Comptes Rendus
Article de recherche
Experimental dynamos: from models to applications to the geodynamo
[Dynamos expérimentales : des modèles aux applications à la géodynamo]
Comptes Rendus. Physique, Online first (2024), pp. 1-17.

Larmor a proposé en 1919 une explication pour l’origine du champ magnétique du soleil. Cette instabilité dite effet dynamo est considérée comme responsable de la plupart des champs magnétiques des objets astrophysiques dont celui de la Terre. Il a fallu plus de 80 ans après l’explication par Larmor pour que les premières expériences de laboratoire mettent en évidence l’instabilité dynamo. Après une brève présentation des trois expériences qui ont réussi à observer cet effet, je décris ce qu’elles nous ont appris sur les régimes possibles des dynamos des planètes et des étoiles et notamment sur la géodynamo.

Larmor proposed in 1919 an explanation for the origin of the Sun’s magnetic field. This phenomenon, known as the dynamo effect, is considered to be responsible for most of the magnetic fields of astrophysical objects, including that of the Earth. It took over 80 years after Larmor’s explanation for the first laboratory experiments to demonstrate the dynamo instability. After a brief introduction to the three experiments that have managed to observe this effect, I will describe what they have taught us about the possible regimes of dynamos of planets and stars, especially regarding the geodynamo.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/crphys.205
Keywords: Magnetohydrodynamics, dynamo instability, reversals of the Earth’s magnetic field
Mots-clés : Magnétohydrodynamique, instabilité dynamo, inversions du champ magnétique terrestre

François Pétrélis 1

1 LPENS, CNRS, ENS Paris, PSL University, Sorbonne Université, Université de Paris, F-75005, Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2024__25_S3_A10_0,
     author = {Fran\c{c}ois P\'etr\'elis},
     title = {Experimental dynamos: from models to applications to the geodynamo},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2024},
     doi = {10.5802/crphys.205},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - François Pétrélis
TI  - Experimental dynamos: from models to applications to the geodynamo
JO  - Comptes Rendus. Physique
PY  - 2024
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.205
LA  - en
ID  - CRPHYS_2024__25_S3_A10_0
ER  - 
%0 Journal Article
%A François Pétrélis
%T Experimental dynamos: from models to applications to the geodynamo
%J Comptes Rendus. Physique
%D 2024
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.205
%G en
%F CRPHYS_2024__25_S3_A10_0
François Pétrélis. Experimental dynamos: from models to applications to the geodynamo. Comptes Rendus. Physique, Online first (2024), pp. 1-17. doi : 10.5802/crphys.205.

[1] J. Larmor How could a rotating body such as the sun become a magnet?, Rep. 87th Meeting Brit. Assoc. Adv. Sci., Bornemouth, Sept. 9–13, John Murray: London (1919), pp. 156-160

[2] F. Lowes; I. Wilkinson Geomagnetic Dynamo: An Improved Laboratory Model, Nature, Volume 219 (1968), pp. 717-718 | DOI

[3] A. A.-Z. Raúl; P. Jānis Realization of Bullard’s disc dynamo, Proc. R. Soc. Lond., Ser. A, Volume 479 (2023), 20220740 | DOI

[4] F. Alboussière T.; M. Moulin Fury: an experimental dynamo with anisotropic electrical conductivity, Proc. R. Soc. Lond., Ser. A, Volume 478 (2022), 20220374 | DOI

[5] H. K. Moffatt Magnetic Field Generation in Electrically Conducting Fluids, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press: Cambridge, 1978

[6] Ya. B. Zeldovich; A. A. Ruzmaikin; D. D. Sokoloff Magnetic Fields in Astrophysics, The Fluid Mechanics of Astrophysics and Geophysics, 3, Gordon and Breach Science Publishers: New York, 1983

[7] A. Gailitis; O. Lielausis; E. Platacis et al. Magnetic field saturation in the Riga dynamo experiment, Phys. Rev. Lett., Volume 86 (2001), pp. 3024-3027 | DOI

[8] R. Stieglitz; U. Müller Experimental demonstration of a homogeneous two-scale dynamo, Phys. Fluids, Volume 13 (2001), pp. 561-564 | DOI

[9] R. Monchaux; M. Berhanu; M. Bourgoin et al. Generation of magnetic field by dynamo action in a turbulent flow of liquid sodium, Phys. Rev. Lett., Volume 98 (2007), 044502 | DOI

[10] N. L. Peffley; A. B. Cawthorne; D. P. Lathrop Toward a self-generating magnetic dynamo: The role of turbulence, Phys. Rev. E, Volume 61 (2000) no. 5, pp. 5287-5294 | DOI

[11] M. D. Nornberg; E. J. Spence; R. D. Kendrick; C. M. Jacobson; C. B. Forest Measurements of the magnetic field induced by a turbulent flow of liquid metal, Phys. Plasmas, Volume 13 (2006) no. 5, 055901 | DOI

[12] S. Cabanes; N. Schaeffer; H.-C. Nataf Magnetic induction and diffusion mechanisms in a liquid sodium spherical Couette experiment, Phys. Rev. E, Volume 90 (2014), 043018 | DOI

[13] F. Pétrélis; N. Mordant; S. Fauve On the magnetic fields generated by experimental dynamos, Geophys. Astrophys. Fluid Dyn., Volume 101 (2007) no. 3-4, pp. 289-323 | DOI

[14] Yu. B. Ponomarenko Theory of the hydromagnetic generator, J. Appl. Mech. Tech. Phys., Volume 14 (1973), pp. 775-778 | DOI

[15] A. Gailitis; O. Lielausis; E. Platacis; G. Gerbeth; F. Stefani The Riga Dynamo Experiment, Surv. Geophys., Volume 24 (2003), pp. 247-267 | DOI

[16] A. Gailitis; G. Gerbeth; Th. Gundrum; O. Lielausis; G. Lipsbergs; E. Platacis; F. Stefani Self-excitation in a helical liquid metal flow: the Riga dynamo experiments, J. Plasma Phys., Volume 84 (2018) no. 3, 735840301 | DOI

[17] G. O. Roberts Dynamo action of fluid motions with two- dimensional periodicity, Philos. Trans. R. Soc. Lond., Ser. A, Volume 271 (1972), pp. 411-454 | DOI | Zbl

[18] A. Alexakis; S. Fauve; C. Gissinger; F. Pétrélis Effect of fluctuations on mean-field dynamos, J. Plasma Phys., Volume 84 (2018) no. 4, 735840401 | DOI

[19] U. Müller; R. Stieglitz; F. H. Busse; A. Tilgner The Karlsruhe two-scale dynamo experiment, Comptes Rendus. Physique, Volume 9 (2008) no. 7, pp. 729-740 | DOI

[20] U. Christensen; A. Tilgner Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos, Nature, Volume 429 (2004), pp. 169-171 | DOI

[21] S. Aumaître; M. Berhanu; M. Bourgoin et al. The VKS experiment: turbulent dynamical dynamos, Comptes Rendus. Physique, Volume 9 (2008) no. 7, pp. 689-701 | DOI

[22] C. J. P. Gissinger A numerical model of the VKS experiment, Eur. Phys. Lett., Volume 87 (2009) no. 3, 39002 | DOI

[23] A. Giesecke; F. Stefani; G. Gerbeth Role of Soft-Iron Impellers on the Mode Selection in the von Kármán–Sodium Dynamo Experiment, Phys. Rev. Lett., Volume 104 (2010) no. 4, 044503 | DOI

[24] C. Nore; J. Léorat; J.-L. Guermond; A. Giesecke Mean-field model of the von Kármán sodium dynamo experiment using soft iron impellers, Phys. Rev. E, Volume 91 (2015) no. 1, 013008 | DOI

[25] S. Kreuzahler; Y. Ponty; N. Plihon; H. Homann; R. Grauer Dynamo Enhancement and Mode Selection Triggered by High Magnetic Permeability, Phys. Rev. Lett., Volume 119 (2017) no. 23, 234501 | DOI

[26] J. Herault; F. Pétrélis Optimum reduction of the dynamo threshold by a ferromagnetic layer located in the flow, Phys. Rev. E, Volume 90 (2014), 033015 | DOI

[27] F. Pétrélis; S. Fauve Saturation of the magnetic field above the dynamo threshold, Eur. Phys. J. B, Condens. Matter Complex Syst., Volume 22 (2001), pp. 273-276 | DOI

[28] A. Tilgner; F. H. Busse Simulation of the bifurcation diagram of the Karlsruhe dynamo, Magnetohydrodynamics, Volume 38 (2002), pp. 35-40 | DOI

[29] A. Nunez; F. Petrelis; S. Fauve Saturation of a Ponomarenko type fluid dynamo, Dynamo and Dynamics, a Mathematical Challenge (P. Chossat; D. Armbruster; I. Oprea, eds.) (NATO Science Series), Volume 26, Kluwer Academic Publishers : Dordrecht (2001), pp. 67-74 | DOI | Zbl

[30] M. Berhanu; R. Monchaux; S. Fauve et al. Magnetic field reversals in an experimental turbulent dynamo, Eur. Phys. Lett., Volume 77 (2007) no. 5, 59001 | DOI

[31] F. Ravelet; M. Berhanu; R. Monchaux et al. Chaotic Dynamos Generated by a Turbulent Flow of Liquid Sodium, Phys. Rev. Lett., Volume 101 (2008) no. 7, 074502 | DOI

[32] C. Gissinger Dipole-quadrupole dynamics during magnetic field reversals, Phys. Rev. E, Volume 82 (2010) no. 5, 056302 | DOI

[33] F. Pétrélis; S. Fauve Chaotic dynamics of the magnetic field generated by dynamo action in a turbulent flow, J. Phys. Cond. Matt., Volume 20 (2008) no. 49, 494203 | DOI

[34] F. Pétrélis; S. Fauve; E. Dormy; J.-P. Valet Simple Mechanism for Reversals of Earth’s Magnetic Field, Phys. Rev. Lett., Volume 102 (2009), 144503 | DOI

[35] F. Pétrélis; S. Fauve Mechanisms for magnetic field reversals, Philos. Trans. R. Soc. Lond., Ser. A, Volume 368 (2010) no. 1916, pp. 1595-1605 | DOI

[36] J.-P. Valet; L. Meynadier; Y. Guyodo Geomagnetic dipole strength and reversal rate over the past two million years, Nature, Volume 435 (2005), pp. 802-805 | DOI

[37] B. Gallet; F. Pétrélis From reversing to hemispherical dynamos, Phys. Rev. E, Volume 80 (2009) no. 3, 035302 | DOI

[38] B. Gallet; S. Aumaître; J. Boisson et al. Experimental Observation of Spatially Localized Dynamo Magnetic Fields, Phys. Rev. Lett., Volume 108 (2012) no. 14, 144501 | DOI

[39] F. Pétrélis; J. Besse; J.-P. Valet Plate tectonics may control geomagnetic reversal frequency, Geophys. Res. Lett., Volume 38 (2011) no. 19, L19303 | DOI

[40] V. Courtillot; P. Olson Mantle plumes link magnetic superchrons to phanerozoic mass depletion events, Earth Planet. Sci. Lett., Volume 260 (2007) no. 3, pp. 495-504 | DOI

[41] S. C. Cande; D. V. Kent Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic, J. Geophys. Res. Solid Earth, Volume 100 (1995) no. B4, pp. 6093-6095 | DOI

[42] B. R. Phillips; H.-P. Bunge Heterogeneity and time dependence in 3D spherical mantle convection models with continental drift, Earth Planet. Sci. Lett., Volume 233 (2005) no. 1, pp. 121-135 | DOI

[43] J. Li; T. Sato; A. Kageyama Repeated and Sudden Reversals of the Dipole Field Generated by a Spherical Dynamo Action, Science, Volume 295 (2002) no. 5561, pp. 1887-1890 | DOI

[44] J. Wicht; P. Olson A detailed study of the polarity reversal mechanism in a numerical dynamo model, Geochemistry, Geophys. Geosystems, Volume 5 (2004) no. 3, Q03H10 | DOI

[45] C. Gissinger A new deterministic model for chaotic reversals, Eur. Phys. J. B, Condens. Matter Complex Syst., Volume 85 (2012), 137 | DOI

[46] T. Frasson; S. Labrosse; H.-C. Nataf; N. Coltice; N. Flament On the impact of true polar wander on heat flux patterns at the core-mantle boundary, EGUsphere, Volume 2023 (2023), pp. 1-24 | DOI

Cité par Sources :

Commentaires - Politique