We study the effects of the wavevector-dependent losses on polariton condensates. We demonstrate that because of these losses, a single vortex becomes a center of a convergent flow, which allows describing it by an analogue Kerr black hole metric with a dynamically evolving origin. For a pair of vortices, we find an analogue of the 3rd Kepler’s law and estimate the emission rate of the gravitational waves. We simulate an analogue of the inspiral phase of a black hole merger. Our work therefore suggests that polariton condensates with quantum vortices represent a setting with a fully self-consistent dynamical metric for broad analogue studies.
Nous étudions les effets des pertes dépendantes du vecteur d’onde sur les condensats de polaritons. Nous démontrons qu’à cause de ces pertes, un vortex unique devient le centre d’un flux convergent, ce qui permet de le décrire par une métrique de Kerr analogue à celle d’un trou noir, avec une origine évoluant dynamiquement. Pour une paire de vortex, nous trouvons un analogue de la 3ème loi de Kepler et estimons le taux d’émission des ondes gravitationnelles. Nous simulons un analogue de la phase d’inspiral se produisant lors d’une fusion de trous noirs. Notre travail suggère donc que les condensats de polaritons avec des vortex quantiques permettent de simuler une métrique dynamique entièrement auto-consistante, ce qui pourra permettre d’étudier de larges classes de problèmes.
Revised:
Accepted:
Online First:
Dmitry Solnyshkov 1, 2; Ismaël Septembre 1; Guillaume Malpuech 1
@article{CRPHYS_2024__25_S2_A3_0, author = {Dmitry Solnyshkov and Isma\"el Septembre and Guillaume Malpuech}, title = {Towards analogue black hole merger}, journal = {Comptes Rendus. Physique}, publisher = {Acad\'emie des sciences, Paris}, year = {2024}, doi = {10.5802/crphys.178}, language = {en}, note = {Online first}, }
Dmitry Solnyshkov; Ismaël Septembre; Guillaume Malpuech. Towards analogue black hole merger. Comptes Rendus. Physique, Online first (2024), pp. 1-16. doi : 10.5802/crphys.178.
[1] Plasmons, Gauge Invariance, and Mass, Phys. Rev., Volume 130 (1963) no. 1, pp. 439-442 | DOI
[2] Chiral tunneling and the Klein paradox in graphene, Nat. Phys., Volume 2 (2006), pp. 620-625 | DOI
[3] Transport Measurements Across a Tunable Potential Barrier in Graphene, Phys. Rev. Lett., Volume 98 (2007) no. 23, 236803 | DOI
[4] Evidence for Klein Tunneling in Graphene Junctions, Phys. Rev. Lett., Volume 102 (2009) no. 2, 026807 | DOI
[5] Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac, Z. Phys., Volume 53 (1929), pp. 157-165 | DOI
[6] Analogue Gravity, Living Rev. Relativ., Volume 8 (2005) no. 1, 12 | DOI
[7] Analogue black-hole horizons, Nat. Phys., Volume 15 (2018), pp. 210-213 | DOI
[8] Experimental Black-Hole Evaporation?, Phys. Rev. Lett., Volume 46 (1981) no. 21, pp. 1351-1353 | DOI
[9] Black hole explosions?, Nature, Volume 248 (1974), pp. 30-31 | DOI
[10] Measurement of Stimulated Hawking Emission in an Analogue System, Phys. Rev. Lett., Volume 106 (2011) no. 2, 021302 | DOI
[11] Observation of self-amplifying Hawking radiation in an analogue black-hole laser, Nat. Phys., Volume 10 (2014), p. 864 | DOI
[12] Sonic Analog of Gravitational Black Holes in Bose–Einstein Condensates, Phys. Rev. Lett., Volume 85 (2000) no. 22, pp. 4643-4647 | DOI
[13] Observation of negative-frequency waves in a water tank: a classical analogue to the Hawking effect?, New J. Phys., Volume 10 (2008) no. 5, 053015 | DOI
[14] Rotational superradiant scattering in a vortex flow, Nat. Phys., Volume 13 (2017), pp. 833-836 | DOI
[15] Exploring the Quantum-to-Classical Vortex Flow: Quantum Field Theory Dynamics on Rotating Curved Spacetimes (2023) (eprint, arXiv:2308.10773) | DOI
[16] Realization of a Sonic Black Hole Analog in a Bose–Einstein Condensate, Phys. Rev. Lett., Volume 105 (2010) no. 24, 240401 | DOI
[17] Hawking radiation in the presence of high-momentum dissipation, Phys. Rev. D, Volume 92 (2015) no. 4, 044043 | DOI
[18] et al. Bose–Einstein condensation of exciton polaritons, Nature, Volume 443 (2006) no. 7110, pp. 409-414 | DOI
[19] Microcavities, Oxford University Press, 2011
[20] Quantum fluids of light, Rev. Mod. Phys., Volume 85 (2013) no. 1, pp. 299-366 | DOI
[21] Superfluidity of polaritons in semiconductor microcavities, Nat. Phys., Volume 5 (2009) no. 11, pp. 805-810 | DOI
[22] Quantized vortices in an exciton–polariton condensate, Nat. Phys., Volume 4 (2008) no. 9, pp. 706-710 | DOI
[23] Condensation phase diagram of cavity polaritons in GaN-based microcavities: Experiment and theory, Phys. Rev. B, Volume 81 (2010) no. 12, 125305 | DOI
[24] Dissipationless flow and sharp threshold of a polariton condensate with long lifetime, Phys. Rev. X, Volume 3 (2013) no. 4, 041015 | DOI
[25] et al. Measurement of the quantum geometric tensor and of the anomalous Hall drift, Nature, Volume 578 (2020) no. 7795, pp. 381-385 | DOI
[26] Formation of an exciton polariton condensate: thermodynamic versus kinetic regimes, Phys. Rev. Lett., Volume 101 (2008) no. 14, 146404 | DOI
[27] Black holes and wormholes in spinor polariton condensates, Phys. Rev. B, Volume 84 (2011) no. 23, 233405 | DOI
[28] Analog Hawking radiation from an acoustic black hole in a flowing polariton superfluid, Phys. Rev. B, Volume 86 (2012) no. 14, 144505 | DOI
[29] Acoustic Black Hole in a Stationary Hydrodynamic Flow of Microcavity Polaritons, Phys. Rev. Lett., Volume 114 (2015) no. 3, 036402 | DOI
[30] et al. Microcavity polaritons for quantum simulation, Adv. Quantum Technol., Volume 3 (2020) no. 11, 2000052 | DOI
[31] et al. Polariton fluids for analogue gravity physics, Philos. Trans. R. Soc. Lond., Ser. A, Volume 378 (2020) no. 2177, 20190225 | DOI
[32] Analogue quantum simulation of the Hawking effect in a polariton superfluid, Eur. Phys. J. D, Atomic Mol. Opt. Plasma Phys., Volume 76 (2022) no. 8, p. 152 | DOI
[33] Spectrum of collective excitations of a quantum fluid of polaritons, Phys. Rev. B, Volume 107 (2023) no. 17, 174507 | DOI
[34] Resonant Hawking radiation in Bose–Einstein condensates, New J. Phys., Volume 13 (2011) no. 6, 063048 | DOI
[35] Angle-dependent Andreev reflection at an interface with a polaritonic superfluid, Phys. Rev. B, Volume 108 (2023) no. 11, 115309 | DOI
[36] Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid, Nature Phys., Volume 7 (2011) no. 8, pp. 635-641 | DOI
[37] Probing the dynamics of spontaneous quantum vortices in polariton superfluids, Phys. Rev. Lett., Volume 106 (2011) no. 11, 115301 | DOI
[38] Spontaneous self-ordered states of vortex-antivortex pairs in a polariton condensate, Phys. Rev. B, Volume 88 (2013) no. 20, 201303 | DOI
[39] Quantum vortex formation in the “rotating bucket” experiment with polariton condensates, Sci. adv., Volume 9 (2023) no. 4, eadd1299 | DOI
[40] Penrose Superradiance in Nonlinear Optics, Phys. Rev. Lett., Volume 125 (2020) no. 19, 193902 | DOI
[41] Measurement of Penrose Superradiance in a Photon Superfluid, Phys. Rev. Lett., Volume 128 (2022) no. 1, 013901 | DOI
[42] A Rapidly Expanding Bose–Einstein Condensate: An Expanding Universe in the Lab, Phys. Rev. X, Volume 8 (2018) no. 2, 021021 | DOI
[43] Accurate Determination of Hubble Attenuation and Amplification in Expanding and Contracting Cold-Atom Universes, Phys. Rev. Lett., Volume 128 (2022) no. 9, 090401 | DOI
[44] Quantum simulation of cosmic inflation in two-component Bose–Einstein condensates, Phys. Rev. A, Volume 70 (2004) no. 6, 063615 | DOI
[45] Numerical Studies of Back Reaction Effects in an Analog Model of Cosmological Preheating, Phys. Rev. Lett., Volume 130 (2023) no. 24, 241501 | DOI
[46] Black Hole Quasibound States from a Draining Bathtub Vortex Flow, Phys. Rev. Lett., Volume 121 (2018) no. 6, 061101 | DOI
[47] Quantum backreaction in dilute Bose–Einstein condensates, Phys. Rev. D, Volume 72 (2005) no. 10, 105005 | DOI
[48] Quantum effects in acoustic black holes: The backreaction, Phys. Rev. D, Volume 71 (2005) no. 6, 064019 | DOI
[49] Back-reaction in canonical analogue black holes, Appl. Sci. (Switz.), Volume 10 (2020) no. 24, 8868 | DOI
[50] Backreaction in an Analogue Black Hole Experiment, Phys. Rev. Lett., Volume 126 (2021) no. 4, 041105 | DOI
[51] Quantum analogue of a Kerr black hole and the Penrose effect in a Bose–Einstein condensate, Phys. Rev. B, Volume 99 (2019) no. 21, 214511 | DOI
[52] Analogue gravity from field theory normal modes?, Class. Quant. Grav., Volume 18 (2001) no. 17, p. 3595 | DOI
[53] Naturalness in an Emergent Analogue Spacetime, Phys. Rev. Lett., Volume 96 (2006) no. 15, 151301 | DOI
[54] Analogue gravity models of emergent gravity: lessons and pitfalls, J. Phys.: Conf. Ser., Volume 880 (2017) no. 1, 012009 | DOI
[55] et al. Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett., Volume 116 (2016) no. 6, 061102 | DOI
[56] Näherungsweise integration der feldgleichungen der gravitation, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (1916), pp. 688-696
[57] Über gravitationswellen, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften (1918), pp. 154-167
[58] Colliding black holes: The close limit, Phys. Rev. Lett., Volume 72 (1994) no. 21, pp. 3297-3300 | DOI
[59] Gravitational radiation from post-Newtonian sources and inspiralling compact binaries, Living Rev. Relativ., Volume 17 (2014), 2 | DOI
[60] Evolution of Binary Black-Hole Spacetimes, Phys. Rev. Lett., Volume 95 (2005) no. 12, 121101 | DOI
[61] Voigt exceptional points in an anisotropic ZnO-based planar microcavity: square-root topology, polarization vortices, and circularity, Phys. Rev. Lett., Volume 123 (2019) no. 22, 227401 | DOI
[62] Direct measurement of a non-Hermitian topological invariant in a hybrid light-matter system, Sci. adv., Volume 7 (2021) no. 45, eabj8905 | DOI
[63] et al. Annihilation of exceptional points from different Dirac valleys in a 2D photonic system, Nat. Commun., Volume 13 (2022) no. 1, 5340 | DOI
[64] Hybrid Boltzmann–Gross–Pitaevskii theory of Bose–Einstein condensation and superfluidity in open driven-dissipative systems, Phys. Rev. A, Volume 89 (2014) no. 3, 033626 | DOI
[65] et al. Polariton Bose–Einstein condensate from a bound state in the continuum, Nature, Volume 605 (2022) no. 7910, pp. 447-452 | DOI
[66] et al. Nanostructured GaAs/(Al,Ga)As Waveguide for Low-Density Polariton Condensation from a Bound State in the Continuum, Phys. Rev. Appl., Volume 18 (2022) no. 2, 024039 | DOI
[67] Direct Observation of Dirac Cones and a Flatband in a Honeycomb Lattice for Polaritons, Phys. Rev. Lett., Volume 112 (2014) no. 11, 116402 | DOI
[68] Unstable and stable regimes of polariton condensation, Optica, Volume 5 (2018) no. 10, pp. 1163-1170 | DOI
[69] Propagation and Amplification Dynamics of 1D Polariton Condensates, Phys. Rev. Lett., Volume 109 (2012) no. 21, 216404 | DOI
[70] Energy relaxation of exciton-polariton condensates in quasi-one-dimensional microcavities, Phys. Rev. B, Volume 88 (2013) no. 3, 035313 | DOI
[71] Phenomenological Theory of Superfluidity near the Lambda Point, Sov. Phys. JETP, Volume 8 (1959), p. 282 | DOI
[72] Phenomenological damping in trapped atomic Bose–Einstein condensates, Phys. Rev. A, Volume 57 (1998) no. 5, pp. 4057-4060 | DOI
[73] Energy relaxation in one-dimensional polariton condensates, Phys. Rev. B, Volume 82 (2010) no. 24, 245315 | DOI
[74] et al. Kardar–Parisi–Zhang universality in a one-dimensional polariton condensate, Nature, Volume 608 (2022) no. 7924, pp. 687-691 | DOI
[75] Excitations in a Nonequilibrium Bose+-Einstein Condensate of Exciton Polaritons, Phys. Rev. Lett., Volume 99 (2007) no. 14, 140402 | DOI
[76] Spontaneous Rotating Vortex Lattices in a Pumped Decaying Condensate, Phys. Rev. Lett., Volume 100 (2008) no. 25, 250401 | DOI
[77] Superfluidity and Critical Velocities in Nonequilibrium Bose–Einstein Condensates, Phys. Rev. Lett., Volume 105 (2010) no. 2, 020602 | DOI
[78] Excitons in cores of exciton-polariton vortices, Phys. Rev. B, Volume 86 (2012) no. 19, 195305 | DOI
[79] Coupled quantum vortex kinematics and Berry curvature in real space, Commun. Phys., Volume 6 (2023) no. 1, 197 | DOI
[80] An Attempt to test the Theories of Capillary Action by comparing the theoretical and measured forms of drops of fluid, Kessinger Publishing, LLC, 1883
[81] GPU Programming in MATLAB (https://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html, accessed: 30/05/2023)
[82] Acoustic black holes: horizons, ergospheres and Hawking radiation, Class. Quant. Grav., Volume 15 (1998) no. 6, p. 1767 | DOI
[83] Quantum vortices and phase transitions in Bose systems, Sov. Phys. JETP, Volume 37 (1973), pp. 341-345
[84] Motion of quantized vortices as elementary objects, Ann. Phys., Volume 278 (1999) no. 1, pp. 62-85 | DOI
[85] Quasinormal modes and classical wave propagation in analogue black holes, Phys. Rev. D, Volume 70 (2004) no. 12, 124006 | DOI
[86] Sonic analogue of black holes and the effects of high frequencies on black hole evaporation, Phys. Rev. D, Volume 51 (1995) no. 6, 2827–2838 | DOI
[87] Spectral properties of acoustic black hole radiation: Broadening the horizon, Phys. Rev. D, Volume 83 (2011) no. 8, 084010 | DOI
[88] Acoustic Black Hole in a Stationary Hydrodynamic Flow of Microcavity Polaritons, Phys. Rev. Lett., Volume 114 (2015) no. 3, 036402 | DOI
[89] Observation of quantum Hawking radiation and its entanglement in an analogue black hole, Nat. Phys., Volume 12 (2016) no. 10, pp. 959-965 | DOI
[90] Bose–Einstein Condensation and Superfluidity, International Series of Monographs on Physics, 116, Oxford Science Publications, 2003
[91] A confirmation of the general relativistic prediction of the Lense–Thirring effect, Nature, Volume 431 (2004) no. 7011, pp. 958-960 | DOI
[92] Introduction to general relativity, Am. J. Phys., Volume 34 (1966) no. 3, p. 274-274 (book review) | DOI
[93] The classical theory of fields, Course of Theoretical Physics, 2, Elsevier, 2013
[94] Metric of a rotating, charged mass, J. Math. Phys., Volume 6 (1965) no. 6, pp. 918-919 | DOI
[95] Instability of black hole inner horizons, Proc. R. Soc. Lond., Ser. A, Volume 358 (1978) no. 1695, pp. 499-517 | DOI
[96] The internal structure of black holes, Progress of Theoretical Physics Supplement, Volume 136 (1999), pp. 29-44 | DOI
[97] Observation of stationary spontaneous Hawking radiation and the time evolution of an analogue black hole, Nat. Phys., Volume 17 (2021) no. 3, pp. 362-367 | DOI
Cited by Sources:
Comments - Policy