[Des expériences depuis l’échelle du laboratoire à celle du terrain pour la morphodynamique des dunes de sable]
Nous passons en revue les principaux processus qui déterminent la morphodynamique des dunes, c’est-à-dire leur croissance en hauteur, leur migration et leur élongation, et nous mettons en avant la contribution des expériences pour la compréhension de ces mécanismes. Les principaux paramètres de contrôle sont le flux sédimentaire Q et la longueur de saturation associée à la relaxation spatiale du flux vers sa valeur à saturation homogène et stationnaire. Les autres quantités pertinentes sont essentiellement sans dimension : réponse du fluide à une perturbation du lit, géométrie des dunes (orientation, rapport d’aspect), rapports entre les taux de transport sous des régimes de vent multidirectionnels. Nous expliquons que les expériences de laboratoire portant sur les formes de lit sédimentaires sous l’eau sont de bons analogues pour étudier la morphodynamique des dunes éoliennes à des échelles de longueur et de temps réduites, car et sont typiquement plus petits pour le transport par charriage. En outre, la forme et la dynamique des dunes sont principalement gouvernées par les régimes d’écoulement et les conditions aux limites, indépendamment du mode de transport. Nous discutons différents montages expérimentaux et résultats, en particulier ceux qui concernent l’orientation des dunes et leur interactions. Pour les régimes de vents naturels dans les déserts terrestres, nous montrons le potentiel des expériences de terrain pour lesquelles le contrôle des conditions initiales et aux limites permet de quantifier tous les mécanismes pertinents impliqués dans la croissance des dunes. Nous soulignons le bon accord général entre les observations, les mesures et les prédictions théoriques, ce qui montre une bonne compréhension des processus qui sont à l’œuvre. Cette compréhension peut servir de base à d’autres recherches, comme par exemple l’interprétation des paysages dunaires et à la résolution de problèmes inverses.
We review the main processes that drive the morphodynamics of dunes, i.e. their growth in height, migration and elongation, and emphasise the contribution of experiments to the understanding of these mechanisms. The main control parameters are the sediment flux Q and the saturation length associated with the spatial relaxation of the flux towards the transport capacity. The other relevant quantities are essentially dimensionless: fluid response to a bed perturbation, dune geometry (orientation, aspect ratio), transport ratios under multi-directional wind regimes. We argue that laboratory experiments dealing with sedimentary bedforms in water flows are good analogues to study the morphodynamics of aeolian dunes at reduced length and time scales, as and are expected to be smaller for subaqueous bedload. Besides, dune shape and dynamics are mainly governed by flow and boundary conditions, independent of the transport mode. We discuss different experimental set-ups and results, especially concerning dune pattern orientation and dune interaction. Under natural wind regimes in terrestrial deserts, we show the potential of field experiments in which the control of initial and boundary conditions allows for the quantification of all the relevant mechanisms involved in dune growth. We emphasise the general agreement between observations, measurements and theoretical predictions, which indicates a robust comprehension of the underlying processes. This understanding can serve as a foundation for further investigations, including the interpretation of dune landscapes and the resolution of inverse problems.
Révisé le :
Accepté le :
Première publication :
Mot clés : forme et dynamique des dunes, croissance, orientation
Philippe Claudin 1 ; Sylvain Courrech du Pont 2 ; Clément Narteau 3
@article{CRPHYS_2024__25_S3_A9_0, author = {Philippe Claudin and Sylvain Courrech du Pont and Cl\'ement Narteau}, title = {From lab to landscape-scale experiments for the morphodynamics of sand dunes}, journal = {Comptes Rendus. Physique}, publisher = {Acad\'emie des sciences, Paris}, year = {2024}, doi = {10.5802/crphys.203}, language = {en}, note = {Online first}, }
TY - JOUR AU - Philippe Claudin AU - Sylvain Courrech du Pont AU - Clément Narteau TI - From lab to landscape-scale experiments for the morphodynamics of sand dunes JO - Comptes Rendus. Physique PY - 2024 PB - Académie des sciences, Paris N1 - Online first DO - 10.5802/crphys.203 LA - en ID - CRPHYS_2024__25_S3_A9_0 ER -
%0 Journal Article %A Philippe Claudin %A Sylvain Courrech du Pont %A Clément Narteau %T From lab to landscape-scale experiments for the morphodynamics of sand dunes %J Comptes Rendus. Physique %D 2024 %I Académie des sciences, Paris %Z Online first %R 10.5802/crphys.203 %G en %F CRPHYS_2024__25_S3_A9_0
Philippe Claudin; Sylvain Courrech du Pont; Clément Narteau. From lab to landscape-scale experiments for the morphodynamics of sand dunes. Comptes Rendus. Physique, Online first (2024), pp. 1-29. doi : 10.5802/crphys.203.
[1] Dune Worlds: How Windblown sand shapes planetary landscapes, Springer-Praxis Geophysical Sciences, Springer, 2014 | DOI
[2] Our evolving understanding of aeolian bedforms, based on observation of dunes on different worlds, Aeolian Res., Volume 26 (2017), pp. 5-27 | DOI
[3] Conditions for aeolian transport in the Solar System, Nat. Astron., Volume 6 (2022), pp. 923-929 | DOI
[4] Morphology and distribution of dunes in sand seas observed by remote sensing, A study of global sand seas (E. D. McKee, ed.), U.S. Geological Survey (1979) no. P-1052, pp. 252-302
[5] 11.17 Coastal dunes, Treatise on Geomorphology, Academic Press Inc., 2013, pp. 328-355 | DOI
[6] Eolian deposits and dunes on Mars, J. Geophys. Res., Volume 78 (1973), pp. 4139-4154 | DOI
[7] Extraterrestrial dunes: An introduction to the special issue on planetary dune systems, Geomorphology, Volume 121 (2010), pp. 1-14 | DOI
[8] Morphologic diversity of Martian ripples: Implications for large-ripple formation, Geophys. Res. Lett., Volume 45 (2018), pp. 10229-10239 | DOI
[9] et al. The sand seas of Titan: Cassini RADAR observations of longitudinal dunes, Science, Volume 312 (2006), pp. 724-727 | DOI
[10] et al. Dunes on Titan observed by Cassini RADAR, Icarus, Volume 194 (2008), pp. 690-703 | DOI
[11] et al. Global mapping and characterization of Titan’s dune fields with Cassini: Correlation between RADAR and VIMS observations, Icarus, Volume 230 (2014), pp. 168-179 | DOI
[12] Microdunes and other aeolian bedforms on Venus: wind tunnel simulations, Icarus, Volume 60 (1984), pp. 152-160 | DOI
[13] et al. The surface of Venus as revealed by the Venera landings: Part II, GSA Bulletin, Volume 96 (1985), pp. 137-144 | DOI
[14] Dunes and microdunes on Venus: Why were so few found in the Magellan data?, Icarus, Volume 112 (1994), pp. 282-295 | DOI
[15] et al. Dunes on pluto, Science, Volume 360 (2018), pp. 992-997 | DOI
[16] Giant ripples on comet 67P/Churyumov–Gerasimenko sculpted by sunset thermal wind, Proc. Natl. Acad. Sci. USA, Volume 114 (2017), pp. 2509-2514 | DOI
[17] et al. Complementary classifications of aeolian dunes based on morphology, dynamics, and fluid mechanics, Earth-Sci. Rev., Volume 255 (2024), 104772 | DOI
[18] The fluid dynamics of river dunes: a review and some future research directions, J. Geophys. Res., Volume 110 (2005), F04S02 | DOI
[19] The morphodynamics of fluvial sand dunes in the River Rhine, near Mainz, Germany. I. Sedimentology and morphology, Sedimentology, Volume 47 (2000), pp. 227-252 | DOI
[20] Morphology and flow fields of three-dimensional dunes, Rio Paraná, Argentina: Results from simultaneous multibeam echo sounding and acoustic Doppler current profiling, J. Geophys. Res., Volume 110 (2005), F04S03 | DOI
[21] Experiments on bedload transport, bedforms, and sedimentary structures using fine gravel in the 4-meter-wide flume, Environ. Res. Center pap., Volume 2 (1983), pp. 1-78
[22] Bed-form development, J. Hydraul. Eng., Volume 120 (1994), pp. 544-560 | DOI
[23] Initiation of bed forms on a flat sand bed, J. Hydraul. Eng., Volume 122 (1996), pp. 301-310 | DOI
[24] Closed-conduit bed-form initiation and development, J. Hydraul. Eng., Volume 129 (2003), pp. 956-965 | DOI
[25] A flume study on the development and equilibrium morphology of current ripples in very fine sand, Sedimentology, Volume 41 (1994), pp. 185-209 | DOI
[26] Bed form initiation from a flat sand bed, J. Geophys. Res., Volume 110 (2005), F01009 | DOI
[27] Formation and evolution of current ripples on a flat sand bed under turbulent water flow, Eur. Phys. J. E, Volume 22 (2007), pp. 201-208 | DOI
[28] Sediment dynamics. Part 2. Dune formation in pipe flow, J. Fluid Mech., Volume 636 (2009), pp. 321-336 | DOI
[29] Flume experiments on alternate bar formation, J. Waterways Harbors Coast. Eng. Div., Volume 97 (1971), pp. 155-165 | DOI
[30] Formation of stationary alternate bars in a steep channel with mixed-size sediment: a flume experiment, Earth Surf. Process. Landf., Volume 16 (1991), pp. 463-469 | DOI
[31] Experiments on bar formation in a straight flume. 2. Uniform sediment, Water Resour. Res., Volume 36 (2000), pp. 3351-3363 | DOI
[32] Rhomboid beach pattern: a laboratory investigation, J. Geophys. Res., Volume 115 (2010), F02017 | DOI
[33] Alternate bars in a sandy gravel bed river: generation, migration and interactions with superimposed dunes, Earth Surf. Process. Landf., Volume 40 (2014), pp. 610-628 | DOI
[34] On aeolian transport: Grain-scale interactions, dynamical mechanisms and scaling laws, Aeolian Res., Volume 3 (2011), pp. 243-270 | DOI
[35] The physics of aeolian sand transport, Comptes Rendus. Physique, Volume 16 (2015), pp. 105-117 | DOI
[36] The physics of sediment transport initiation, cessation, and entrainment across aeolian and fluvial environments, Rev. Geophys., Volume 58 (2020), e2019RG000679 | DOI
[37] Selection of dune shapes and velocities. Part 2: A two-dimensional modelling, Eur. Phys. J. B, Condens. Matter Complex Syst., Volume 28 (2002), pp. 341-352 | DOI
[38] Minimal model for sand dunes, Phys. Rev. Lett., Volume 88 (2002), 054301 | DOI
[39] Minimal model for aeolian sand dunes, Phys. Rev. E, Volume 66 (2002), 031302 | DOI
[40] A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples, Earth Planet. Sci. Lett., Volume 252 (2006), pp. 30-44 | DOI
[41] Setting the length and time scales of a cellular automaton dune model from the analysis of superimposed bed forms, J. Geophys. Res., Volume 114 (2009), F03006 | DOI
[42] Sand ripples and dunes, Annu. Rev. Fluid Mech., Volume 45 (2013), pp. 469-493 | DOI
[43] Dune morphodynamics, Comptes Rendus. Physique, Volume 16 (2015), pp. 118-138 | DOI
[44] Two modes for dune orientation, Geology, Volume 42 (2014), pp. 743-746 | DOI
[45] Phase diagrams of dune shape and orientation depending on sand availability, Sci. Rep., Volume 5 (2015), 14677 | DOI
[46] Sediment flux from the morphodynamics of elongating linear dunes, Geology, Volume 43 (2015), pp. 1027-1030 | DOI
[47] Elongation and Stability of a Linear Dune, Geophys. Res. Lett., Volume 46 (2019), pp. 14521-14530 | DOI
[48] Numerical simulation of turbulent sediment transport, from bed load to saltation, Phys. Fluids, Volume 24 (2012), p. 103306 | DOI
[49] Dissolution instability and roughening transition, J. Fluid Mech., Volume 832 (2017), R2 | DOI
[50] Hydrodynamic roughness induced by a multiscale topography, J. Fluid Mech., Volume 974 (2023), A16 | DOI
[51] Continuum saltation model for sand dunes, Phys. Rev. Lett., Volume 64 (2001), 031305 | DOI
[52] Measurements of the aeolian sand transport saturation length, Geomorphology, Volume 123 (2010), pp. 243-248 | DOI
[53] Analytical mesoscale modeling of aeolian sand transport, Phys. Rev. E, Volume 96 (2017), 052906 | DOI
[54] Aeolian sand transport in out-of-equilibrium regimes, Geophys. Res. Lett., Volume 45 (2018), pp. 1838-1844 | DOI
[55] The physics of wind-blown sand and dust, Rep. Prog. Phys., Volume 75 (2012), 106901 | DOI
[56] The threshold for continuing saltation on Earth and other solar system bodies, J. Geophys. Res., Volume 122 (2017), pp. 1374-1388 | DOI
[57] A lower-than-expected saltation threshold at Martian pressure and below, Proc. Natl. Acad. Sci. USA, Volume 118 (2021), e2012386118 | DOI
[58] Scaling laws for planetary sediment transport from DEM-RANS numerical simulations, J. Fluid Mech., Volume 963 (2023), A20 | DOI
[59] Steady state saltation in air, Sedimentology, Volume 34 (1987), pp. 289-299 | DOI
[60] Saltation and wind-flow interaction in a variable slope wind tunnel, Geomorphology, Volume 17 (1996), pp. 19-28 | DOI
[61] A two-species model of aeolian sand transport, J. Fluid Mech., Volume 510 (2004), pp. 47-70 | DOI
[62] Saltating particles in a turbulent boundary layer: experiment and theory, J. Fluid Mech., Volume 625 (2009), pp. 47-74 | DOI
[63] Aeolian sand transport: Scaling of mean saltation length and height and implications for mass flux scaling, Aeolian Res., Volume 52 (2021), 100730 | DOI
[64] Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 1. Non-separated flows, J. Fluid Mech., Volume 82 (1977), pp. 29-51 | DOI
[65] Velocity measurements for a turbulent nonseparated flow over solid waves, Exp. Fluids, Volume 6 (1988), pp. 477-486 | DOI
[66] Shearing flow over a wavy boundary, J. Fluid Mech., Volume 6 (1959), pp. 161-205 | DOI
[67] Turbulent shear flows over low hills, Q. J. R. Meteorol. Soc., Volume 114 (1988), pp. 1435-1470 | DOI
[68] Air flow and sand transport over sand-dunes, Aeolian Grain Transport (Acta Mechanica Supplementum), Volume 2, Springer, 1991, pp. 1-22 | DOI
[69] ‘Phase diagram’ of interfacial instabilities in a two-layer Couette flow and mechanism of the long-wave instability, J. Fluid Mech., Volume 414 (2000), pp. 195-223 | DOI
[70] Bedforms in a turbulent stream: formation of ripples by primary linear instability and of dunes by non-linear pattern coarsening, J. Fluid Mech., Volume 649 (2010), pp. 287-328 | DOI
[71] Incipient bedforms in a bidirectional wind regime, J. Fluid Mech., Volume 862 (2019), pp. 490-516 | DOI
[72] Field evidence for surface-wave-induced instability of sand dunes, Nature, Volume 437 (2005), pp. 720-723 | DOI
[73] Spatial and temporal development of incipient dunes, Geophys. Res. Lett., Volume 47 (2020), e2020GL088919 | DOI
[74] Dune initiation in a bimodal wind regime, J. Geophys. Res., Volume 125 (2020), e2020JF005757 | DOI
[75] et al. Direct validation of dune instability theory, Proc. Natl. Acad. Sci. USA, Volume 118 (2021), e2024105118 | DOI
[76] The physics of blown sand and desert dunes, Chapman & Hall, London, 1941
[77] Barchan dune corridors: field characterization and investigation of control parameters, J. Geophys. Res., Volume 113 (2008), F02S15 | DOI
[78] Turbulent flow over large-amplitude wavy surfaces, J. Fluid Mech., Volume 140 (1984), pp. 27-44 | DOI
[79] Pattern similarity across planetary dune fields, Geology, Volume 46 (2018), pp. 999-1002 | DOI
[80] Collision of barchan dunes as a mechanism of size regulation, Geophys. Res. Lett., Volume 32 (2005), L21403 | DOI
[81] Nonlinear sand bedform dynamics in a viscous flow, Phys. Rev. E, Volume 83 (2011), 036304 | DOI
[82] Development and steady states of transverse dunes: A numerical analysis of dune pattern coarsening and giant dunes, J. Geophys. Res., Volume 120 (2015), pp. 2200-2219 | DOI
[83] Coarsening dynamics of 2D subaqueous dunes, J. Geophys. Res., Volume 127 (2022), e2021JF006492 | DOI
[84] Bedform alignment in directionally varying flows, Science, Volume 237 (1987), pp. 276-278 | DOI
[85] Flume experiments on the alignment of transverse, oblique, and longitudinal dunes in directionally varying flows, Sedimentology, Volume 37 (1990), pp. 673-684 | DOI
[86] Formation and stability of transverse and longitudinal sand dunes, Geology, Volume 38 (2010), pp. 491-494 | DOI
[87] Turbulent wind flow over a low hill, Q. J. R. Meteorol. Soc., Volume 101 (1975), pp. 929-955 | DOI
[88] Dune formation under bimodal winds, Proc. Natl. Acad. Sci. USA, Volume 106 (2009), pp. 22085-22089 | DOI
[89] The effect of periodic changes in wind direction on the deformation and morphology of isolated sand dunes based on flume experiments and field data from the Western Sahara, Geomorphology, Volume 179 (2012), pp. 286-299 | DOI
[90] Bidirectional winds, barchan dune asymmetry and formation of seif dunes from barchans: a discussion, Environ. Earth Sci., Volume 75 (2016), 1237 | DOI
[91] Morphology and dynamics of star dunes from numerical modelling, Nat. Geosci., Volume 5 (2012), pp. 463-467 | DOI
[92] Periodicity in fields of elongating dunes, Geology, Volume 48 (2020), pp. 343-347 | DOI
[93] Transverse instability of dunes, Phys. Rev. Lett., Volume 107 (2011), 188001 | DOI
[94] Sand dunes as migrating strings, Phys. Rev. E, Volume 87 (2013), 052206 | DOI
[95] Relevant length scale of barchan dunes, Phys. Rev. Lett., Volume 89 (2002), 264301 | DOI
[96] Barchan ripples under unidirectional water flows in the laboratory: formation and planar morphology, Earth Surf. Process. Landf., Volume 30 (2005), pp. 1675-1682 | DOI
[97] Morphology and displacement of dunes in a closed-conduit flow, Powder Technol., Volume 190 (2009), pp. 247-251 | DOI
[98] Local similarity between aeolian barchan dunes and their downsized subaqueous counterparts, J. Geophys. Res., Volume 129 (2024), e2023JF007617 | DOI
[99] 9.10 Bedforms in Sand-Bedded Rivers, Treatise on Geomorphology (J. F. Shroder, ed.), Academic Press Inc., 2013, pp. 137-162 | DOI
[100] Subaqueous barchan dunes in turbulent shear flow. Part 1. Dune motion, J. Fluid Mech., Volume 675 (2011), pp. 199-222 | DOI
[101] Sand transport characteristics in water and two-phase air/water flows in pipelines, Proceedings of the Sixth North American Conference on Multiphase Technology, BHR Group (2008), pp. 159-174
[102] Bedforms produced by fine, cohesionless, granular and flakey sediments under subcritical water flows, Sedimentology, Volume 25 (1978), pp. 83-103 | DOI
[103] Observation of the whole process of interaction between barchans by flume experiments, Geophys. Res. Lett., Volume 31 (2004), L12503 | DOI
[104] Barchan dunes in two dimensions: Experimental tests for minimal models, Phys. Rev. E, Volume 78 (2008), 021304 | DOI
[105] Wake induced long range repulsion of aqueous dunes, Phys. Rev. Lett., Volume 124 (2020), 054501 | DOI
[106] Barchan Dunes Cruising Dune-Size Obstacles, Geophys. Res. Lett., Volume 50 (2023), e2023GL104125 | DOI
[107] Experimental study of the stability of crescent barchan shape in subaqueous dune evolution in unsteady water flow, Eur. J. Mech. B Fluids, Volume 103 (2024), pp. 246-258 | DOI
[108] Subaqueous barchan dunes in turbulent shear flow. Part 2. Fluid flow, J. Fluid Mech., Volume 694 (2012), pp. 131-154 | DOI
[109] Birth of a subaqueous barchan dune, Phys. Rev. E, Volume 96 (2017), 062906 | DOI
[110] Onset of erosion and avalanche for an inclined granular bed sheared by a continuous laminar flow, Phys. Fluids, Volume 17 (2005), 103304 | DOI
[111] Aeolian Sand And Sand Dunes, Kluwer Academic Publishers, 1990 | DOI
[112] Desert Geomorphology, UCL Press, London, 1993 | DOI
[113] Aeolian geomorphology: an introduction, Addison Wesley Longman, 1996
[114] A continuous model for sand dunes: Review, new developments and application to barchan dunes and barchan dune fields, Earth Surf. Process. Landf., Volume 35 (2010), pp. 1591-1600 | DOI
[115] Evolution of a dune from crescentic to parabolic form in response to short-term climatic changes: Råbjerg Mile, Skagen Odde, Denmark, Geomorphology, Volume 17 (1996), pp. 63-77 | DOI
[116] Inverse maximum gross bedform-normal transport 2: application to a dune field in Ganges Chasma, Mars and comparison with HiRISE repeat imagery and MRAMS, Icarus, Volume 230 (2014), pp. 47-63 | DOI
[117] Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars, J. Geophys. Res., Volume 115 (2010), E08005 | DOI
[118] et al. Methane storms as a driver of Titan’s dune orientation, Nat. Geosci., Volume 8 (2015), pp. 362-366 | DOI
[119] Corridors of barchan dunes: Stability and size selection, Phys. Rev. E, Volume 69 (2004), 011304 | DOI
[120] A comprehensive picture for binary interactions of subaqueous barchans, Geophys. Res. Lett., Volume 47 (2020), e2020GL089464 | DOI
[121] The dune size distribution and scaling relations of barchan dune fields, Granul. Matter, Volume 11 (2009), pp. 7-11 | DOI
[122] The probabilistic nature of dune collisions in 2D, Earth Surf. Dyn., Volume 11 (2022) no. 4, pp. 803-815 | DOI
[123] An agent-based model of dune interactions produces the emergence of patterns in deserts, Geophys. Res. Lett., Volume 40 (2013), pp. 3909-3914 | DOI
[124] Modeling emergent large-scale structures of barchan dune fields, Geology, Volume 41 (2013), pp. 1059-1062 | DOI
[125] Spatial structuring and size selection as collective behaviours in an agent-based model for barchan fields, Eur. Phys. J. B, Condens. Matter Complex Syst., Volume 86 (2013), 447 | DOI
[126] Out-of-equilibrium stationary states, percolation, and subcritical instabilities in a fully nonconservative system, Phys. Rev. E, Volume 94 (2016), 042101 | DOI
[127] Foredunes and blowouts: initiation, geomorphology and dynamics, Geomorphology, Volume 48 (2002), pp. 245-268 | DOI
[128] Vegetation against dune mobility, Phys. Rev. Lett., Volume 97 (2006), 188001 | DOI
[129] Conceptual models of the evolution of transgressive dune field systems, Geomorphology, Volume 199 (2013), pp. 138-149 | DOI
[130] Morphodynamics of barchan and dome dunes under variable wind regimes, Geology, Volume 46 (2018), pp. 743-746 | DOI
[131] Field evidence for the upwind velocity shift at the crest of low dunes, Boundary-Layer Meteorol., Volume 148 (2013), pp. 195-206 | DOI
[132] Emergence of oblique dunes in a landscape-scale experiment, Nat. Geosci., Volume 7 (2014), pp. 99-103 | DOI
[133] Storm-controlled oblique dunes of the Oregon coast, Geol. Soc. Am. Bull., Volume 94 (1983), pp. 1450-1465 | DOI
[134] et al. Growth mechanisms and dune orientation on Titan, Geophys. Res. Lett., Volume 41 (2014), pp. 6093-6100 | DOI
[135] A unified model of ripples and dunes in water and planetary environments, Nat. Geosci., Volume 12 (2019), pp. 345-350 | DOI
[136] Giant aeolian dune size determined by the averaged depth of the atmospheric boundary layer, Nature, Volume 457 (2009), pp. 1120-1123 | DOI
[137] Unravelling raked linear dunes to explain the coexistence of bedforms in complex dunefields, Nat. Commun., Volume 8 (2017), 14239 | DOI
[138] et al. Coexistence of Two Dune Growth Mechanisms in a Landscape-Scale Experiment, Geophys. Res. Lett., Volume 49 (2022), e2021GL097636 | DOI
[139] Dune interactions record changes in boundary conditions, Geology, Volume 51 (2023), pp. 947-951 | DOI
[140] Local wind regime induced by giant linear dunes: Comparison of ERA5-land reanalysis with surface measurements, Boundary-Layer Meteorol., Volume 185 (2022), pp. 309-332 | DOI
[141] First quantification of relationship between dune orientation and sediment availability, Olympia Undae, Mars, Earth Planet. Sci. Lett., Volume 489 (2018), pp. 241-250 | DOI
[142] et al. Nature-based solution along high-energy eroding sandy coasts: preliminary tests on the reinstatement of natural dynamics in reprofiled coastal dunes, Water (Switz.), Volume 11 (2019), 2518 | DOI
[143] Morphological and ecological responses of a managed coastal sand dune to experimental notches, Sci. Total Environ., Volume 782 (2021), 146813 | DOI
[144] Particle impact on a cohesive granular media, Phys. Rev. E, Volume 105 (2022), 054902 | DOI
Cité par Sources :
Commentaires - Politique