Comptes Rendus
Floquet operator engineering for quantum state stroboscopic stabilization
Comptes Rendus. Physique, Volume 24 (2023) no. S3, pp. 173-185.

Optimal control is a valuable tool for quantum simulation, allowing for the optimized preparation, manipulation, and measurement of quantum states. Through the optimization of a time-dependent control parameter, target states can be prepared to initialize or engineer specific quantum dynamics. In this work, we focus on the tailoring of a unitary evolution leading to the stroboscopic stabilization of quantum states of a Bose–Einstein condensate in an optical lattice. We show how, for states with space and time symmetries, such an evolution can be derived from the initial state-preparation controls; while for a general target state we make use of quantum optimal control to directly generate a stabilizing Floquet operator. Numerical optimizations highlight the existence of a quantum speed limit for this stabilization process, and our experimental results demonstrate the efficient stabilization of a broad range of quantum states in the lattice.

Le contrôle optimal est un outil précieux pour la simulation quantique, qui permet la préparation, la manipulation et la mesure optimisée d’états quantiques. Par la variation optimale d’un paramètre de contrôle dépendant du temps, des états cibles peuvent être préparés pour initialiser ou façonner des dynamiques quantiques spécifiques. Dans ce travail, nous nous concentrons sur le façonnage d’une évolution unitaire menant à la stabilisation stroboscopique d’états quantiques d’un condensat de Bose–Einstein dans un réseau optique. Nous montrons comment une telle évolution peut être dérivée de contrôles préparant l’état, pour des états avec des symétries d’espace et de temps, puis nous nous consacrons à l’optimisation directe d’un opérateur de Floquet stabilisant un état cible. Les optimisations de contrôle numériques mettent en évidence l’existence d’une vitesse quantique limite pour ce processus de stabilisation, et nos résultats expérimentaux montrent la stabilisation efficace d’une large gamme d’états quantiques dans le réseau.

Received:
Revised:
Accepted:
Online First:
Published online:
DOI: 10.5802/crphys.167
Keywords: Quantum optimal control, Ultracold atoms in optical lattices, Bose–Einstein condensates, Stroboscopic stabilization
Mot clés : Contrôle optimal quantique, Atomes ultrafroids dans un réseau optique, Condensats de Bose–Einstein, Stabilisation stroboscopique

Floriane Arrouas 1; Nicolas Ombredane 1; Lucas Gabardos 1; Etienne Dionis 2; Nathan Dupont 1; Juliette Billy 1; Bruno Peaudecerf 1; Dominique Sugny 2; David Guéry-Odelin 1

1 Laboratoire Collisions Agrégats Réactivité, UMR 5589, FERMI, UT3, Université de Toulouse, CNRS, 118 Route de Narbonne, 31062 Toulouse CEDEX 09, France
2 Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, 9 Avenue A. Savary, BP 47 870, F-21078 Dijon Cedex, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2023__24_S3_173_0,
     author = {Floriane Arrouas and Nicolas Ombredane and Lucas Gabardos and Etienne Dionis and Nathan Dupont and Juliette Billy and Bruno Peaudecerf and Dominique Sugny and David Gu\'ery-Odelin},
     title = {Floquet operator engineering for quantum state stroboscopic stabilization},
     journal = {Comptes Rendus. Physique},
     pages = {173--185},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {24},
     number = {S3},
     year = {2023},
     doi = {10.5802/crphys.167},
     language = {en},
}
TY  - JOUR
AU  - Floriane Arrouas
AU  - Nicolas Ombredane
AU  - Lucas Gabardos
AU  - Etienne Dionis
AU  - Nathan Dupont
AU  - Juliette Billy
AU  - Bruno Peaudecerf
AU  - Dominique Sugny
AU  - David Guéry-Odelin
TI  - Floquet operator engineering for quantum state stroboscopic stabilization
JO  - Comptes Rendus. Physique
PY  - 2023
SP  - 173
EP  - 185
VL  - 24
IS  - S3
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.167
LA  - en
ID  - CRPHYS_2023__24_S3_173_0
ER  - 
%0 Journal Article
%A Floriane Arrouas
%A Nicolas Ombredane
%A Lucas Gabardos
%A Etienne Dionis
%A Nathan Dupont
%A Juliette Billy
%A Bruno Peaudecerf
%A Dominique Sugny
%A David Guéry-Odelin
%T Floquet operator engineering for quantum state stroboscopic stabilization
%J Comptes Rendus. Physique
%D 2023
%P 173-185
%V 24
%N S3
%I Académie des sciences, Paris
%R 10.5802/crphys.167
%G en
%F CRPHYS_2023__24_S3_173_0
Floriane Arrouas; Nicolas Ombredane; Lucas Gabardos; Etienne Dionis; Nathan Dupont; Juliette Billy; Bruno Peaudecerf; Dominique Sugny; David Guéry-Odelin. Floquet operator engineering for quantum state stroboscopic stabilization. Comptes Rendus. Physique, Volume 24 (2023) no. S3, pp. 173-185. doi : 10.5802/crphys.167. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.167/

[1] J. I. Cirac; P. Zoller Goals and opportunities in quantum simulation, Nature Phys., Volume 8 (2012) no. 4, pp. 264-266 | DOI

[2] J. Dalibard; F. Gerbier; G. Juzeliūnas; P. Öhberg Colloquium: Artificial gauge potentials for neutral atoms, Rev. Mod. Phys., Volume 83 (2011) no. 4, pp. 1523-1543 | DOI

[3] N. Goldman; J. Dalibard Periodically Driven Quantum Systems: Effective Hamiltonians and Engineered Gauge Fields, Phys. Rev. X, Volume 4 (2014) no. 3, 031027 | DOI

[4] F. Impens; D. Guéry-Odelin Multichromatic Floquet engineering of quantum dissipation (2023) (preprint, arXiv:2306.01676) | DOI

[5] T. Ozawa; H. M. Price Topological quantum matter in synthetic dimensions, Nat. Rev. Phys., Volume 1 (2019) no. 5, pp. 349-357 | DOI

[6] A. Eckardt Colloquium: Atomic quantum gases in periodically driven optical lattices, Rev. Mod. Phys., Volume 89 (2017) no. 1, 011004 | DOI | MR

[7] N. Dupont; G. Chatelain; L. Gabardos; M. Arnal; J. Billy; B. Peaudecerf; D. Sugny; D. Guéry-Odelin Quantum State Control of a Bose–Einstein Condensate in an Optical Lattice, PRX Quantum, Volume 2 (2021) no. 4, 040303 | DOI

[8] N. Dupont; F. Arrouas; L. Gabardos; N. Ombredane; J. Billy; B. Peaudecerf; D. Sugny; D. Guéry-Odelin Phase-space distributions of Bose–Einstein condensates in an optical lattice: optimal shaping and reconstruction, New J. Phys., Volume 25 (2023), 013012 | DOI | Zbl

[9] U. Boscain; M. Sigalotti; D. Sugny Introduction to the Pontryagin Maximum Principle for Quantum Optimal Control, PRX Quantum, Volume 2 (2021) no. 3, 030203 | DOI

[10] C. P. Koch; U. Boscain; T. Calarco; G. Dirr; S. Filipp; S. J. Glaser; R. Kosloff; S. Montangero; T. Schulte-Herbrüggen; D. Sugny; F. K. Wilhelm Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe, EPJ Quantum Technol., Volume 9 (2022) no. 1, 19 | DOI

[11] J. Saywell; M. Carey; M. Belal; I. Kuprov; T. Freegarde Optimal control of Raman pulse sequences for atom interferometry, J. Phys. B. At. Mol. Opt. Phys., Volume 53 (2020) no. 8, 085006 | DOI

[12] S. van Frank; A. Negretti; T. Berrada; R. Bücker; S. Montangero; J.-F. Schaff; T. Schumm; T. Calarco; J. Schmiedmayer Interferometry with non-classical motional states of a Bose–Einstein condensate, Nat. Commun., Volume 5 (2014) no. 1, 4009 | DOI

[13] C. A. Weidner; D. Z. Anderson Experimental Demonstration of Shaken-Lattice Interferometry, Phys. Rev. Lett., Volume 120 (2018) no. 26, 263201 | DOI

[14] C. LeDesma; K. Mehling; J. Shao; J. D. Wilson; P Axelrad; M. M. Nicotra; M. Holland; D. Z. Anderson A Machine-Designed Optical Lattice Atom Interferometer (2023) (preprint, arXiv:2305.17603) | DOI

[15] X. Zhou; S. Jin; J. Schmiedmayer Shortcut loading a Bose–Einstein condensate into an optical lattice, New J. Phys., Volume 20 (2018) no. 5, 055005 | DOI

[16] S. van Frank; M. Bonneau; J. Schmiedmayer; S. Hild; C. Gross; M. Cheneau; I. Bloch; T. Pichler; A. Negretti; T. Calarco; S. Montangero Optimal control of complex atomic quantum systems, Sci. Rep., Volume 6 (2016) no. 1, 34187 | DOI

[17] A. Castro; U. De Giovannini; S. A. Sato; H. Hübener; A. Rubio Floquet engineering the band structure of materials with optimal control theory, Phys. Rev. Res., Volume 4 (2022) no. 3, 033213 | DOI

[18] A. Castro; U. De Giovannini; S. A. Sato; H. Hübener; A. Rubio Floquet engineering with quantum optimal control theory, New J. Phys., Volume 25 (2023) no. 4, 043023 | DOI | MR

[19] I. Mastroserio; S. Gherardini; C. Lovecchio; T. Calarco; S. Montangero; F. S. Cataliotti; F. Caruso Experimental Realization of Optimal Time-Reversal on an Atom Chip for Quantum Undo Operations, Adv. Quantum Technol., Volume 5 (2022) no. 12, 2200057 | DOI

[20] S. Deffner; S. Campbell Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control, J. Phys. A. Math. Theor., Volume 50 (2017), 453001 | DOI | MR | Zbl

[21] T. Caneva; M. Murphy; T. Calarco; R. Fazio; S. Montangero; V. Giovannetti; G. E. Santoro Optimal Control at the Quantum Speed Limit, Phys. Rev. Lett., Volume 103 (2009), 240501 | DOI

[22] A. Fortun; C. Cabrera-Gutiérrez; G. Condon; E. Michon; J. Billy; D. Guéry-Odelin Direct Tunneling Delay Time Measurement in an Optical Lattice, Phys. Rev. Lett., Volume 117 (2016) no. 1, 010401 | DOI

[23] C. Cabrera-Gutiérrez; E. Michon; V. Brunaud; T. Kawalec; A. Fortun; M. Arnal; J. Billy; D. Guéry-Odelin Robust calibration of an optical-lattice depth based on a phase shift, Phys. Rev. A, Volume 97 (2018) no. 4, 043617 | DOI

[24] P. de Fouquieres; S. G. Schirmer; S. J. Glaser; I. Kuprov Second order gradient ascent pulse engineering, J. Magn. Reson., Volume 212 (2011) no. 2, pp. 412-417 | DOI

[25] J. Řeháček; Z. Hradil; M. Ježek Iterative algorithm for reconstruction of entangled states, Phys. Rev. A, Volume 63 (2001) no. 4, 040303 | DOI | MR | Zbl

[26] A. I. Lvovsky Iterative maximum-likelihood reconstruction in quantum homodyne tomography, J. opt., B Quantum semiclass. opt., Volume 6 (2004) no. 6, p. S556-S559 | DOI

[27] M. R. Lam; N. Peter; T. Groh; W. Alt; C. Robens; D. Meschede; A. Negretti; S. Montangero; T. Calarco; A. Alberti Demonstration of Quantum Brachistochrones between Distant States of an Atom, Phys. Rev. X, Volume 11 (2021), 011035 | DOI

[28] N. Dupont; L. Gabardos; F. Arrouas; N. Ombredane; J. Billy; B. Peaudecerf; D. Guéry-Odelin A regular Hamiltonian halting ratchet for matter wave transport, Phys. Rev. Lett., Volume 131 (2023), 133401 | DOI

[29] J.-F. Mannemann; D. Matthes; R.-M. Weishäupl; T. Langen Optimal control of Bose–Einstein condensates in three dimensions, New J. Phys., Volume 17 (2015), 113027 | DOI

Cited by Sources:

Comments - Policy