[Compression géométrique d’un gaz quantique en rotation vers le niveau de Landau fondamental]
La simulation de la physique de Hall à l’aide d’un gaz quantique en rotation se renouvelle grâce à de récentes avancées expérimentales qui ont permis l’observation d’un condensat de Bose–Einstein entièrement contenu dans le niveau de Landau fondamental. Nous décrivons ici ce résultat expérimental d’un point de vue théorique, et donnons une interprétation en termes de compression du degré de liberté géométrique du système, la métrique des centres de dérive. Cette « compression géométrique » offre un contrôle expérimental sans précédent sur la géométrie quantique des systèmes analogues aux niveaux de Landau, et ouvre une nouvelle voie vers la création de phases quantiques corrélées similaires aux états de Hall avec des atomes ultra-froids.
The simulation of quantum Hall physics with rotating quantum gases is witnessing a revival due to recent experimental advances that enabled the observation of a Bose–Einstein condensate entirely contained in its lowest kinetic energy state, i.e. the lowest Landau level. We theoretically describe this experimental result, and show that it can be interpreted as a squeezing of the geometric degree of freedom of the problem, the guiding center metric. This “geometric squeezing” offers an unprecedented experimental control over the quantum geometry in Landau-level analogues, and at the same time opens a realistic path towards achieving correlated quantum phases akin to quantum Hall states with neutral atoms.
Révisé le :
Accepté le :
Première publication :
Publié le :
Mot clés : atomes ultra-froids, gaz quantique en rotation, simulation quantique
Valentin Crépel 1 ; Ruixiao Yao 2 ; Biswaroop Mukherjee 2 ; Richard Fletcher 2 ; Martin Zwierlein 2
@article{CRPHYS_2023__24_S3_241_0, author = {Valentin Cr\'epel and Ruixiao Yao and Biswaroop Mukherjee and Richard Fletcher and Martin Zwierlein}, title = {Geometric squeezing of rotating quantum gases into the lowest {Landau} level}, journal = {Comptes Rendus. Physique}, pages = {241--262}, publisher = {Acad\'emie des sciences, Paris}, volume = {24}, number = {S3}, year = {2023}, doi = {10.5802/crphys.173}, language = {en}, }
TY - JOUR AU - Valentin Crépel AU - Ruixiao Yao AU - Biswaroop Mukherjee AU - Richard Fletcher AU - Martin Zwierlein TI - Geometric squeezing of rotating quantum gases into the lowest Landau level JO - Comptes Rendus. Physique PY - 2023 SP - 241 EP - 262 VL - 24 IS - S3 PB - Académie des sciences, Paris DO - 10.5802/crphys.173 LA - en ID - CRPHYS_2023__24_S3_241_0 ER -
%0 Journal Article %A Valentin Crépel %A Ruixiao Yao %A Biswaroop Mukherjee %A Richard Fletcher %A Martin Zwierlein %T Geometric squeezing of rotating quantum gases into the lowest Landau level %J Comptes Rendus. Physique %D 2023 %P 241-262 %V 24 %N S3 %I Académie des sciences, Paris %R 10.5802/crphys.173 %G en %F CRPHYS_2023__24_S3_241_0
Valentin Crépel; Ruixiao Yao; Biswaroop Mukherjee; Richard Fletcher; Martin Zwierlein. Geometric squeezing of rotating quantum gases into the lowest Landau level. Comptes Rendus. Physique, Volume 24 (2023) no. S3, pp. 241-262. doi : 10.5802/crphys.173. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.173/
[1] Vortex formation in a stirred Bose–Einstein condensate, Phys. Rev. Lett., Volume 84 (2000) no. 5, p. 806 | DOI
[2] Observation of vortex lattices in Bose–Einstein condensates, Science, Volume 292 (2001) no. 5516, pp. 476-479 | DOI
[3] Observation of Long-Lived Vortex Aggregates in Rapidly Rotating Bose–Einstein Condensates, Phys. Rev. Lett., Volume 90 (2003) no. 17, 170405 | DOI
[4] Vortices and superfluidity in a strongly interacting Fermi gas, Nature, Volume 435 (2005) no. 7045, pp. 1047-1051 | DOI
[5] Dynamic instability of a rotating Bose–Einstein condensate, Phys. Rev. Lett., Volume 87 (2001) no. 19, 190402, 250402 | DOI
[6] Vortex oscillations and hydrodynamics of rotating superfluids, Rev. Mod. Phys., Volume 59 (1987) no. 1, pp. 87-155 | DOI
[7] Ground state and Tkachenko modes of a rapidly rotating Bose–Einstein condensate in the lowest-Landau-level state, Phys. Rev. A, Volume 72 (2005) no. 2, 021606 | DOI
[8] Crystallization of bosonic quantum Hall states in a rotating quantum gas, Nature, Volume 601 (2022) no. 7891, pp. 58-62 | DOI
[9] Nuclear Structure, World Scientific, 1998 | DOI
[10] Scissors mode and superfluidity of a trapped Bose–Einstein condensed gas, Phys. Rev. Lett., Volume 83 (1999) no. 22, 053602, pp. 4452-4455 | DOI
[11] Bose–Einstein Condensates in Neutron Stars, Universal Themes of Bose–Einstein Condensation (Nick P. Proukakis; David W. Snoke; Peter B. Littlewood, eds.), Cambridge University Press, 2017, 013602, pp. 573-592 | DOI
[12] Cyclotron lines in highly magnetized neutron stars, Astron. Astrophys., Volume 622 (2019), A61, 053606 | DOI
[13] Condensation of “composite bosons” in a rotating BEC, Phys. Rev. Lett., Volume 84 (2000) no. 1, 180402, pp. 6-9 | DOI
[14] Quantum phases of vortices in rotating Bose–Einstein condensates, Phys. Rev. Lett., Volume 87 (2001) no. 12, 120405, 033606 | DOI
[15] On the analogy between inertial and electromagnetic forces, Eur. J. Phys., Volume 4 (1983) no. 3, 150402, pp. 162-164 | DOI
[16] Rapidly rotating atomic gases, Adv. Phys., Volume 57 (2008) no. 6, 88, pp. 539-616 | DOI
[17] Rotating trapped Bose–Einstein condensates, Rev. Mod. Phys., Volume 81 (2009) no. 2, 053607, pp. 647-691 | DOI
[18] Quantum melting and absence of Bose–Einstein condensation in two-dimensional vortex matter, Phys. Rev. Lett., Volume 89 (2002) no. 3, 030403 | DOI
[19] Quantum Hall fractions in rotating Bose–Einstein condensates, Phys. Rev. Lett., Volume 91 (2003) no. 3, 030402 | DOI
[20] Quantum Hall fractions for spinless bosons, Phys. Rev. B, Volume 69 (2004) no. 23, 235309 | DOI
[21] Quantum Hall fractions in ultracold Fermionic vapors, Phys. Rev. B, Volume 70 (2004) no. 24, 241307 | DOI
[22] ParaFermionic states in rotating Bose–Einstein condensates, Phys. Rev. B, Volume 76 (2007) no. 23, 235324 | DOI
[23] Fast Rotation of a Bose–Einstein Condensate, Phys. Rev. Lett., Volume 92 (2004) no. 5, 050403, 035301 | DOI
[24] Rapidly Rotating Bose–Einstein Condensates in and near the Lowest Landau Level, Phys. Rev. Lett., Volume 92 (2004) no. 4, 040404 | DOI
[25] Tkachenko modes of vortex lattices in rapidly rotating Bose–Einstein condensates, Phys. Rev. Lett., Volume 91 (2003) no. 11, 110402 | DOI
[26] Measuring the condensate fraction of rapidly rotating trapped boson systems: off-diagonal order from the density profile, Phys. Rev. Lett., Volume 90 (2003) no. 12, 120401 | DOI
[27] Fast rotating condensates in an asymmetric harmonic trap, Phys. Rev. A, Volume 79 (2009) no. 1, 011603 | DOI
[28] Two-dimensional Bose–Einstein condensate under extreme rotation, Phys. Rev. Lett., Volume 94 (2005) no. 15, 150401, 100403 | DOI
[29] Bose–Einstein condensate in a uniform light-induced vector potential, Phys. Rev. Lett., Volume 102 (2009) no. 13, 130401 | DOI
[30] Synthetic magnetic fields for ultracold neutral atoms, Nature, Volume 462 (2009) no. 7273, 054304, pp. 628-632 | DOI
[31] Tunable gauge potential for neutral and spinless particles in driven optical lattices, Phys. Rev. Lett., Volume 108 (2012) no. 22, 225304, 175301 | DOI
[32] Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices, Phys. Rev. Lett., Volume 111 (2013) no. 18, 185301 | DOI
[33] Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices, Phys. Rev. Lett., Volume 111 (2013) no. 18, 185302 | DOI
[34] Synthetic gauge fields in synthetic dimensions, Phys. Rev. Lett., Volume 112 (2014) no. 4, 043001 | DOI
[35] Probing chiral edge dynamics and bulk topology of a synthetic Hall system, Nat. Phys., Volume 16 (2020) no. 10, 210403, pp. 1017-1021 | DOI
[36] Laughlin’s topological charge pump in an atomic Hall cylinder, Phys. Rev. Lett., Volume 128 (2022) no. 17, 173202, 055023 | DOI
[37] Microscopic study of the coupled-wire construction and plausible realization in spin-dependent optical lattices, Phys. Rev. B, Volume 101 (2020) no. 23, 235158, 090404 | DOI
[38] Colloquium: Artificial gauge potentials for neutral atoms, Rev. Mod. Phys., Volume 83 (2011) no. 4, 090602, pp. 1523-1543 | DOI
[39] Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys., Volume 77 (2014) no. 12, 126401, 205303 | DOI
[40] Topological bands for ultracold atoms, Rev. Mod. Phys., Volume 91 (2019) no. 1, 015005, 240604 | DOI | MR
[41] Interaction dependent heating and atom loss in a periodically driven optical lattice, Phys. Rev. Lett., Volume 119 (2017) no. 20, 200402, 023315 | DOI
[42] Quantum Hall physics with cold atoms in cylindrical optical lattices, Phys. Rev. A, Volume 93 (2016) no. 1, 013604, 250402 | DOI
[43] A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice, Nature, Volume 462 (2009) no. 7269, pp. 74-77 | DOI
[44] Single-atom-resolved fluorescence imaging of an atomic Mott insulator, Nature, Volume 467 (2010) no. 7311, 210404, pp. 68-72 | DOI
[45] Quantum-gas microscope for Fermionic atoms, Phys. Rev. Lett., Volume 114 (2015) no. 19, 193001, 043610 | DOI
[46] Single-atom imaging of Fermions in a quantum-gas microscope, Nat. Phys., Volume 11 (2015) no. 9, 043608, pp. 738-742 | DOI
[47] Site-Resolved Imaging of Fermionic in an Optical Lattice, Phys. Rev. Lett., Volume 114 (2015) no. 21, 213002, 043601 | DOI
[48] Bose–Einstein condensation of atoms in a uniform potential, Phys. Rev. Lett., Volume 110 (2013) no. 20, 200406, 063636 | DOI
[49] Homogeneous Atomic Fermi Gases, Phys. Rev. Lett., Volume 118 (2017) no. 12, 123401, 021601 | DOI
[50] Ultra-precise holographic beam shaping for microscopic quantum control, Opt. Express, Volume 24 (2016) no. 13, 115302, pp. 13881-13893 | DOI
[51] Geometric squeezing into the lowest Landau level, Science, Volume 372 (2021) no. 6548, 013622, pp. 1318-1322 | DOI
[52] Observation of chiral edge transport in a rapidly-rotating quantum gas (2023), 063631 (preprint, https://arxiv.org/abs/2304.10468) | DOI
[53] Fractional quantum Hall states in ultracold rapidly rotating dipolar Fermi gases, Phys. Rev. Lett., Volume 94 (2005) no. 7, 070404, 053617 | DOI
[54] Reaching fractional quantum Hall states with optical flux lattices, Phys. Rev. Lett., Volume 110 (2013) no. 18, 185301, 063605 | DOI
[55] From rotating atomic rings to quantum Hall states, Sci. Rep., Volume 1 (2011) no. 1, 43, 051602 | DOI
[56] Matrix product state description and gaplessness of the Haldane–Rezayi state, Phys. Rev. B, Volume 100 (2019) no. 12, 125128, 043640 | DOI
[57] Fractional quantum Hall regime of a gas of ultracold atoms, Solid State Comm., Volume 127 (2003) no. 2, 023320, pp. 155-162 | DOI
[58] Realization of a fractional quantum Hall state with ultracold atoms, Nature (2023), pp. 1-5 | DOI
[59] Geometrical Description of the Fractional Quantum Hall Effect, Phys. Rev. Lett., Volume 107 (2011) no. 11, 116801 | DOI
[60] Transmission coefficient of an electron through a saddle-point potential in a magnetic field, Phys. Rev. B, Volume 36 (1987) no. 15, p. 7969 | DOI
[61] Lectures on the quantum Hall effect (2016) (preprint https://arxiv.org/abs/1606.06687) | DOI
[62] Nieuwe bewijzen voor de aswenteling der aarde, 1, Wolters, 1879 | DOI
[63] On the Vibration of a Free Pendulum in an Oval differing little from a Straight Line, Memoirs of the Royal Astronomical Society, Volume 20 (1851), 026704, pp. 121-130 | DOI
[64] Model anisotropic quantum Hall states, Phys. Rev. B, Volume 85 (2012) no. 11, 115308, 013302 | DOI
[65] Generalized Pseudopotentials for the Anisotropic Fractional Quantum Hall Effect, Phys. Rev. Lett., Volume 118 (2017) no. 14, 146403, 033626 | DOI
[66] Band mass anisotropy and the intrinsic metric of fractional quantum Hall systems, Phys. Rev. B, Volume 85 (2012) no. 16, 165318 | DOI
[67] Evidence of a fractional quantum Hall nematic phase in a microscopic model, Phys. Rev. B, Volume 96 (2017) no. 3, 035150, 053615 | DOI
[68] Ideal Chern bands are Landau levels in curved space (2023), 063620 (preprint, https://arxiv.org/abs/2304.01251) | DOI
[69] Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys., Volume 71 (1999) no. 3, 053607, pp. 463-512 | DOI
[70] Two-dimensional Bose fluids: An atomic physics perspective, Riv. Nuovo Cim., Volume 34 (2011), 023622, pp. 389-434 | DOI
[71] Bose–Einstein Condensation in Quasi-2D Trapped Gases, Phys. Rev. Lett., Volume 84 (2000) no. 12, pp. 2551-2555 | DOI
[72] Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms, Phys. Rev. A, Volume 51 (1995) no. 6, 053615, pp. 4704-4711 | DOI
[73] Spectral method for the time-dependent Gross–Pitaevskii equation with a harmonic trap, Phys. Rev. E, Volume 67 (2003) no. 4, 046706, S1 | DOI
[74] Mathematical Theory and Numerical Methods for Bose–Einstein Condensation, Kinet. Relat. Models, Volume 6 (2013) no. 1, 043619 | DOI
[75] Lowest-Landau-level description of a Bose–Einstein condensate in a rapidly rotating anisotropic trap, Phys. Rev. A, Volume 75 (2007) no. 1, 013620 | DOI
[76] Vortex lattice of a Bose–Einstein condensate in a rotating anisotropic trap, Phys. Rev. A, Volume 69 (2004) no. 2, 023618 | DOI
Cité par Sources :
Commentaires - Politique