[Dynamos expérimentales : des modèles aux applications à la géodynamo]
Larmor a proposé en 1919 une explication pour l’origine du champ magnétique du soleil. Cette instabilité dite effet dynamo est considérée comme responsable de la plupart des champs magnétiques des objets astrophysiques dont celui de la Terre. Il a fallu plus de 80 ans après l’explication par Larmor pour que les premières expériences de laboratoire mettent en évidence l’instabilité dynamo. Après une brève présentation des trois expériences qui ont réussi à observer cet effet, je décris ce qu’elles nous ont appris sur les régimes possibles des dynamos des planètes et des étoiles et notamment sur la géodynamo.
Larmor proposed in 1919 an explanation for the origin of the Sun’s magnetic field. This phenomenon, known as the dynamo effect, is considered to be responsible for most of the magnetic fields of astrophysical objects, including that of the Earth. It took over 80 years after Larmor’s explanation for the first laboratory experiments to demonstrate the dynamo instability. After a brief introduction to the three experiments that have managed to observe this effect, I will describe what they have taught us about the possible regimes of dynamos of planets and stars, especially regarding the geodynamo.
Révisé le :
Accepté le :
Première publication :
Mots-clés : Magnétohydrodynamique, instabilité dynamo, inversions du champ magnétique terrestre
François Pétrélis 1
@article{CRPHYS_2024__25_S3_A10_0, author = {Fran\c{c}ois P\'etr\'elis}, title = {Experimental dynamos: from models to applications to the geodynamo}, journal = {Comptes Rendus. Physique}, publisher = {Acad\'emie des sciences, Paris}, year = {2024}, doi = {10.5802/crphys.205}, language = {en}, note = {Online first}, }
François Pétrélis. Experimental dynamos: from models to applications to the geodynamo. Comptes Rendus. Physique, Online first (2024), pp. 1-17. doi : 10.5802/crphys.205.
[1] How could a rotating body such as the sun become a magnet?, Rep. 87th Meeting Brit. Assoc. Adv. Sci., Bornemouth, Sept. 9–13, John Murray: London (1919), pp. 156-160
[2] Geomagnetic Dynamo: An Improved Laboratory Model, Nature, Volume 219 (1968), pp. 717-718 | DOI
[3] Realization of Bullard’s disc dynamo, Proc. R. Soc. Lond., Ser. A, Volume 479 (2023), 20220740 | DOI
[4] Fury: an experimental dynamo with anisotropic electrical conductivity, Proc. R. Soc. Lond., Ser. A, Volume 478 (2022), 20220374 | DOI
[5] Magnetic Field Generation in Electrically Conducting Fluids, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press: Cambridge, 1978
[6] Magnetic Fields in Astrophysics, The Fluid Mechanics of Astrophysics and Geophysics, 3, Gordon and Breach Science Publishers: New York, 1983
[7] et al. Magnetic field saturation in the Riga dynamo experiment, Phys. Rev. Lett., Volume 86 (2001), pp. 3024-3027 | DOI
[8] Experimental demonstration of a homogeneous two-scale dynamo, Phys. Fluids, Volume 13 (2001), pp. 561-564 | DOI
[9] et al. Generation of magnetic field by dynamo action in a turbulent flow of liquid sodium, Phys. Rev. Lett., Volume 98 (2007), 044502 | DOI
[10] Toward a self-generating magnetic dynamo: The role of turbulence, Phys. Rev. E, Volume 61 (2000) no. 5, pp. 5287-5294 | DOI
[11] Measurements of the magnetic field induced by a turbulent flow of liquid metal, Phys. Plasmas, Volume 13 (2006) no. 5, 055901 | DOI
[12] Magnetic induction and diffusion mechanisms in a liquid sodium spherical Couette experiment, Phys. Rev. E, Volume 90 (2014), 043018 | DOI
[13] On the magnetic fields generated by experimental dynamos, Geophys. Astrophys. Fluid Dyn., Volume 101 (2007) no. 3-4, pp. 289-323 | DOI
[14] Theory of the hydromagnetic generator, J. Appl. Mech. Tech. Phys., Volume 14 (1973), pp. 775-778 | DOI
[15] The Riga Dynamo Experiment, Surv. Geophys., Volume 24 (2003), pp. 247-267 | DOI
[16] Self-excitation in a helical liquid metal flow: the Riga dynamo experiments, J. Plasma Phys., Volume 84 (2018) no. 3, 735840301 | DOI
[17] Dynamo action of fluid motions with two- dimensional periodicity, Philos. Trans. R. Soc. Lond., Ser. A, Volume 271 (1972), pp. 411-454 | DOI | Zbl
[18] Effect of fluctuations on mean-field dynamos, J. Plasma Phys., Volume 84 (2018) no. 4, 735840401 | DOI
[19] The Karlsruhe two-scale dynamo experiment, Comptes Rendus. Physique, Volume 9 (2008) no. 7, pp. 729-740 | DOI
[20] Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos, Nature, Volume 429 (2004), pp. 169-171 | DOI
[21] et al. The VKS experiment: turbulent dynamical dynamos, Comptes Rendus. Physique, Volume 9 (2008) no. 7, pp. 689-701 | DOI
[22] A numerical model of the VKS experiment, Eur. Phys. Lett., Volume 87 (2009) no. 3, 39002 | DOI
[23] Role of Soft-Iron Impellers on the Mode Selection in the von Kármán–Sodium Dynamo Experiment, Phys. Rev. Lett., Volume 104 (2010) no. 4, 044503 | DOI
[24] Mean-field model of the von Kármán sodium dynamo experiment using soft iron impellers, Phys. Rev. E, Volume 91 (2015) no. 1, 013008 | DOI
[25] Dynamo Enhancement and Mode Selection Triggered by High Magnetic Permeability, Phys. Rev. Lett., Volume 119 (2017) no. 23, 234501 | DOI
[26] Optimum reduction of the dynamo threshold by a ferromagnetic layer located in the flow, Phys. Rev. E, Volume 90 (2014), 033015 | DOI
[27] Saturation of the magnetic field above the dynamo threshold, Eur. Phys. J. B, Condens. Matter Complex Syst., Volume 22 (2001), pp. 273-276 | DOI
[28] Simulation of the bifurcation diagram of the Karlsruhe dynamo, Magnetohydrodynamics, Volume 38 (2002), pp. 35-40 | DOI
[29] Saturation of a Ponomarenko type fluid dynamo, Dynamo and Dynamics, a Mathematical Challenge (P. Chossat; D. Armbruster; I. Oprea, eds.) (NATO Science Series), Volume 26, Kluwer Academic Publishers : Dordrecht (2001), pp. 67-74 | DOI | Zbl
[30] et al. Magnetic field reversals in an experimental turbulent dynamo, Eur. Phys. Lett., Volume 77 (2007) no. 5, 59001 | DOI
[31] et al. Chaotic Dynamos Generated by a Turbulent Flow of Liquid Sodium, Phys. Rev. Lett., Volume 101 (2008) no. 7, 074502 | DOI
[32] Dipole-quadrupole dynamics during magnetic field reversals, Phys. Rev. E, Volume 82 (2010) no. 5, 056302 | DOI
[33] Chaotic dynamics of the magnetic field generated by dynamo action in a turbulent flow, J. Phys. Cond. Matt., Volume 20 (2008) no. 49, 494203 | DOI
[34] Simple Mechanism for Reversals of Earth’s Magnetic Field, Phys. Rev. Lett., Volume 102 (2009), 144503 | DOI
[35] Mechanisms for magnetic field reversals, Philos. Trans. R. Soc. Lond., Ser. A, Volume 368 (2010) no. 1916, pp. 1595-1605 | DOI
[36] Geomagnetic dipole strength and reversal rate over the past two million years, Nature, Volume 435 (2005), pp. 802-805 | DOI
[37] From reversing to hemispherical dynamos, Phys. Rev. E, Volume 80 (2009) no. 3, 035302 | DOI
[38] et al. Experimental Observation of Spatially Localized Dynamo Magnetic Fields, Phys. Rev. Lett., Volume 108 (2012) no. 14, 144501 | DOI
[39] Plate tectonics may control geomagnetic reversal frequency, Geophys. Res. Lett., Volume 38 (2011) no. 19, L19303 | DOI
[40] Mantle plumes link magnetic superchrons to phanerozoic mass depletion events, Earth Planet. Sci. Lett., Volume 260 (2007) no. 3, pp. 495-504 | DOI
[41] Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic, J. Geophys. Res. Solid Earth, Volume 100 (1995) no. B4, pp. 6093-6095 | DOI
[42] Heterogeneity and time dependence in 3D spherical mantle convection models with continental drift, Earth Planet. Sci. Lett., Volume 233 (2005) no. 1, pp. 121-135 | DOI
[43] Repeated and Sudden Reversals of the Dipole Field Generated by a Spherical Dynamo Action, Science, Volume 295 (2002) no. 5561, pp. 1887-1890 | DOI
[44] A detailed study of the polarity reversal mechanism in a numerical dynamo model, Geochemistry, Geophys. Geosystems, Volume 5 (2004) no. 3, Q03H10 | DOI
[45] A new deterministic model for chaotic reversals, Eur. Phys. J. B, Condens. Matter Complex Syst., Volume 85 (2012), 137 | DOI
[46] On the impact of true polar wander on heat flux patterns at the core-mantle boundary, EGUsphere, Volume 2023 (2023), pp. 1-24 | DOI
Cité par Sources :
Commentaires - Politique