Comptes Rendus
Research article
Left- versus right-handed badminton slice shots: opposite spinning of the chiral shuttlecock and Magnus effect
Comptes Rendus. Physique, Volume 25 (2024), pp. 1-15.

The chiral nature of a badminton shuttlecock is responsible for its counter-clockwise spinning as it naturally propagates through the air. This induces a dissymmetry between left- and right-handed players and the resulting trajectories of the shuttlecock, which were captured in real condition on the badminton court in slow motion at 3700 fps. The videos clearly evidence this dissymmetry as slice shots performed by right-handers induce a natural counter-clockwise spinning, while the ones performed by left-handers induce a clockwise to counter-clockwise spinning, making trajectories of shuttlecocks different. The slow motion videos also caught a brief Magnus effect, often neglected in badminton, lifting up the shuttlecock for both left-handers and left-handers and affecting the effectiveness of the slice shot.

La nature chirale du volant de badminton est responsable de sa rotation antihoraire lorsqu’il se propage naturellement dans l’air. Cela induit une dissymétrie entre joueurs gauchers et droitiers et les trajectoires du volant qui en résultent, capturées en conditions réelles sur le terrain de badminton en slow motion à 3700 ips. Les vidéos mettent clairement en évidence cette dissymétrie puisque les slices effectués par les droitiers induisent une rotation antihoraire naturelle, tandis que ceux effectués par les gauchers induisent une rotation d’horaire à antihoraire, rendant les trajectoires de volants différentes. Les vidéos ont également mis en évidence un bref effet Magnus, souvent négligé au badminton, soulevant le volant pour les gauchers comme les droitiers et affectant l’efficacité du slice.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crphys.174
Keywords: Physics of badminton, Magnus effect, Symmetry, Chirality, Badminton trajectory, Time- resolved
Mot clés : Physique du badminton, Effet Magnus, Symétrie, Chiralité, Trajectoires au badminton, Temps résolu

Eric Collet 1, 2, 3

1 Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
2 DYNACOM IRL2015 University of Tokyo - CNRS - UR1, Department of Chemistry, 7-3-1 Hongo, Tokyo 113-0033, Japan
3 Institut universitaire de France (IUF), France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2024__25_G1_1_0,
     author = {Eric Collet},
     title = {Left- versus right-handed badminton slice shots: opposite spinning of the chiral shuttlecock and {Magnus} effect},
     journal = {Comptes Rendus. Physique},
     pages = {1--15},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {25},
     year = {2024},
     doi = {10.5802/crphys.174},
     language = {en},
}
TY  - JOUR
AU  - Eric Collet
TI  - Left- versus right-handed badminton slice shots: opposite spinning of the chiral shuttlecock and Magnus effect
JO  - Comptes Rendus. Physique
PY  - 2024
SP  - 1
EP  - 15
VL  - 25
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.174
LA  - en
ID  - CRPHYS_2024__25_G1_1_0
ER  - 
%0 Journal Article
%A Eric Collet
%T Left- versus right-handed badminton slice shots: opposite spinning of the chiral shuttlecock and Magnus effect
%J Comptes Rendus. Physique
%D 2024
%P 1-15
%V 25
%I Académie des sciences, Paris
%R 10.5802/crphys.174
%G en
%F CRPHYS_2024__25_G1_1_0
Eric Collet. Left- versus right-handed badminton slice shots: opposite spinning of the chiral shuttlecock and Magnus effect. Comptes Rendus. Physique, Volume 25 (2024), pp. 1-15. doi : 10.5802/crphys.174. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.174/

[1] M. Phomsoupha; G. Laffaye The science of badminton: game characteristics, anthropometry, physiology, visual fitness and biomechanics, Sports Med., Volume 45 (2015), pp. 473-495 | DOI

[2] A. E. Flatt Is being left-handed a handicap? The short and useless answer is “yes and no.”, Proc. (Bayl. Univ. Med. Cent.), Volume 21 (2008), pp. 304-307 | DOI

[3] IUCr International Tables for Crystallography, Volume A: Space Group Symmetry, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002

[4] J. E. Morgan The Design and Development of a Shuttlecock Hitting Machine for Training Badminton Players at all Levels of the Game, CRC Press, London, 1996

[5] S. Kitta; H. Hasegawa; M. Murakami; S. Obayashi Aerodynamic properties of a shuttlecock with spin at high Reynolds number, Procedia Eng., Volume 13 (2011), pp. 271-277 | DOI

[6] C. M. Chan; J. S. Rossmann Badminton shuttlecock aerodynamics: synthesizing experiment and theory, Sports Eng., Volume 15 (2012), pp. 61-71 | DOI

[7] A. Verma; A. Desai; S. Mittal Aerodynamics of badminton shuttlecocks, J. Fluids Struct., Volume 41 (2013), pp. 89-98 | DOI

[8] C. Cohen; B. D. Texier; D. Quéré; C. Clanet The physics of badminton, New J. Phys., Volume 17 (2015), 063001 | DOI | Zbl

[9] R. C. Mehta Aerodynamics of sport balls, badminton shuttlecock and javelin, Sch. J. Eng. Tech., Volume 11 (2023), pp. 4-16 | DOI

[10] L.-M. Chen; Y.-H. Pan; Y.-J. Chen A study of shuttlecock’s trajectory in badminton, J. Sports Sci. Med., Volume 8 (2009) no. 4, pp. 657-662

[11] B. D. Texier; C. Cohen; D. Quéré; C. Claneta Shuttlecock dynamics, Procedia Eng., Volume 34 (2012), pp. 176-181 | DOI

[12] J. E. Goff A review of recent research into aerodynamics of sport projectiles, Sports Eng., Volume 16 (2013), pp. 137-154 | DOI

[13] G. Magnus Ueber die Abweichung der Geschosse, und: Ueber eine auffallende Erscheinung bei rotirenden Körpern, Ann. Phys. Berlin, Volume 164 (1853), pp. 1-29 | DOI

[14] M. A. González Hernández Aerodynamics performances in sports, 34 International Conference of Biomechanics in Sport, 2016 (https://ojs.ub.uni-konstanz.de/cpa/article/view/692)

[15] B. D. Texier; C. Cohen; D. Quéré; C. Clanet Physics of knuckleballs, New J. Phys., Volume 18 (2016), 073027 | DOI

[16] A. J. Cooke Shuttlecock aerodynamics, Sports Eng., Volume 2 (1999), pp. 85-96 | DOI

[17] N. Johnson; E. J. Chae 2D aerodynamic analysis of a badminton shuttle for re-entry vehicle applications, Active and Passive Smart Structures and Integrated Systems XIV, Volume 11376, 2020, p. 15 | DOI

[18] C. Cohen; B. Darbois Texier; D. Quéré; C. Clanet Physics of badminton shuttlecocks. Part 1: aerodynamics, 64th Annual Meeting of the APS Division of Fluid Dynamics, Volume 56, 2011, 18 (Abstract ID: BAPS.2011.DFD.M10.8)

[19] M. Phomsoupha; G. Laffaye Shuttlecock velocity during a smash stroke in badminton evolves linearly with skill level, Comput. Methods Biomech. Biomedical Eng., Volume 17 (2014), pp. 140-141 | DOI

[20] M. Hubbard; A. Cooke Spin dynamics of the badminton shuttlecock, 6th International Symposium on Computer Simulation in Biomechanics, 1997, pp. 42-43

[21] A. Cooke Computer simulation of shuttlecock trajectories, Sports Eng., Volume 5 (2002), pp. 93-105 | DOI

[22] V. Kaushik Unique flight features of shuttlecock, Int. Res. J. Eng. Technol., Volume 4 (2017), pp. 521-525

[23] E. Collet “video 1a”, video, Zenodo (8 January 8, 2024), https://doi.org/10.5281/zenodo.10469558

[24] E. Collet “video 1b”, video, Zenodo (8 January 8, 2024), https://doi.org/10.5281/zenodo.10469558

[25] C. S. H. Lin; C. K. Chua; J. H. Yeo Turnover stability of shuttlecocks – transient angular response and impact deformation of feather and synthetic shuttlecocks, Procedia Eng., Volume 60 (2013), pp. 106-111 | DOI

[26] H. T. Lemke; K. S. Kjær; R. Hartsock; T. Brandt van Driel; M. Chollet; J. M. Glownia; S. Song; D. Zhu; E. Pace; S. F. Matar; M. N. Nielsen; M. Benfatto; K. J. Gaffney; E. Collet; M. Cammarata Coherent structural trapping through wave packet dispersion during photoinduced spin state switching, Nat. Commun., Volume 8 (2017), 15342 | DOI

[27] S. Zerdane; L. Wilbraham; M. Cammarata; O. Iasco; E. Rivière; M. L. Boillot; I. Ciofini; E. Collet Comparison of structural dynamics and coherence of d–d and MLCT light-induced spin state trapping, Chem. Sci., Volume 8 (2017), pp. 4978-4986 | DOI

[28] M. Cammarata; R. Bertoni; M. Lorenc; H. Cailleau; S. Di Matteo; C. Mauriac; S. F. Matar; H. Lemke; M. Chollet; S. Ravy; C. Laulhe; J. F. Létard; E. Collet Sequential activation of molecular breathing and bending during spin-crossover photoswitching revealed by femtosecond optical and x-ray absorption spectroscopy, Phys. Rev. Lett., Volume 113 (2014), 227402 | DOI

[29] E. Collet “video 2a”, video, Zenodo (8 January 8, 2024), https://doi.org/10.5281/zenodo.10469558

[30] E. Collet “video 2b”, video, Zenodo (8 January 8, 2024), https://doi.org/10.5281/zenodo.10469558

[31] E. Collet “video 2c”, video, Zenodo (8 January 8, 2024), https://doi.org/10.5281/zenodo.10469558

[32] E. Collet “video 3a”, video, Zenodo (8 January 8, 2024), https://doi.org/10.5281/zenodo.10469558

[33] E. Collet “video 3b”, video, Zenodo (8 January 8, 2024), https://doi.org/10.5281/zenodo.10469558

[34] E. Collet “video 4a”, video, Zenodo (8 January 8, 2024), https://doi.org/10.5281/zenodo.10469558

[35] E. Collet “video 4b”, video, Zenodo (8 January 8, 2024), https://doi.org/10.5281/zenodo.10469558

[36] E. Collet “video 5a”, video, Zenodo (8 January 8, 2024), https://doi.org/10.5281/zenodo.10469558

[37] H. Hasegawa; S. Kitta; M. Murakami; S. Obayashi Flow analysis and aerodynamic characteristics of a badminton shuttlecock with spin at high Reynolds numbers, Sports Eng., Volume 16 (2013), pp. 91-98 | DOI

[38] E. Collet “video 5b”, video, Zenodo (8 January 8, 2024), https://doi.org/10.5281/zenodo.10469558

[39] E. Collet “video 6”, video, Zenodo (8 January 8, 2024), https://doi.org/10.5281/zenodo.10469558

Cited by Sources:

Comments - Policy