Comptes Rendus
Geometric squeezing of rotating quantum gases into the lowest Landau level
[Compression géométrique d’un gaz quantique en rotation vers le niveau de Landau fondamental]
Comptes Rendus. Physique, Volume 24 (2023) no. S3, pp. 241-262.

La simulation de la physique de Hall à l’aide d’un gaz quantique en rotation se renouvelle grâce à de récentes avancées expérimentales qui ont permis l’observation d’un condensat de Bose–Einstein entièrement contenu dans le niveau de Landau fondamental. Nous décrivons ici ce résultat expérimental d’un point de vue théorique, et donnons une interprétation en termes de compression du degré de liberté géométrique du système, la métrique des centres de dérive. Cette «  compression géométrique » offre un contrôle expérimental sans précédent sur la géométrie quantique des systèmes analogues aux niveaux de Landau, et ouvre une nouvelle voie vers la création de phases quantiques corrélées similaires aux états de Hall avec des atomes ultra-froids.

The simulation of quantum Hall physics with rotating quantum gases is witnessing a revival due to recent experimental advances that enabled the observation of a Bose–Einstein condensate entirely contained in its lowest kinetic energy state, i.e. the lowest Landau level. We theoretically describe this experimental result, and show that it can be interpreted as a squeezing of the geometric degree of freedom of the problem, the guiding center metric. This “geometric squeezing” offers an unprecedented experimental control over the quantum geometry in Landau-level analogues, and at the same time opens a realistic path towards achieving correlated quantum phases akin to quantum Hall states with neutral atoms.

Reçu le :
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crphys.173
Keywords: ultracold atoms, rotating quantum gas, quantum simulation
Mot clés : atomes ultra-froids, gaz quantique en rotation, simulation quantique

Valentin Crépel 1 ; Ruixiao Yao 2 ; Biswaroop Mukherjee 2 ; Richard Fletcher 2 ; Martin Zwierlein 2

1 Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
2 MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2023__24_S3_241_0,
     author = {Valentin Cr\'epel and Ruixiao Yao and Biswaroop Mukherjee and Richard Fletcher and Martin Zwierlein},
     title = {Geometric squeezing of rotating quantum gases into the lowest {Landau} level},
     journal = {Comptes Rendus. Physique},
     pages = {241--262},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {24},
     number = {S3},
     year = {2023},
     doi = {10.5802/crphys.173},
     language = {en},
}
TY  - JOUR
AU  - Valentin Crépel
AU  - Ruixiao Yao
AU  - Biswaroop Mukherjee
AU  - Richard Fletcher
AU  - Martin Zwierlein
TI  - Geometric squeezing of rotating quantum gases into the lowest Landau level
JO  - Comptes Rendus. Physique
PY  - 2023
SP  - 241
EP  - 262
VL  - 24
IS  - S3
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.173
LA  - en
ID  - CRPHYS_2023__24_S3_241_0
ER  - 
%0 Journal Article
%A Valentin Crépel
%A Ruixiao Yao
%A Biswaroop Mukherjee
%A Richard Fletcher
%A Martin Zwierlein
%T Geometric squeezing of rotating quantum gases into the lowest Landau level
%J Comptes Rendus. Physique
%D 2023
%P 241-262
%V 24
%N S3
%I Académie des sciences, Paris
%R 10.5802/crphys.173
%G en
%F CRPHYS_2023__24_S3_241_0
Valentin Crépel; Ruixiao Yao; Biswaroop Mukherjee; Richard Fletcher; Martin Zwierlein. Geometric squeezing of rotating quantum gases into the lowest Landau level. Comptes Rendus. Physique, Volume 24 (2023) no. S3, pp. 241-262. doi : 10.5802/crphys.173. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.173/

[1] K. W. Madison; F. Chevy; W. Wohlleben; J. Dalibard Vortex formation in a stirred Bose–Einstein condensate, Phys. Rev. Lett., Volume 84 (2000) no. 5, p. 806 | DOI

[2] J. R. Abo-Shaeer; C. Raman; J. M. Vogels; W. Ketterle Observation of vortex lattices in Bose–Einstein condensates, Science, Volume 292 (2001) no. 5516, pp. 476-479 | DOI

[3] P. Engels; I. Coddington; P. C. Haljan; V. Schweikhard; E. A. Cornell Observation of Long-Lived Vortex Aggregates in Rapidly Rotating Bose–Einstein Condensates, Phys. Rev. Lett., Volume 90 (2003) no. 17, 170405 | DOI

[4] M. W. Zwierlein; J. R. Abo-Shaeer; A. Schirotzek; C. H. Schunck; W. Ketterle Vortices and superfluidity in a strongly interacting Fermi gas, Nature, Volume 435 (2005) no. 7045, pp. 1047-1051 | DOI

[5] S. Sinha; Y. Castin Dynamic instability of a rotating Bose–Einstein condensate, Phys. Rev. Lett., Volume 87 (2001) no. 19, 190402, 250402 | DOI

[6] E. Sonin Vortex oscillations and hydrodynamics of rotating superfluids, Rev. Mod. Phys., Volume 59 (1987) no. 1, pp. 87-155 | DOI

[7] E. B. Sonin Ground state and Tkachenko modes of a rapidly rotating Bose–Einstein condensate in the lowest-Landau-level state, Phys. Rev. A, Volume 72 (2005) no. 2, 021606 | DOI

[8] B. Mukherjee; A. Shaffer; P. B. Patel; Z. Yan; C. C. Wilson; V. Crépel; R. J. Fletcher; M. W. Zwierlein Crystallization of bosonic quantum Hall states in a rotating quantum gas, Nature, Volume 601 (2022) no. 7891, pp. 58-62 | DOI

[9] A. Bohr; B. R. Mottelson Nuclear Structure, World Scientific, 1998 | DOI

[10] D. Guéry-Odelin; S. Stringari Scissors mode and superfluidity of a trapped Bose–Einstein condensed gas, Phys. Rev. Lett., Volume 83 (1999) no. 22, 053602, pp. 4452-4455 | DOI

[11] C. J. Pethick; T. Schäfer; A. Schwenk Bose–Einstein Condensates in Neutron Stars, Universal Themes of Bose–Einstein Condensation (Nick P. Proukakis; David W. Snoke; Peter B. Littlewood, eds.), Cambridge University Press, 2017, 013602, pp. 573-592 | DOI

[12] R. Staubert; J. Trümper; E. Kendziorra; D. Klochkov; K. Postnov; P. Kretschmar; K. Pottschmidt; F. Haberl; R. E. Rothschild; A. Santangelo; J. Wilms; I. Kreykenbohm; F. Fürst Cyclotron lines in highly magnetized neutron stars, Astron. Astrophys., Volume 622 (2019), A61, 053606 | DOI

[13] N. K. Wilkin; J. M. F. Gunn Condensation of “composite bosons” in a rotating BEC, Phys. Rev. Lett., Volume 84 (2000) no. 1, 180402, pp. 6-9 | DOI

[14] N. R. Cooper; N. K. Wilkin; J. M. F. Gunn Quantum phases of vortices in rotating Bose–Einstein condensates, Phys. Rev. Lett., Volume 87 (2001) no. 12, 120405, 033606 | DOI

[15] J. Sivardiere On the analogy between inertial and electromagnetic forces, Eur. J. Phys., Volume 4 (1983) no. 3, 150402, pp. 162-164 | DOI

[16] N. R. Cooper Rapidly rotating atomic gases, Adv. Phys., Volume 57 (2008) no. 6, 88, pp. 539-616 | DOI

[17] A. L. Fetter Rotating trapped Bose–Einstein condensates, Rev. Mod. Phys., Volume 81 (2009) no. 2, 053607, pp. 647-691 | DOI

[18] J. Sinova; C. B. Hanna; A. H. MacDonald Quantum melting and absence of Bose–Einstein condensation in two-dimensional vortex matter, Phys. Rev. Lett., Volume 89 (2002) no. 3, 030403 | DOI

[19] N. Regnault; Th. Jolicœur Quantum Hall fractions in rotating Bose–Einstein condensates, Phys. Rev. Lett., Volume 91 (2003) no. 3, 030402 | DOI

[20] N. Regnault; Th. Jolicœur Quantum Hall fractions for spinless bosons, Phys. Rev. B, Volume 69 (2004) no. 23, 235309 | DOI

[21] N. Regnault; Th. Jolicœur Quantum Hall fractions in ultracold Fermionic vapors, Phys. Rev. B, Volume 70 (2004) no. 24, 241307 | DOI

[22] N. Regnault; Th. Jolicœur ParaFermionic states in rotating Bose–Einstein condensates, Phys. Rev. B, Volume 76 (2007) no. 23, 235324 | DOI

[23] V. Bretin; S. Stock; Y. Seurin; J. Dalibard Fast Rotation of a Bose–Einstein Condensate, Phys. Rev. Lett., Volume 92 (2004) no. 5, 050403, 035301 | DOI

[24] V. Schweikhard; I. Coddington; P. Engels; V. P. Mogendorff; E. A. Cornell Rapidly Rotating Bose–Einstein Condensates in and near the Lowest Landau Level, Phys. Rev. Lett., Volume 92 (2004) no. 4, 040404 | DOI

[25] G. Baym Tkachenko modes of vortex lattices in rapidly rotating Bose–Einstein condensates, Phys. Rev. Lett., Volume 91 (2003) no. 11, 110402 | DOI

[26] J. Sinova; C. B. Hanna; A. H. MacDonald Measuring the condensate fraction of rapidly rotating trapped boson systems: off-diagonal order from the density profile, Phys. Rev. Lett., Volume 90 (2003) no. 12, 120401 | DOI

[27] A. Aftalion; X. Blanc; N. Lerner Fast rotating condensates in an asymmetric harmonic trap, Phys. Rev. A, Volume 79 (2009) no. 1, 011603 | DOI

[28] S. Sinha; G. V. Shlyapnikov Two-dimensional Bose–Einstein condensate under extreme rotation, Phys. Rev. Lett., Volume 94 (2005) no. 15, 150401, 100403 | DOI

[29] Y.-J. Lin; R. L. Compton; A. R. Perry; W. D. Phillips; J. V. Porto; I. B. Spielman Bose–Einstein condensate in a uniform light-induced vector potential, Phys. Rev. Lett., Volume 102 (2009) no. 13, 130401 | DOI

[30] Y.-J. Lin; R. L. Compton; K. Jiménez-García; J. V. Porto; I. B. Spielman Synthetic magnetic fields for ultracold neutral atoms, Nature, Volume 462 (2009) no. 7273, 054304, pp. 628-632 | DOI

[31] J. Struck; C. Ölschläger; M. Weinberg; P. Hauke; J. Simonet; A. Eckardt; M. Lewenstein; K. Sengstock; P. Windpassinger Tunable gauge potential for neutral and spinless particles in driven optical lattices, Phys. Rev. Lett., Volume 108 (2012) no. 22, 225304, 175301 | DOI

[32] M. Aidelsburger; M. Atala; M. Lohse; J. T. Barreiro; B. Paredes; I. Bloch Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices, Phys. Rev. Lett., Volume 111 (2013) no. 18, 185301 | DOI

[33] H. Miyake; G. A Siviloglou; C. J. Kennedy; W. C. Burton; W. Ketterle Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices, Phys. Rev. Lett., Volume 111 (2013) no. 18, 185302 | DOI

[34] A. Celi; P. Massignan; J. Ruseckas; N. Goldman; I. B. Spielman; G. Juzeliūnas; M. Lewenstein Synthetic gauge fields in synthetic dimensions, Phys. Rev. Lett., Volume 112 (2014) no. 4, 043001 | DOI

[35] Th. Chalopin; T. Satoor; A. Evrard; V. Makhalov; J. Dalibard; R. Lopes; S. Nascimbene Probing chiral edge dynamics and bulk topology of a synthetic Hall system, Nat. Phys., Volume 16 (2020) no. 10, 210403, pp. 1017-1021 | DOI

[36] A. Fabre; J.-B. Bouhiron; T. Satoor; R. Lopes; S. Nascimbene Laughlin’s topological charge pump in an atomic Hall cylinder, Phys. Rev. Lett., Volume 128 (2022) no. 17, 173202, 055023 | DOI

[37] V. Crépel; B. Estienne; N. Regnault Microscopic study of the coupled-wire construction and plausible realization in spin-dependent optical lattices, Phys. Rev. B, Volume 101 (2020) no. 23, 235158, 090404 | DOI

[38] J. Dalibard; F. Gerbier; G. Juzeliūnas; P. Öhberg Colloquium: Artificial gauge potentials for neutral atoms, Rev. Mod. Phys., Volume 83 (2011) no. 4, 090602, pp. 1523-1543 | DOI

[39] N. Goldman; G. Juzeliūnas; P. Öhberg; I. B. Spielman Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys., Volume 77 (2014) no. 12, 126401, 205303 | DOI

[40] N. R. Cooper; J. Dalibard; I. B. Spielman Topological bands for ultracold atoms, Rev. Mod. Phys., Volume 91 (2019) no. 1, 015005, 240604 | DOI | MR

[41] M. Reitter; J. Näger; K. Wintersperger; C. Sträter; I. Bloch; A. Eckardt; U. Schneider Interaction dependent heating and atom loss in a periodically driven optical lattice, Phys. Rev. Lett., Volume 119 (2017) no. 20, 200402, 023315 | DOI

[42] M. Lacki; H. Pichler; A. Sterdyniak; A. Lyras; V. E. Lembessis; O. Al-Dossary; J. C. Budich; P. Zoller Quantum Hall physics with cold atoms in cylindrical optical lattices, Phys. Rev. A, Volume 93 (2016) no. 1, 013604, 250402 | DOI

[43] W. S. Bakr; J. I. Gillen; A. Peng; S. Fölling; M. Greiner A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice, Nature, Volume 462 (2009) no. 7269, pp. 74-77 | DOI

[44] J. F. Sherson; C. Weitenberg; M. Endres; M. Cheneau; I. Bloch; S. Kuhr Single-atom-resolved fluorescence imaging of an atomic Mott insulator, Nature, Volume 467 (2010) no. 7311, 210404, pp. 68-72 | DOI

[45] L. W. Cheuk; M. A. Nichols; M. Okan; Th. Gersdorf; V. V. Ramasesh; W. S. Bakr; Th. Lompe; M. W. Zwierlein Quantum-gas microscope for Fermionic atoms, Phys. Rev. Lett., Volume 114 (2015) no. 19, 193001, 043610 | DOI

[46] E. Haller; J. Hudson; A. Kelly; D. A. Cotta; B. Peaudecerf; G. D. Bruce; S. Kuhr Single-atom imaging of Fermions in a quantum-gas microscope, Nat. Phys., Volume 11 (2015) no. 9, 043608, pp. 738-742 | DOI

[47] M. F. Parsons; F. Huber; A. Mazurenko; C. S. Chiu; W. Setiawan; K. Wooley-Brown; S. Blatt; M. Greiner Site-Resolved Imaging of Fermionic 6 Li in an Optical Lattice, Phys. Rev. Lett., Volume 114 (2015) no. 21, 213002, 043601 | DOI

[48] A. L. Gaunt; T. F. Schmidutz; I. Gotlibovych; R. P. Smith; Z. Hadzibabic Bose–Einstein condensation of atoms in a uniform potential, Phys. Rev. Lett., Volume 110 (2013) no. 20, 200406, 063636 | DOI

[49] B. Mukherjee; Z. Yan; P. B. Patel; Z. Hadzibabic; T. Yefsah; J. Struck; M. W. Zwierlein Homogeneous Atomic Fermi Gases, Phys. Rev. Lett., Volume 118 (2017) no. 12, 123401, 021601 | DOI

[50] Ph. Zupancic; Ph. M. Preiss; R. Ma; A. Lukin; M. E. Tai; M. Rispoli; R. Islam; M. Greiner Ultra-precise holographic beam shaping for microscopic quantum control, Opt. Express, Volume 24 (2016) no. 13, 115302, pp. 13881-13893 | DOI

[51] R. J. Fletcher; A. Shaffer; C. C. Wilson; P. B. Patel; Z. Yan; V. Crépel; B. Mukherjee; M. W. Zwierlein Geometric squeezing into the lowest Landau level, Science, Volume 372 (2021) no. 6548, 013622, pp. 1318-1322 | DOI

[52] R. Yao; S. Chi; B. Mukherjee; A. Shaffer; M. Zwierlein; R. J. Fletcher Observation of chiral edge transport in a rapidly-rotating quantum gas (2023), 063631 (preprint, https://arxiv.org/abs/2304.10468) | DOI

[53] M. A. Baranov; K. Osterloh; M. Lewenstein Fractional quantum Hall states in ultracold rapidly rotating dipolar Fermi gases, Phys. Rev. Lett., Volume 94 (2005) no. 7, 070404, 053617 | DOI

[54] N. R. Cooper; J. Dalibard Reaching fractional quantum Hall states with optical flux lattices, Phys. Rev. Lett., Volume 110 (2013) no. 18, 185301, 063605 | DOI

[55] M. Roncaglia; M. Rizzi; J. Dalibard From rotating atomic rings to quantum Hall states, Sci. Rep., Volume 1 (2011) no. 1, 43, 051602 | DOI

[56] V. Crépel; N. Regnault; B. Estienne Matrix product state description and gaplessness of the Haldane–Rezayi state, Phys. Rev. B, Volume 100 (2019) no. 12, 125128, 043640 | DOI

[57] B. Paredes; P. Zoller; J. I. Cirac Fractional quantum Hall regime of a gas of ultracold atoms, Solid State Comm., Volume 127 (2003) no. 2, 023320, pp. 155-162 | DOI

[58] J. Léonard; S. Kim; J. Kwan; P. Segura; F. Grusdt; C. Repellin; N. Goldman; M. Greiner Realization of a fractional quantum Hall state with ultracold atoms, Nature (2023), pp. 1-5 | DOI

[59] F. D. M. Haldane Geometrical Description of the Fractional Quantum Hall Effect, Phys. Rev. Lett., Volume 107 (2011) no. 11, 116801 | DOI

[60] H. A. Fertig; B. I. Halperin Transmission coefficient of an electron through a saddle-point potential in a magnetic field, Phys. Rev. B, Volume 36 (1987) no. 15, p. 7969 | DOI

[61] D. Tong Lectures on the quantum Hall effect (2016) (preprint https://arxiv.org/abs/1606.06687) | DOI

[62] H. K. Onnes Nieuwe bewijzen voor de aswenteling der aarde, 1, Wolters, 1879 | DOI

[63] G. B. Airy On the Vibration of a Free Pendulum in an Oval differing little from a Straight Line, Memoirs of the Royal Astronomical Society, Volume 20 (1851), 026704, pp. 121-130 | DOI

[64] R.-Z. Qiu; F. D. M. Haldane; Xin Wan; Kun Yang; Su Yi Model anisotropic quantum Hall states, Phys. Rev. B, Volume 85 (2012) no. 11, 115308, 013302 | DOI

[65] B. Yang; Z.-X. Hu; C. H. Lee; Z. Papić Generalized Pseudopotentials for the Anisotropic Fractional Quantum Hall Effect, Phys. Rev. Lett., Volume 118 (2017) no. 14, 146403, 033626 | DOI

[66] B. Yang; Z. Papić; E. H. Rezayi; R. N. Bhatt; F. D. M. Haldane Band mass anisotropy and the intrinsic metric of fractional quantum Hall systems, Phys. Rev. B, Volume 85 (2012) no. 16, 165318 | DOI

[67] N. Regnault; J. Maciejko; S. A. Kivelson; S. L. Sondhi Evidence of a fractional quantum Hall nematic phase in a microscopic model, Phys. Rev. B, Volume 96 (2017) no. 3, 035150, 053615 | DOI

[68] B. Estienne; N. Regnault; V. Crépel Ideal Chern bands are Landau levels in curved space (2023), 063620 (preprint, https://arxiv.org/abs/2304.01251) | DOI

[69] F. Dalfovo; S. Giorgini; L. P. Pitaevskii; S. Stringari Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys., Volume 71 (1999) no. 3, 053607, pp. 463-512 | DOI

[70] Z. Hadzibabic; J. Dalibard Two-dimensional Bose fluids: An atomic physics perspective, Riv. Nuovo Cim., Volume 34 (2011), 023622, pp. 389-434 | DOI

[71] D. S. Petrov; M. Holzmann; G. V. Shlyapnikov Bose–Einstein Condensation in Quasi-2D Trapped Gases, Phys. Rev. Lett., Volume 84 (2000) no. 12, pp. 2551-2555 | DOI

[72] P. A. Ruprecht; M. J. Holland; K. Burnett; M. Edwards Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms, Phys. Rev. A, Volume 51 (1995) no. 6, 053615, pp. 4704-4711 | DOI

[73] C. M. Dion; E. Cances Spectral method for the time-dependent Gross–Pitaevskii equation with a harmonic trap, Phys. Rev. E, Volume 67 (2003) no. 4, 046706, S1 | DOI

[74] W. Bao; Y. Cai Mathematical Theory and Numerical Methods for Bose–Einstein Condensation, Kinet. Relat. Models, Volume 6 (2013) no. 1, 043619 | DOI

[75] A. L. Fetter Lowest-Landau-level description of a Bose–Einstein condensate in a rapidly rotating anisotropic trap, Phys. Rev. A, Volume 75 (2007) no. 1, 013620 | DOI

[76] M. Ö. Oktel Vortex lattice of a Bose–Einstein condensate in a rotating anisotropic trap, Phys. Rev. A, Volume 69 (2004) no. 2, 023618 | DOI

Cité par Sources :

Commentaires - Politique