume 29 (2003), pp. 254-266 | DOI
[37] Liquid-phase separation in glass-forming systems, J. Mater. Sci., Volume 10 (1975), pp. 1802-1825 | DOI
[38] Crystallization and chemical strenghtening of stuffed -quartz glass-ceramics, J. Am. Ceram. Soc., Volume 50 (1967), pp. 182-190 | DOI
[39] Nucleation in disordered systems, Phys. Rev. B, Volume 54 (1996), pp. 9734-9745 | DOI
[40] Phase transformation in NiO and CoO doped magnesium aluminosilicate glasses nucleated by ZrO, Glass Technol., Volume 46 (2005), pp. 187-191
[41] X-ray-absorption studies of zirconia polymorphs. II. Effect of YO dopant on ZrO structure, Phys. Rev. B, Volume 48 (1993), pp. 10074-10081 | DOI
[42] Formation of a crystal nucleus from liquid, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), pp. 14036-14041 | DOI
[43] Enhancement of protein crystal nucleation by critical density fluctuations, Science, Volume 277 (1997), pp. 1975-1978 | DOI
[44] Transition metals as optically active dopants in glass-ceramics, Appl. Phys. Lett., Volume 116 (2020), 260503 | DOI
[45] Nature and distribution of iron sites in a sodium silicate glass investigated by neutron diffraction and EPSR simulation, J. Non-Cryst. Solids, Volume 354 (2008), pp. 5378-5385 | DOI
[46] Intermediate-range order in the silicate network glasses NaFeAlSiO (x = 0, 0.5, 0.8, 1): a neutron diffraction and empirical potential structure refinment modeling investigation, Phys. Rev. B, Volume 78 (2008), 064202 | DOI
[47] Structure of NaFeSiO, NaFeSiO, and NaFeSiO glasses and glass-ceramics, Am. Mineral., Volume 105 (2020), pp. 1375-1384 | DOI
[48] The local structure of Fe in Li(Al, Fe)SiO glasses from molecular dynamics simulations, J. Non-Cryst. Solids, Volume 444 (2016), pp. 16-22 | DOI
[49] Redox and clustering of iron in silicate glasses, J. Non-Cryst. Solids, Volume 253 (1999), pp. 203-209 | DOI
[50] Iron-soda-silica glasses: Preparation, properties, structure, J. Non-Cryst. Solids, Volume 84 (1986), pp. 45-60 | DOI
[51] Electron paramagnetic resonance, Rev. Mineral., Volume 18 (1988), pp. 513-572 | DOI
[52] Compositional dependence of infrared absorption of iron-doped silicate glasses, J. Non-Cryst. Solids, Volume 353 (2007), pp. 4753-4761 | DOI
[53] Diluted Fe in silicate glasses: structural effects of Fe-redox state and matrix composition. An optical absorption and X-band/Q-band EPR study, J. Non-Cryst. Solids, Volume 428 (2015), pp. 138-145 | DOI
[54] Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study, Am. Mineral., Volume 86 (2001), pp. 714-730 | DOI
[55] Spectroscopic and structural properties of iron in silicate glasses, Ph. D. Thesis, Université Pierre et Marie Curie - Paris VI (2016) https://tel.archives-ouvertes.fr/tel-01458771
[56] Intersite 4p-3d hybridization in cobalt oxides: a resonant X-ray emission spectroscopy study, 2008 (preprint) | arXiv
[57] Mineralogical Applications of Crystal Field Theory, Cambridge University Press, Cambridge, 1993 | DOI
[58] The distribution of aluminum in the tetrahedra of silicates and aluminates, Am. Mineral., Volume 39 (1954), pp. 92-96
[59] Splitting obsidian: assessing a multiproxy approach for sourcing obsidian artifacts in British Columbia, J. Archaeol. Sci. Rep., Volume 28 (2019), 102040 | DOI
[60] Electron spin resonance of Fe ion in obsidians from Mediterranean islands. Application to provenance studies, J. Non-Cryst. Solids, Volume 323 (2003), pp. 193-199 | DOI
[61] Study of the oxidation states and magnetic properties of iron in volcanic glasses: Lipari and Teotohuacan obsidians, Bull. Minéral., Volume 104 (1981), pp. 204-210 | DOI
[62] Measuring the degree of “nanotilization” of volcanic glasses: understanding syn-eruptive processes recorded in melt inclusions, Lithos, Volume 318–319 (2018), pp. 209-218 | DOI
[63] Paleointensities on 8 ka obsidian from Mayor Island, New Zealand, Solid Earth, Volume 2 (2011), pp. 259-270 | DOI
[64] Can nanolites enhance eruption explosivity?, Geology, Volume 48 (2020), pp. 997-1001 | DOI
[65] The unique speciation of iron in calc-alkaline obsidians, Chem. Geol., Volume 559 (2021), 119925 | DOI
[66] Discrete dipole approximation simulations of absorption spectra and local electric field distributions of superparamagnetic magnetite nanoparticles, Laser Phys., Volume 23 (2013), 045901 | DOI
[67] Mixed valence of iron in minerals with cation clusters, Phys. Chem. Miner., Volume 11 (1984), pp. 37-51 | DOI
[68] Identifying characteristics of charge transfer transitions in minerals, Phys. Chem. Miner., Volume 14 (1987), pp. 94-99 | DOI
[69] Electron transfer between exchange-coupled ions in a mixed-valency compound, Chem. Phys. Lett., Volume 69 (1980), pp. 340-343 | DOI
[70] Effect of ZrO on the structure and properties of soda-lime silicate glasses from molecular dynamics simulations, J. Non-Cryst. Solids, Volume 491 (2018), pp. 141-150 | DOI
[71] Structure, glass formation and properties, J. Non-Cryst. Solids, Volume 192–193 (1995), pp. 9-22 | DOI
[72] The structure of silicate glasses and melts, Elements, Volume 2 (2006), pp. 269-273 | DOI
[73] Fourier analysis of X-ray patterns of soda-silica glass, J. Am. Ceram. Soc., Volume 21 (1938), pp. 259-265 | DOI
[74] Structural Inorganic Chemistry, Clarendon Press, Oxford, 1975
Cited by Sources:
Comments - Policy