An important category of glass-forming materials is organic; it includes molecular liquids, polymers, solutions, proteins that can be vitrified by cooling the liquid under standard conditions or after special thermal treatments. The range of applications is large from materials to life sciences and recently to electronics. To distinguish them from other systems described in this issue, some specific properties such as the range of their glass transition temperature (), their ability to vitrify and some rules of thumb to locate are presented. The most remarkable property of these liquids is how fast in temperature their viscosity or structural relaxation time increases as approaching . To characterize this behavior and rank the liquids of different strength, C.A. Angell introduced the concept of Fragility nearly years ago. He proposed to classify liquids as fragile or strong in an Arrhenius plot with scaling (the strongest ones have never being observed in organic glasses, except for water under specific conditions). The value and the fragility index of a given liquid can be changed by applying pressure, i.e. changing the density. One can then explore the properties of the supercooled/overcompressed liquid and the glass in a phase diagram. The line corresponds to an isochronic line, i.e. a line at constant relaxation time for different pairs of density-temperature. We observe that all data can be placed on master-curves that depend only on a single density- and species-dependent and T-independent effective interaction energy, . An isochoric fragility index is defined as an intrinsic property of a given liquid, that can help in rationalizing all the correlations between the glass properties below and the viscous slowing down just above from which they are made. Geometrical confinement of liquids is also a way to modify the dynamics of a liquid and the properties of a glass; it corresponds to a large number of situations encountered in nature. Another phase diagram (d defining pore size) can be defined with a non-trivial pore size dependence of the glass transition, which is also strongly affected by surface interactions.
Une catégorie importante de matériaux vitrifiables est de nature organique ; elle comprend les liquides moléculaires, les polymères, les solutions, les protéines qui peuvent être vitrifiés par refroidissement du liquide dans des conditions standard ou après des traitements thermiques spéciaux. La gamme d’applications est vaste, allant de la science des matériaux aux sciences de la vie et plus récemment à l’électronique. Afin de les distinguer des autres systèmes décrits dans ce numéro, certaines propriétés spécifiques telles que le domaine de température de transition vitreuse (), leur capacité à former un verre et quelques règles empiriques pour localiser sont présentées. Cependant la propriété la plus remarquable de ces liquides, qui les distinguent des autres classes de matériaux, est la rapidité avec laquelle leur viscosité ou leur temps de relaxation structural augmente à l’approche de . Afin de caractériser ce comportement et de classer les liquides, C.A. Angell a introduit le concept de fragilité il y a près de 40 ans. Il a proposé de nommer les liquides comme fragiles ou forts dans un diagramme d’Arrhenius en fonction de (les plus forts n’ont jamais été observés pour les verres organiques, sauf l’eau sous des conditions particulières). La valeur de et la fragilité d’un liquide donné peuvent être modifiées en appliquant une pression, c’est-à-dire en changeant la densité. On peut alors explorer les propriétés du liquide surfondu et surcomprimé, et celles du verre dans un diagramme de phase . La ligne de transition vitreuse correspond à une ligne isochrone, c’est-à-dire une ligne à temps de relaxation constant avec différents couples densité-température. Nous avons observé que toutes les données peuvent être placées sur des courbes maîtresses qui ne dépendent que d’une seule énergie d’activation effective, dépendante de la densité et de l’espèce et indépendante de la température. Un indice de fragilité isochore est défini comme une propriété intrinsèque d’un liquide donné qui peut aider à rationaliser toutes les corrélations entre les propriétés des verres en dessous de et le ralentissement visqueux juste au-dessus de . Le confinement géométrique des liquides est également un moyen de modifier la dynamique d’un liquide et les propriétés d’un verre ; il correspond à un grand nombre de situations rencontrées dans la nature. Un autre diagramme de phase (d= diamètre des pores) peut être défini avec une dépendance non triviale de la transition vitreuse par rapport à la taille des pores, fortement affectée par les interactions de surface.
Revised:
Accepted:
Online First:
Published online:
Mots-clés : liquides moléculaires et verres, polymères, fragilité, loi d’échelle en densité, corrélations entre dynamiques rapide et lente
Christiane Alba-Simionesco 1

@article{CRPHYS_2023__24_S1_177_0, author = {Christiane Alba-Simionesco}, title = {Organic {Glass-Forming} {Liquids} and the {Concept} of {Fragility}}, journal = {Comptes Rendus. Physique}, pages = {177--198}, publisher = {Acad\'emie des sciences, Paris}, volume = {24}, number = {S1}, year = {2023}, doi = {10.5802/crphys.148}, language = {en}, }
Christiane Alba-Simionesco. Organic Glass-Forming Liquids and the Concept of Fragility. Comptes Rendus. Physique, From everyday glass to disordered solids, Volume 24 (2023) no. S1, pp. 177-198. doi : 10.5802/crphys.148. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.148/
[1] Formation of glasses from liquids and biopolymers, Science, Volume 267 (1995) no. 5206, pp. 1924-1935 | DOI
[2] Glass Transition Temperatures for Simple Molecular Liquids and Their Binary Solutions, J. Phys. Chem., Volume 82 (1978) no. 24, p. 2622-–2629 | DOI
[3] Colloquium: The glass transition and elastic models of glass-forming liquids, Rev. Mod. Phys., Volume 78 (2006) no. 3, pp. 952-972 | DOI
[4] The amorphous state of pharmaceuticals obtained or transformed by milling: Sub-Tg features and rejuvenation, J. Non Cryst. Solids, Volume 407 (2015), pp. 72-80 | DOI
[5] Introduction: Organic Electronics and Optoelectronics, Chem. Rev., Volume 107 (2007) no. 4, pp. 923-925 | DOI
[6] Perspective: Supercooled liquids and glasses, J. Chem. Phys., Volume 137 (2012), 080901 | DOI
[7] Phase Changes in Crystalline and Glassy-Crystalline Cyclohexanol, Bull. Chem. Soc. Jpn., Volume 41 (1968) no. 5, pp. 1073-1087 | DOI
[8] Analogy of the slow dynamics between the supercooled liquid and supercooled plastic crystal states of difluorotetrachloroethane, Phys. Rev. E, Volume 72 (2005) no. 1, 012501, 4 pages | DOI
[9] Toward broadband mechanical spectroscopy, Proc. Natl. Acad. Sci. USA, Volume 114 (2017) no. 33, pp. 8710-8715 | DOI
[10] Slow rheological mode in glycerol and glycerol-water mixtures, Phys. Chem. Chem. Phys., Volume 20 (2018) no. 3, pp. 1716-1723 | DOI
[11] A thermodynamic theory of supercooled liquids, Physica A, Volume 219 (1995) no. 1, pp. 27-38 | DOI
[12] Relaxation processes in supercooled liquids, Rep. Prog. Phys., Volume 55 (1992) no. 3, pp. 241-376 | DOI
[13] Translational and rotational diffusion in supercooled orthoterphenyl close to the glass transition, Z. Physik B – Condensed Matter, Volume 88 (1992), pp. 195-204 | DOI
[14] Enhanced translation of probe molecules in supercooled o‐terphenyl: Signature of spatially heterogeneous dynamics?, J. Chem. Phys., Volume 104 (1996), pp. 7210-7218 | DOI
[15] Reorientational motion of the NO3- ion through the liquid-glass transition in Ca0.4K0.6(NO3)1.4 and Ca(NO3)2 + 8H2O, J. Non Cryst. Solids, Volume 172–174 (1994), pp. 161-166 | DOI
[16] Q-dependent collective relaxation dynamics of glass-forming liquid Ca0.4K0.6(NO3)1.4 investigated by wide-angle neutron spin-echo, Nat. Commun., Volume 13 (2022) no. 1, 2092, 9 pages | DOI
[17] Fragility of Glass-forming Liquids (A. Lindsay Greer; Keith F. Kelton; Srikanth Sastry, eds.), Texts and Readings in the Physical Sciences (TRIPS), 13, Hindustan Book Angency, 2014 (Collection of article accompagnies the Symposium on Fragility held at JNCASR, Bengaluru, India, 2014)
[18] Supercooled liquids and glasses, J. Phys. Chem., Volume 100 (1996) no. 31, pp. 13200-13212 | DOI
[19] The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures, Chem. Rev., Volume 43 (1948) no. 2, pp. 219-256 | DOI
[20] Nature of the glass transition and the glassy state, J. Chem. Phys., Volume 28 (1958), pp. 373-383 | DOI
[21] On the temperature dependence of cooperative relaxation properties in glass-forming liquids, J. Chem. Phys., Volume 43 (1965), pp. 139-146 | DOI
[22] In search of a theory of supercooled liquids, Nature Mater., Volume 7 (2008), pp. 831-833 | DOI
[23] Theoretical perspective on the glass transition and amorphous materials, Rev. Mod. Phys., Volume 83 (2011) no. 2, pp. 587-645 | DOI
[24] Theory of Structural Glasses and Supercooled Liquids, Annu. Rev. Phys. Chem., Volume 58 (2007), pp. 235-266 | DOI
[25] The shapes of cooperatively rearranging regions in glass-forming liquids, Nature Phys. (2006), pp. 268-274 | DOI
[26] An overview of the theories of the glass transition, Dynamical Heterogeneities and Glasses (Ludovic Berthier; Giulio Biroli; Jean-Philippe Bouchaud; L. Cipelletti; W. van Saarloos, eds.) (International Series of Monographs on Physics), Volume 150, Oxford University Press, 2011, pp. 152-203
[27] Experimental Approaches to Heterogeneous Dynamics, Dynamical Heterogeneities in Glasses, Colloids and Granular Materials, (L. Berthier; G. Biroli; J. P. Bouchaud, eds.) (International Series of Monographs on Physics), Volume 150, Oxford University Press, 2011, pp. 152-202 | DOI
[28] Direct experimental evidence of a growing length scale accompaying the glass transition, Science, Volume 310 (2005) no. 5755, pp. 1797-1800 | DOI
[29] Spatial correlations in the dynamics of glassforming liquids: Experimental determination of their temperature dependence, Phys. Rev. E, Volume 76 (2007) no. 4, 041510 | DOI
[30] Can the glass transition be explained without a growing static length scale?, J. Chem. Phys., Volume 150 (2019), 094501 | DOI
[31] Two-level states in glasses, Rep. Prog. Phys., Volume 50 (1987) no. 12, p. 1657 | DOI
[32] Thermal conductivity and specific heat of noncrystalline solids, Phys. Rev. B, Volume 4 (1971) no. 6, pp. 2029-2041 | DOI
[33] Vibrational instability, two-level systems, and the boson peak in glasses, Phys. Rev. B, Volume 76 (2007) no. 6, 064206, 16 pages | DOI
[34] Acoustic attenuation in glasses and its relation with the Boson peak, Phys. Rev. Lett., Volume 98 (2007) no. 2, 025501, 4 pages | DOI
[35] Continuum limit of amorphous elastic bodies II: Linear response to a point source force, Phys. Rev. B, Volume 70 (2004) no. 1 | DOI
[36] Length-Scale of Glassy Polymer Plastic Flow: A Neutron Scattering Study, Macromolecules, Volume 41 (2008) no. 3, pp. 860-865 | DOI
[37] Dynamic heterogeneities, boson peak, and activation volume in glass-forming liquids, Phys. Rev. E, Volume 83 (2011) no. 6, 061508, 10 pages | DOI
[38] Comparing dynamic correlation lengths from an approximation to the four-point dynamic susceptibility and from the picosecond vibrational dynamics, Phys. Rev. E, Volume 84 (2011) no. 4, 042501, 4 pages | DOI
[39] Molecular transport in liquids and glasses, J. Chem. Phys., Volume 31 (1959), pp. 1164-1169 | DOI
[40] Dynamics on the way to forming glass: Bubbles in space-time, Annu. Rev. Phys. Chem., Volume 61 (2010), pp. 191-217 | DOI
[41] Dynamical phase transitions and their relation to structural and thermodynamic aspects of glass physics, J. Chem. Phys., Volume 153 (2020), 090901 | DOI
[42] Does mesoscopic elasticity control viscous slowing down in glassforming liquids?, J. Chem. Phys., Volume 155 (2021), 074502 | Zbl
[43] Local elastic expansion model for viscous-flow activation energies of glass-forming molecular liquids, Phys. Rev. B, Volume 53 (1996) no. 5, pp. 2171-2174 | DOI
[44] Thermodynamic properties of liquid toluene, J. Phys. Chem., Volume 92 (1988), pp. 487-489
[45] Das Temperaturabhangigkeitsgesetz der Viskositat von Flussigkeiten, Phys. Zeit., Volume 22 (1921), pp. 645-646
[46] Analysis of recent measurements of the viscosity of glasses, J. Am. Ceram. Soc., Volume 8 (1925), pp. 339-355 | DOI
[47] Glasses as supercooled liquids, J. Soc. Glass Technol., Volume 9 (1925), pp. 166-185
[48] Viscous flow in supercooled liquids analyzed in terms of transport theory for random media with energetic disorder, Phys. Rev. Lett., Volume 58 (1987) no. 8, pp. 767-770 | DOI
[49] Little evidence for dynamic divergences in ultraviscous molecular liquids, Nature Phys., Volume 4 (2008), pp. 737-741 | DOI
[50] Viscosity of glass-forming liquids, Proc. Natl. Acad. Sci. USA, Volume 106 (2009) no. 47, pp. 19780-19784 | DOI
[51] Qualitative change in structural dynamics of some glass-forming systems, Phys. Rev. E, Volume 92 (2015) no. 6, 062304, 8 pages | DOI
[52] Thermodynamic study of simple molecular glasses: universal features in their heat capacity and the size of the cooperatively rearranging regions, Phys. Rev. Lett., Volume 109 (2012) no. 4, 045701, 5 pages | DOI
[53] Glass Transition Temperature of Glucose, Sucrose, and Trehalose: An Experimental and in Silico Study, J. Phys. Chem. B, Volume 110 (2006) no. 39, pp. 19678-19684 | DOI
[54] Melting and glass transitions of low molecular weight carbohydrates, Carbohydr. Res., Volume 238 (1993), pp. 39-48 | DOI
[55] Prediction of the effect of water on the glass transition temperature of low molecular weight and polysaccharide mixtures, Food Hydrocolloids, Volume 128 (2022), 107573 | DOI
[56] Glass Transition and Crystallization of Amorphous Trehalose-sucrose Mixtures, Int. J. Food Prop., Volume 8 (2005) no. 3, pp. 559-574 | DOI
[57] Prediction of the effect of water on the glass transition temperature of low molecular weight and polysaccharide mixtures, Food Hydrocolloids, Volume 128 (2022), 107573 | DOI
[58] Viscoelastic Properties of Polymers, John Wiley & Sons, 1980
[59] The microscopic basis of the GT in polymers from neutron scattering studies, Science, Volume 267 (1995) no. 5206, pp. 1939-1945 | DOI
[60] Glass transition of polymers in bulk, confined geometries, and near interfaces, Rep. Prog. Phys., Volume 80 (2017), 036602 | DOI
[61] Glass transition temperature from the chemical structure of conjugated polymers, Nat. Commun., Volume 11 (2020), 893, 8 pages | DOI
[62] Influence of Molecular Weight on Fast Dynamics and Fragility of Polymer, Macromolecules, Volume 37 (2004) no. 24, pp. 9264-9272 | DOI
[63] The role of chain length in nonergodicity factor and fragility of polymers, Macromolecules, Volume 43 (2010) no. 21, pp. 8977-8984 | DOI | Zbl
[64] 50th Anniversary Perspective: Challenges in the Dynamics and Kinetics of Glass-Forming Polymers, Macromolecules, Volume 50 (2017) no. 17, pp. 6333-6361 | DOI
[65] Molecular Engineering of the Glass Transition: Glass-Forming Ability across a Homologous Series of Cyclic Stilbenes, J Phys. Chem. B, Volume 115 (2011) no. 16, pp. 4696-4702 | DOI
[66] Thermal properties of water in myoglobin crystals and solutions at subzero temperatures, Biophys. J., Volume 50 (1986) no. 2, pp. 213-219 | DOI | Zbl
[67] The energy landscapes and motions of proteins Science, Science, Volume 254 (1991) no. 5038, pp. 1598-1603 | DOI
[68] Crystalline ribonuclease A loses function below the dynamical transition at 220 K, Nature, Volume 357 (1992), pp. 423-424 | DOI
[69] Dynamics of myoglobin: Comparison of simulation results with neutron scattering spectra, Proc. Natl. Acad. Sci. USA, Volume 87 (1990) no. 4, pp. 1601-1605 | DOI
[70] Concerning reconstructive transformation and formation of glass, J. Chem. Phys., Volume 29 (1958), pp. 1049-1054 | DOI
[71] Thermodynamic aspects of the glass transition phenomenon. Molecular liquids with variable interactions, J. Chem. Phys., Volume 110 (1999), pp. 5262-5272 | DOI
[72] Glass Transition Dynamics and Boiling Temperatures of Molecular Liquids and Their Isomers, J. Phys. Chem. B, Volume 111 (2007) no. 12, pp. 3201-3207 | DOI | Zbl
[73] Cyclohexane and benzene confined in MCM-41 and SBA-15: Confinement effects on freezing and melting, J. Phys. Chem. B, Volume 107 (2003) no. 26, pp. 6445-6453 | DOI
[74] Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity, J. Chem. Phys., Volume 128 (2008), 034709, 6 pages | DOI
[75] Hydrogen-bond-induced clustering in the fragile glassforming liquid -toluidine: experiments and simulations, J. Chem. Phys., Volume 109 (1998), pp. 8494-8503 | DOI
[76] Molecular Weight Dependence of Glassy Dynamics in Linear Polymers Revisited, Macromolecules, Volume 41 (2008) no. 23, pp. 9335-9344 | DOI
[77] Influence of Molecular Weight on Fast Dynamics and Fragility of Polymers, Macromolecules, Volume 37 (2004) no. 24, pp. 9264-9272 | DOI
[78] Temperature dependence of local segmental motion in polystyrene and its variation with molecular weight, J. Chem. Phys., Volume 119 (2003), pp. 1838-1842 | DOI
[79] Local structure and glass transition of polybutadiene up to 4 GPa, Phys. Rev. E, Volume 67 (2003) no. 1, 010802, 4 pages | DOI
[80] Isothermal glass transitions in supercooled and overcompressed liquids, J. Chem. Phys., Volume 100 (1994), pp. 2250-2257 | DOI
[81] Influence of Density and Temperature on the Microscopic Structure and the Segmental Relaxation of Polybutadiene, Phys. Rev. E, Volume 67 (2003) no. 5, 51801, 15 pages | DOI
[82] Effect of pressure on the number of dynamically correlated molecules when approaching the glass transition, 4th International Symposium on Slow Dynamics in Complex Systems (AIP Conference Proceedings), Volume 1518, American Institute of Physics, 2013, pp. 527-535 | DOI
[83] Supercooled liquids and the glass transition: Temperature as the control variable, J. Chem. Phys., Volume 109 (1998), pp. 8010-8015 | DOI | Zbl
[84] Temperature, density, and pressure dependence of relaxation times in supercooled liquids, J. Chem. Phys., Volume 116 (2002), pp. 5033-5038 | DOI
[85] Glass-forming microemulsions: vitrification of simple liquids and electron microscope probing of droplet-packing modes, J. Phys. Chem., Volume 88 (1984) no. 26, pp. 6727-6732 | DOI
[86] Effect of confinement on material behaviour at the nanometre size scale, J. Phys.: Condens. Matter, Volume 17 (2005) no. 15, p. R461-R524 | DOI
[87] Effects of confinement on freezing and melting, J. Phys.: Condens. Matter, Volume 18 (2006) no. 6, p. R15-R68 | DOI
[88] Fluid-wall interactions effects on the dynamical properties of confined oTP, J. Non Cryst. Solids, Volume 352 (2006) no. 42-49, pp. 4964-4968 | DOI
[89] Spectroscopy simulation and scattering, and the medium range order problem in glass, J. Non-Cryst. Solids, Volume 73 (1985) no. 1-3, pp. 1-17 | DOI
[90] Viscous flow in simple organic liquids, J. Phys. Chem., Volume 76 (1972) no. 16, pp. 2317-2325 | DOI
[91] Fifty years of fragility: A view from the cheap seats, J. Non-Cryst. Solids, Volume 524 (2019), 119641 | DOI
[92] Fragility and thermodynamics in nonpolymeric glass-forming liquids, J. Chem. Phys., Volume 125 (2006), 074505 | DOI
[93] Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water, Nature, Volume 398 (1999), pp. 492-495 | DOI
[94] Extension of the Angell fragility concept, J. Phys. Chem. B, Volume 103 (1999) no. 20, pp. 4191-4196 | DOI
[95] Direct determination of kinetic fragility indices of glassforming liquids by differential scanning calorimetry: Kinetic versus thermodynamic fragilities, J. Chem. Phys., Volume 117 (2002) no. 22, pp. 10184-10192 | DOI
[96] Local elastic expansion model for viscous low activation energies of glass-forming molecular liquids, Phys. Rev. B, Volume 53 (1996) no. 5, pp. 2171-2174 | DOI
[97] Glasses and spin glasses: a parallel, J. Phys. I, Volume 1 (1991) no. 11, pp. 1627-1637 | DOI
[98] New insights into the fragility dilemma in liquids, J. Chem. Phys., Volume 114 (2001) no. 13, pp. 5621-5630 | DOI
[99] Deuteron nuclear magnetic resonance and dielectric studies of molecular reorientation and charge transport in succinonitrile-glutaronitrile plastic crystals, J. Non Cryst. Solids, Volume 14 (2022), 100097 | DOI
[100] Reorientational dynamics in molecular liquids as revealed by dynamic light scattering: From boiling point to glass transition temperature, J. Chem. Phys., Volume 139 (2013), 084504 | DOI
[101] A perspective on the fragility of glass-forming liquids, Journal of Non-Crystalline Solids: X, Volume 14 (2022), 100100 | DOI
[102] 2H NMR Study of supercooled toluene, Chem. Phys. Lett., Volume 112 (1984), pp. 94-98 | DOI
[103] 2H NMR Study of supercooled toluene, Chem. Phys. Lett., Volume 112 (1984), pp. 94-98
[104] Homodyne light beating spectroscopy of o‐terphenyl in the supercooled liquid state, J. Chem. Phys., Volume 75 (1981), pp. 4247-4255 | DOI
[105] Pressure-volume-temperature relations of liquid, crystal, and glass of o-terphenyl: excess amorphous entropies, and factors determining molecular mobility, J. Phys. Chem., Volume 93 (1989), pp. 948-955 | DOI
[106] Fragility under pressure: Diamond anvil cell viscometry of ortho-terphenyl and salol, J. Chem. Phys., Volume 109 (1998), pp. 1472-1477 | DOI
[107] Dielectric Properties of Glycerol in the Range 0.1 105 Hz, K, kbar, Faraday Symp. Chem. Soc., Volume 6 (1973), pp. 23-41 | DOI
[108] Pressure and temperature dependent viscosity of two glass forming liquids: Glycerol and dibutyl phthalate, J. Chem. Phys., Volume 100 (1994), pp. 5178-5189 | DOI
[109] Glass Transition Temperature and Density Scaling in Cumene at Very High Pressure, Proc. R. Soc. A, Volume 292 (1966), pp. 322-342
[110] Pressure and Temperature Dependence of Glass-Transition Dynamics in a “Fragile” Glass Former, Phys. Rev. Lett., Volume 74 (1995), pp. 2280-2283 | DOI
[111] Disentangling density and temperature effects in the viscous slowing down of glassforming liquids, J. Chem. Phys., Volume 120 (2004), pp. 6135-6141 | DOI
[112] Scaling out the density dependence of the relaxation in glassforming polymers, Eur. Phys. Lett., Volume 68 (2004) no. 1, pp. 58-64 | DOI
[113] Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure, Rep. Prog. Phys., Volume 68 (2005), pp. 1405-1478 | DOI
[114] A Relationship between Intermolecular Potential, Thermodynamics, and Dynamic Scaling for a Supercooled Ionic Liquid, J. Phys. Chem. Lett., Volume 1 (2010) no. 6, pp. 987-992 | DOI | Zbl
[115] Density scaling of structure and dynamics of an ionic liquid, Phys. Chem. Chem. Phys., Volume 22 (2020), pp. 14169-14176 | DOI
[116] Isomorphs, hidden scale invariance, and quasiuniversality, Phys. Rev. E, Volume 88 (2013) no. 4, 042139, 9 pages | DOI
[117] Effects of Density and Temperature effects on correlations between fragility and glassy properties, Phys. Rev. B, Volume 74 (2006) no. 2, 024205, 7 pages | DOI
[118] Dynamics of strong and fragile glass formers: Differences and correlation with low-temperature properties, Phys. Rev. Lett., Volume 71 (1993) no. 13, pp. 2062-2065 | DOI
[119] Is the fragility of a liquid embedded in the properties of its glass?, Science, Volume 302 (2003) no. 5646, pp. 849-852 | DOI
[120] Poisson’s ratio and the fragility of glass-forming liquids, Nature, Volume 431 (2004), pp. 961–-963 | DOI
[121] Predicting the Long-Time Dynamic Heterogeneity in a Supercooled Liquid on the Basis of Short-Time Heterogeneities, Phys. Rev. Lett., Volume 96 (2006) no. 18, 185701, 4 pages | DOI
[122] Glassy properties and viscous slowing down: An analysis of the correlation between nonergodicity factor and fragility, J. Chem. Phys., Volume 129 (2008) no. 19, 194513 | DOI
[123] On the correlation between fragility and stretching in glass-forming liquids, J. Phys.: Condens. Matter, Volume 24 (2012) no. 5, 059501 | DOI
[124] Connection between slow and fast dynamics of molecular liquids around the glass transition, Phys. Rev. E, Volume 82 (2010) no. 2, 021508, 8 pages | DOI
[125] A Relation Between Fast and Slow Motions in Glassy and Liquid Selenium, Eur. Phys. Lett., Volume 18 (1992) no. 6, pp. 523-528 | DOI
[126] Organic glasses with exceptional thermodynamic and kinetic stability, Science, Volume 315 (2007) no. 5810, pp. 353-356 | DOI
[127] Perspective: Highly stable vapor-deposited glasses, J. Chem. Phys., Volume 147 (2017) no. 21, 210901 | DOI
Cited by Sources:
Comments - Policy