Comptes Rendus
Research article
Towards analogue black hole merger
Comptes Rendus. Physique, Online first (2024), pp. 1-16.

We study the effects of the wavevector-dependent losses on polariton condensates. We demonstrate that because of these losses, a single vortex becomes a center of a convergent flow, which allows describing it by an analogue Kerr black hole metric with a dynamically evolving origin. For a pair of vortices, we find an analogue of the 3rd Kepler’s law and estimate the emission rate of the gravitational waves. We simulate an analogue of the inspiral phase of a black hole merger. Our work therefore suggests that polariton condensates with quantum vortices represent a setting with a fully self-consistent dynamical metric for broad analogue studies.

Nous étudions les effets des pertes dépendantes du vecteur d’onde sur les condensats de polaritons. Nous démontrons qu’à cause de ces pertes, un vortex unique devient le centre d’un flux convergent, ce qui permet de le décrire par une métrique de Kerr analogue à celle d’un trou noir, avec une origine évoluant dynamiquement. Pour une paire de vortex, nous trouvons un analogue de la 3ème loi de Kepler et estimons le taux d’émission des ondes gravitationnelles. Nous simulons un analogue de la phase d’inspiral se produisant lors d’une fusion de trous noirs. Notre travail suggère donc que les condensats de polaritons avec des vortex quantiques permettent de simuler une métrique dynamique entièrement auto-consistante, ce qui pourra permettre d’étudier de larges classes de problèmes.

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/crphys.178

Dmitry Solnyshkov 1, 2; Ismaël Septembre 1; Guillaume Malpuech 1

1 Institut Pascal, PHOTON-N2, Université Clermont Auvergne, CNRS, Clermont INP, F-63000 Clermont-Ferrand, France.
2 Institut Universitaire de France (IUF), F-75231 Paris, France.
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2024__25_S2_A3_0,
     author = {Dmitry Solnyshkov and Isma\"el Septembre and Guillaume Malpuech},
     title = {Towards analogue black hole merger},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2024},
     doi = {10.5802/crphys.178},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Dmitry Solnyshkov
AU  - Ismaël Septembre
AU  - Guillaume Malpuech
TI  - Towards analogue black hole merger
JO  - Comptes Rendus. Physique
PY  - 2024
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.178
LA  - en
ID  - CRPHYS_2024__25_S2_A3_0
ER  - 
%0 Journal Article
%A Dmitry Solnyshkov
%A Ismaël Septembre
%A Guillaume Malpuech
%T Towards analogue black hole merger
%J Comptes Rendus. Physique
%D 2024
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.178
%G en
%F CRPHYS_2024__25_S2_A3_0
Dmitry Solnyshkov; Ismaël Septembre; Guillaume Malpuech. Towards analogue black hole merger. Comptes Rendus. Physique, Online first (2024), pp. 1-16. doi : 10.5802/crphys.178.

[1] P. W. Anderson Plasmons, Gauge Invariance, and Mass, Phys. Rev., Volume 130 (1963) no. 1, pp. 439-442 | DOI

[2] M. I. Katsnelson; K. S. Novoselov; A. K. Geim Chiral tunneling and the Klein paradox in graphene, Nat. Phys., Volume 2 (2006), pp. 620-625 | DOI

[3] B. Huard; J. A. Sulpizio; N. Stander; K. Todd; B. Yang; D. Goldhaber-Gordon Transport Measurements Across a Tunable Potential Barrier in Graphene, Phys. Rev. Lett., Volume 98 (2007) no. 23, 236803 | DOI

[4] N. Stander; B. Huard; D. Goldhaber-Gordon Evidence for Klein Tunneling in Graphene p-n Junctions, Phys. Rev. Lett., Volume 102 (2009) no. 2, 026807 | DOI

[5] O. Klein Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac, Z. Phys., Volume 53 (1929), pp. 157-165 | DOI

[6] C. Barceló; S. Liberati; M. Visser Analogue Gravity, Living Rev. Relativ., Volume 8 (2005) no. 1, 12 | DOI

[7] C. Barceló Analogue black-hole horizons, Nat. Phys., Volume 15 (2018), pp. 210-213 | DOI

[8] W. G. Unruh Experimental Black-Hole Evaporation?, Phys. Rev. Lett., Volume 46 (1981) no. 21, pp. 1351-1353 | DOI

[9] S. W. Hawking Black hole explosions?, Nature, Volume 248 (1974), pp. 30-31 | DOI

[10] S. Weinfurtner; E. W. Tedford; M. C. J. Penrice; W. G. Unruh; G. A. Lawrence Measurement of Stimulated Hawking Emission in an Analogue System, Phys. Rev. Lett., Volume 106 (2011) no. 2, 021302 | DOI

[11] J. Steinhauer Observation of self-amplifying Hawking radiation in an analogue black-hole laser, Nat. Phys., Volume 10 (2014), p. 864 | DOI

[12] L. J. Garay; J. R. Anglin; J. I. Cirac; P. Zoller Sonic Analog of Gravitational Black Holes in Bose–Einstein Condensates, Phys. Rev. Lett., Volume 85 (2000) no. 22, pp. 4643-4647 | DOI

[13] G. Rousseaux; Ch. Mathis; Ph. Maïssa; Th. G. Philbin; U. Leonhardt Observation of negative-frequency waves in a water tank: a classical analogue to the Hawking effect?, New J. Phys., Volume 10 (2008) no. 5, 053015 | DOI

[14] Th. Torres; S. Patrick; A. Coutant; M. Richartz; E. W. Tedford; S. Weinfurtner Rotational superradiant scattering in a vortex flow, Nat. Phys., Volume 13 (2017), pp. 833-836 | DOI

[15] P. Švančara; P. Smaniotto; L. Solidoro; J. F. MacDonald; S. Patrick; R. Gregory; C. F. Barenghi; S. Weinfurtner Exploring the Quantum-to-Classical Vortex Flow: Quantum Field Theory Dynamics on Rotating Curved Spacetimes (2023) (eprint, arXiv:2308.10773) | DOI

[16] O. Lahav; A. Itah; A. Blumkin; C. Gordon; S. Rinott; A. Zayats; J. Steinhauer Realization of a Sonic Black Hole Analog in a Bose–Einstein Condensate, Phys. Rev. Lett., Volume 105 (2010) no. 24, 240401 | DOI

[17] S. Robertson; R. Parentani Hawking radiation in the presence of high-momentum dissipation, Phys. Rev. D, Volume 92 (2015) no. 4, 044043 | DOI

[18] J. Kasprzak; M. Richard; S. Kundermann; A. Baas; P. Jeambrun; J. M. J. Keeling; F. M. Marchetti; M. H. Szymańska; R. André; J. L. Staehli et al. Bose–Einstein condensation of exciton polaritons, Nature, Volume 443 (2006) no. 7110, pp. 409-414 | DOI

[19] A. V. Kavokin; J. J. Baumberg; G. Malpuech; F. P. Laussy Microcavities, Oxford University Press, 2011

[20] I. Carusotto; C. Ciuti Quantum fluids of light, Rev. Mod. Phys., Volume 85 (2013) no. 1, pp. 299-366 | DOI

[21] A. Amo; J. Lefrère; S. Pigeon; C. Adrados; C. Ciuti; I. Carusotto; R. Houdré; E. Giacobino; A. Bramati Superfluidity of polaritons in semiconductor microcavities, Nat. Phys., Volume 5 (2009) no. 11, pp. 805-810 | DOI

[22] K. G. Lagoudakis; M. Wouters; M. Richard; A. Baas; I. Carusotto; R. André; L. S. Dang; B. Deveaud-Plédran Quantized vortices in an exciton–polariton condensate, Nat. Phys., Volume 4 (2008) no. 9, pp. 706-710 | DOI

[23] J. Levrat; R. Butté; E. Feltin; J.-F. Carlin; N. Grandjean; D. D. Solnyshkov; G. Malpuech Condensation phase diagram of cavity polaritons in GaN-based microcavities: Experiment and theory, Phys. Rev. B, Volume 81 (2010) no. 12, 125305 | DOI

[24] B. Nelsen; G. Liu; M. Steger; D. W. Snoke; R. Balili; K. W. West; L. N. Pfeiffer Dissipationless flow and sharp threshold of a polariton condensate with long lifetime, Phys. Rev. X, Volume 3 (2013) no. 4, 041015 | DOI

[25] A. Gianfrate; O. Bleu; L. Dominici; V. Ardizzone; M. De Giorgi; D. Ballarini; G. Lerario; K. W. West; L. N. Pfeiffer; D. D. Solnyshkov et al. Measurement of the quantum geometric tensor and of the anomalous Hall drift, Nature, Volume 578 (2020) no. 7795, pp. 381-385 | DOI

[26] J. Kasprzak; D. D. Solnyshkov; R. André; L. S. Dang; G. Malpuech Formation of an exciton polariton condensate: thermodynamic versus kinetic regimes, Phys. Rev. Lett., Volume 101 (2008) no. 14, 146404 | DOI

[27] D. D. Solnyshkov; H. Flayac; G. Malpuech Black holes and wormholes in spinor polariton condensates, Phys. Rev. B, Volume 84 (2011) no. 23, 233405 | DOI

[28] D. Gerace; I. Carusotto Analog Hawking radiation from an acoustic black hole in a flowing polariton superfluid, Phys. Rev. B, Volume 86 (2012) no. 14, 144505 | DOI

[29] H. S. Nguyen; D. Gerace; I. Carusotto; D. Sanvitto; E. Galopin; A. Lemaître; I. Sagnes; J. Bloch; A. Amo Acoustic Black Hole in a Stationary Hydrodynamic Flow of Microcavity Polaritons, Phys. Rev. Lett., Volume 114 (2015) no. 3, 036402 | DOI

[30] Th. Boulier; M. J. Jacquet; A. Maître; G. Lerario; F. Claude; S. Pigeon; Q. Glorieux; A. Amo; J. Bloch; A. Bramati et al. Microcavity polaritons for quantum simulation, Adv. Quantum Technol., Volume 3 (2020) no. 11, 2000052 | DOI

[31] M. J. Jacquet; Th. Boulier; F. Claude; A. Maître; E. Cancellieri; C. Adrados; A. Amo; S. Pigeon; Q. Glorieux; A. Bramati et al. Polariton fluids for analogue gravity physics, Philos. Trans. R. Soc. Lond., Ser. A, Volume 378 (2020) no. 2177, 20190225 | DOI

[32] M. J. Jacquet; M. Joly; F. Claude; L. Giacomelli; Q. Glorieux; A. Bramati; I. Carusotto; E. Giacobino Analogue quantum simulation of the Hawking effect in a polariton superfluid, Eur. Phys. J. D, Atomic Mol. Opt. Plasma Phys., Volume 76 (2022) no. 8, p. 152 | DOI

[33] F. Claude; M. J. Jacquet; I. Carusotto; Q. Glorieux; E. Giacobino; A. Bramati Spectrum of collective excitations of a quantum fluid of polaritons, Phys. Rev. B, Volume 107 (2023) no. 17, 174507 | DOI

[34] I. Zapata; M. Albert; R. Parentani; F. Sols Resonant Hawking radiation in Bose–Einstein condensates, New J. Phys., Volume 13 (2011) no. 6, 063048 | DOI

[35] I. Septembre; D. D. Solnyshkov; G. Malpuech Angle-dependent Andreev reflection at an interface with a polaritonic superfluid, Phys. Rev. B, Volume 108 (2023) no. 11, 115309 | DOI

[36] G. Nardin; G. Grosso; Y. Leger; B. Pietka; F. Morier-Genoud; B. Deveaud-Plédran Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid, Nature Phys., Volume 7 (2011) no. 8, pp. 635-641 | DOI

[37] K. G. Lagoudakis; F. Manni; B. Pietka; M. Wouters; T. C. H. Liew; V. Savona; A. V. Kavokin; R. André; B. Deveaud-Plédran Probing the dynamics of spontaneous quantum vortices in polariton superfluids, Phys. Rev. Lett., Volume 106 (2011) no. 11, 115301 | DOI

[38] F. Manni; T. C. H. Liew; K. G. Lagoudakis; C. Ouellet-Plamondon; R. André; V. Savona; B. Deveaud Spontaneous self-ordered states of vortex-antivortex pairs in a polariton condensate, Phys. Rev. B, Volume 88 (2013) no. 20, 201303 | DOI

[39] I. Gnusov; S. Harrison; S. Alyatkin; K. Sitnik; J. Töpfer; H. Sigurdsson; P. Lagoudakis Quantum vortex formation in the “rotating bucket” experiment with polariton condensates, Sci. adv., Volume 9 (2023) no. 4, eadd1299 | DOI

[40] M. Ch. Braidotti; D. Faccio; E. M. Wright Penrose Superradiance in Nonlinear Optics, Phys. Rev. Lett., Volume 125 (2020) no. 19, 193902 | DOI

[41] M. Ch. Braidotti; R. Prizia; C. Maitland; F. Marino; A. Prain; I. Starshynov; N. Westerberg; E. M. Wright; D. Faccio Measurement of Penrose Superradiance in a Photon Superfluid, Phys. Rev. Lett., Volume 128 (2022) no. 1, 013901 | DOI

[42] S. Eckel; A. Kumar; T. Jacobson; I. B. Spielman; G. K. Campbell A Rapidly Expanding Bose–Einstein Condensate: An Expanding Universe in the Lab, Phys. Rev. X, Volume 8 (2018) no. 2, 021021 | DOI

[43] S. Banik; M. Gutierrez Galan; H. Sosa-Martinez; M. J. Anderson; S. Eckel; I. B. Spielman; G. K. Campbell Accurate Determination of Hubble Attenuation and Amplification in Expanding and Contracting Cold-Atom Universes, Phys. Rev. Lett., Volume 128 (2022) no. 9, 090401 | DOI

[44] U. R. Fischer; R. Schützhold Quantum simulation of cosmic inflation in two-component Bose–Einstein condensates, Phys. Rev. A, Volume 70 (2004) no. 6, 063615 | DOI

[45] S. Butera; I. Carusotto Numerical Studies of Back Reaction Effects in an Analog Model of Cosmological Preheating, Phys. Rev. Lett., Volume 130 (2023) no. 24, 241501 | DOI

[46] S. Patrick; A. Coutant; M. Richartz; S. Weinfurtner Black Hole Quasibound States from a Draining Bathtub Vortex Flow, Phys. Rev. Lett., Volume 121 (2018) no. 6, 061101 | DOI

[47] R. Schützhold; M. Uhlmann; Y. Xu; U. R. Fischer Quantum backreaction in dilute Bose–Einstein condensates, Phys. Rev. D, Volume 72 (2005) no. 10, 105005 | DOI

[48] R. Balbinot; S. Fagnocchi; A. Fabbri Quantum effects in acoustic black holes: The backreaction, Phys. Rev. D, Volume 71 (2005) no. 6, 064019 | DOI

[49] S. Liberati; G. Tricella; A. Trombettoni Back-reaction in canonical analogue black holes, Appl. Sci. (Switz.), Volume 10 (2020) no. 24, 8868 | DOI

[50] S. Patrick; H. Goodhew; C. Gooding; S. Weinfurtner Backreaction in an Analogue Black Hole Experiment, Phys. Rev. Lett., Volume 126 (2021) no. 4, 041105 | DOI

[51] D. D. Solnyshkov; C. Leblanc; S. V. Koniakhin; O. Bleu; G. Malpuech Quantum analogue of a Kerr black hole and the Penrose effect in a Bose–Einstein condensate, Phys. Rev. B, Volume 99 (2019) no. 21, 214511 | DOI

[52] C. Barceló; S. Liberati; M. Visser Analogue gravity from field theory normal modes?, Class. Quant. Grav., Volume 18 (2001) no. 17, p. 3595 | DOI

[53] S. Liberati; M. Visser; S. Weinfurtner Naturalness in an Emergent Analogue Spacetime, Phys. Rev. Lett., Volume 96 (2006) no. 15, 151301 | DOI

[54] S. Liberati Analogue gravity models of emergent gravity: lessons and pitfalls, J. Phys.: Conf. Ser., Volume 880 (2017) no. 1, 012009 | DOI

[55] B. P. Abbott; R. Abbott; T. D. Abbott; M. R. Abernathy; F. Acernese; K. Ackley; C. Adams; T. Adams; P. Addesso; R. X. Adhikari et al. Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett., Volume 116 (2016) no. 6, 061102 | DOI

[56] A. Einstein Näherungsweise integration der feldgleichungen der gravitation, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (1916), pp. 688-696

[57] A. Einstein Über gravitationswellen, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften (1918), pp. 154-167

[58] R. H. Price; J. Pullin Colliding black holes: The close limit, Phys. Rev. Lett., Volume 72 (1994) no. 21, pp. 3297-3300 | DOI

[59] L. Blanchet Gravitational radiation from post-Newtonian sources and inspiralling compact binaries, Living Rev. Relativ., Volume 17 (2014), 2 | DOI

[60] F. Pretorius Evolution of Binary Black-Hole Spacetimes, Phys. Rev. Lett., Volume 95 (2005) no. 12, 121101 | DOI

[61] S. Richter; H.-G. Zirnstein; J. Zúñiga-Pérez; E. Krüger; Ch. Deparis; L. Trefflich; Ch. Sturm; B. Rosenow; M. Grundmann; R. Schmidt-Grund Voigt exceptional points in an anisotropic ZnO-based planar microcavity: square-root topology, polarization vortices, and circularity, Phys. Rev. Lett., Volume 123 (2019) no. 22, 227401 | DOI

[62] R. Su; E. Estrecho; D. Biegańska; Y. Huang; M. Wurdack; M. Pieczarka; A. G. Truscott; T. C. H. Liew; E. A Ostrovskaya; Q. Xiong Direct measurement of a non-Hermitian topological invariant in a hybrid light-matter system, Sci. adv., Volume 7 (2021) no. 45, eabj8905 | DOI

[63] M. Król; I. Septembre; P. Oliwa; M. Kędziora; K. Łempicka-Mirek; M. Muszyński; R. Mazur; P. Morawiak; W. Piecek; P. Kula et al. Annihilation of exceptional points from different Dirac valleys in a 2D photonic system, Nat. Commun., Volume 13 (2022) no. 1, 5340 | DOI

[64] D. D. Solnyshkov; H. Terças; K. Dini; G. Malpuech Hybrid Boltzmann–Gross–Pitaevskii theory of Bose–Einstein condensation and superfluidity in open driven-dissipative systems, Phys. Rev. A, Volume 89 (2014) no. 3, 033626 | DOI

[65] V. Ardizzone; F. Riminucci; S. Zanotti; A. Gianfrate; M. Efthymiou-Tsironi; D. G. Suàrez-Forero; F. Todisco; M. De Giorgi; D. Trypogeorgos; G. Gigli et al. Polariton Bose–Einstein condensate from a bound state in the continuum, Nature, Volume 605 (2022) no. 7910, pp. 447-452 | DOI

[66] F. Riminucci; V. Ardizzone; L. Francaviglia; M. Lorenzon; C. Stavrakas; S. Dhuey; A. Schwartzberg; S. Zanotti; D. Gerace; K. Baldwin et al. Nanostructured GaAs/(Al,Ga)As Waveguide for Low-Density Polariton Condensation from a Bound State in the Continuum, Phys. Rev. Appl., Volume 18 (2022) no. 2, 024039 | DOI

[67] T. Jacqmin; I. Carusotto; I. Sagnes; M. Abbarchi; D. D. Solnyshkov; G. Malpuech; E. Galopin; A. Lemaître; J. Bloch; A. Amo Direct Observation of Dirac Cones and a Flatband in a Honeycomb Lattice for Polaritons, Phys. Rev. Lett., Volume 112 (2014) no. 11, 116402 | DOI

[68] F. Baboux; D. De Bernardis; V. Goblot; V. N. Gladilin; C. Gomez; E. Galopin; L. Le Gratiet; A. Lemaître; I. Sagnes; I. Carusotto; M. Wouters; A. Amo; J. Bloch Unstable and stable regimes of polariton condensation, Optica, Volume 5 (2018) no. 10, pp. 1163-1170 | DOI

[69] E. Wertz; A. Amo; D. D. Solnyshkov; L. Ferrier; T. C. H. Liew; D. Sanvitto; P. Senellart; I. Sagnes; A. Lemaître; A. V. Kavokin; G. Malpuech; J. Bloch Propagation and Amplification Dynamics of 1D Polariton Condensates, Phys. Rev. Lett., Volume 109 (2012) no. 21, 216404 | DOI

[70] C. Antón; T. C. H. Liew; G. Tosi; M. D. Martín; T. Gao; Z. Hatzopoulos; P. S. Eldridge; P. G. Savvidis; L. Viña Energy relaxation of exciton-polariton condensates in quasi-one-dimensional microcavities, Phys. Rev. B, Volume 88 (2013) no. 3, 035313 | DOI

[71] L. P. Pitaevskii Phenomenological Theory of Superfluidity near the Lambda Point, Sov. Phys. JETP, Volume 8 (1959), p. 282 | DOI

[72] S. Choi; S. A. Morgan; K. Burnett Phenomenological damping in trapped atomic Bose–Einstein condensates, Phys. Rev. A, Volume 57 (1998) no. 5, pp. 4057-4060 | DOI

[73] M. Wouters; T. C. H. Liew; V. Savona Energy relaxation in one-dimensional polariton condensates, Phys. Rev. B, Volume 82 (2010) no. 24, 245315 | DOI

[74] Q. Fontaine; D. Squizzato; F. Baboux; I. Amelio; A. Lemaître; M. Morassi; I. Sagnes; L. Le Gratiet; A. Harouri; M. Wouters et al. Kardar–Parisi–Zhang universality in a one-dimensional polariton condensate, Nature, Volume 608 (2022) no. 7924, pp. 687-691 | DOI

[75] M. Wouters; I. Carusotto Excitations in a Nonequilibrium Bose+-Einstein Condensate of Exciton Polaritons, Phys. Rev. Lett., Volume 99 (2007) no. 14, 140402 | DOI

[76] J. M. J. Keeling; N. G. Berloff Spontaneous Rotating Vortex Lattices in a Pumped Decaying Condensate, Phys. Rev. Lett., Volume 100 (2008) no. 25, 250401 | DOI

[77] M. Wouters; I. Carusotto Superfluidity and Critical Velocities in Nonequilibrium Bose–Einstein Condensates, Phys. Rev. Lett., Volume 105 (2010) no. 2, 020602 | DOI

[78] N. S. Voronova; Y. E. Lozovik Excitons in cores of exciton-polariton vortices, Phys. Rev. B, Volume 86 (2012) no. 19, 195305 | DOI

[79] L. Dominici; A. Rahmani; D. Colas; D. Ballarini; M. De Giorgi; G. Gigli; D. Sanvitto; F. P. Laussy; N. Voronova Coupled quantum vortex kinematics and Berry curvature in real space, Commun. Phys., Volume 6 (2023) no. 1, 197 | DOI

[80] F. Bashforth; J. C. Adams An Attempt to test the Theories of Capillary Action by comparing the theoretical and measured forms of drops of fluid, Kessinger Publishing, LLC, 1883

[81] J. Reese; S. Zaranek GPU Programming in MATLAB (https://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html, accessed: 30/05/2023)

[82] M. Visser Acoustic black holes: horizons, ergospheres and Hawking radiation, Class. Quant. Grav., Volume 15 (1998) no. 6, p. 1767 | DOI

[83] V. N. Popov Quantum vortices and phase transitions in Bose systems, Sov. Phys. JETP, Volume 37 (1973), pp. 341-345

[84] U. R. Fischer Motion of quantized vortices as elementary objects, Ann. Phys., Volume 278 (1999) no. 1, pp. 62-85 | DOI

[85] E. Berti; V. Cardoso; J. P. S. Lemos Quasinormal modes and classical wave propagation in analogue black holes, Phys. Rev. D, Volume 70 (2004) no. 12, 124006 | DOI

[86] W. G. Unruh Sonic analogue of black holes and the effects of high frequencies on black hole evaporation, Phys. Rev. D, Volume 51 (1995) no. 6, 2827–2838 | DOI

[87] S. Finazzi; R. Parentani Spectral properties of acoustic black hole radiation: Broadening the horizon, Phys. Rev. D, Volume 83 (2011) no. 8, 084010 | DOI

[88] H. S. Nguyen; D. Gerace; I. Carusotto; D. Sanvitto; E. Galopin; A. Lemaître; I. Sagnes; J. Bloch; A. Amo Acoustic Black Hole in a Stationary Hydrodynamic Flow of Microcavity Polaritons, Phys. Rev. Lett., Volume 114 (2015) no. 3, 036402 | DOI

[89] J. Steinhauer Observation of quantum Hawking radiation and its entanglement in an analogue black hole, Nat. Phys., Volume 12 (2016) no. 10, pp. 959-965 | DOI

[90] L. P. Pitaevskii; S. Stringari Bose–Einstein Condensation and Superfluidity, International Series of Monographs on Physics, 116, Oxford Science Publications, 2003

[91] I. Ciufolini; E. C Pavlis A confirmation of the general relativistic prediction of the Lense–Thirring effect, Nature, Volume 431 (2004) no. 7011, pp. 958-960 | DOI

[92] R. Adler; M. Bazin; M. Schiffer Introduction to general relativity, Am. J. Phys., Volume 34 (1966) no. 3, p. 274-274 (book review) | DOI

[93] L. D. Landau The classical theory of fields, Course of Theoretical Physics, 2, Elsevier, 2013

[94] E. T. Newman; E. Couch; K. Chinnapared; A. Exton; A. Prakash; R. Torrence Metric of a rotating, charged mass, J. Math. Phys., Volume 6 (1965) no. 6, pp. 918-919 | DOI

[95] J. M. McNamara Instability of black hole inner horizons, Proc. R. Soc. Lond., Ser. A, Volume 358 (1978) no. 1695, pp. 499-517 | DOI

[96] P. R. Brady The internal structure of black holes, Progress of Theoretical Physics Supplement, Volume 136 (1999), pp. 29-44 | DOI

[97] V. I. Kolobov; K. Golubkov; J. R. Muñoz de Nova; J. Steinhauer Observation of stationary spontaneous Hawking radiation and the time evolution of an analogue black hole, Nat. Phys., Volume 17 (2021) no. 3, pp. 362-367 | DOI

Cited by Sources:

Comments - Policy