[L’expérience de précession DRESDYN]
Le projet le plus ambitieux au sein de l’installation DREsden Sodium pour les études DYNamo et thermohydrauliques (DRESDYN) au Helmholtz-Zentrum Dresden-Rossendorf (HZDR) est la mise en place d’une expérience de dynamo entrainée par précession. Après avoir discuté du contexte scientifique, de quelques résultats d’expériences préliminaires en eau et de prédictions numériques, nous nous concentrons sur les nombreux problèmes structurels et de conception de la machine. Nous décrivons également l’avancement des travaux et donnons un aperçu des campagnes expérimentales prévues.
The most ambitious project within the DREsden Sodium facility for DYNamo and thermohydraulic studies (DRESDYN) at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) is the set-up of a precession-driven dynamo experiment. After discussing the scientific background and some results of water pre-experiments and numerical predictions, we focus on the numerous structural and design problems of the machine. We also outline the progress of the construction work and give an outlook for the upcoming experimental campaigns.
Révisé le :
Accepté le :
Première publication :
Mots-clés : précession, dynamo, sodium
Frank Stefani 1 ; Sten Anders 1 ; Sven Eckert 1 ; Nico Freyer 1 ; Gunter Gerbeth 1 ; André Giesecke 1 ; Thomas Gundrum 1 ; Peter Kaever 1 ; Vivaswat Kumar 1 ; Federico Pizzi 2 ; Dirk Räbiger 1 ; Ján Šimkanin 3 ; Christian Steglich 1 ; Tobias Vogt 1 ; Nicole Wagner 1 ; Gerald Wedel 1
@article{CRPHYS_2024__25_S3_A18_0, author = {Frank Stefani and Sten Anders and Sven Eckert and Nico Freyer and Gunter Gerbeth and Andr\'e Giesecke and Thomas Gundrum and Peter Kaever and Vivaswat Kumar and Federico Pizzi and Dirk R\"abiger and J\'an \v{S}imkanin and Christian Steglich and Tobias Vogt and Nicole Wagner and Gerald Wedel}, title = {The {DRESDYN} precession experiment}, journal = {Comptes Rendus. Physique}, publisher = {Acad\'emie des sciences, Paris}, year = {2024}, doi = {10.5802/crphys.214}, language = {en}, note = {Online first}, }
TY - JOUR AU - Frank Stefani AU - Sten Anders AU - Sven Eckert AU - Nico Freyer AU - Gunter Gerbeth AU - André Giesecke AU - Thomas Gundrum AU - Peter Kaever AU - Vivaswat Kumar AU - Federico Pizzi AU - Dirk Räbiger AU - Ján Šimkanin AU - Christian Steglich AU - Tobias Vogt AU - Nicole Wagner AU - Gerald Wedel TI - The DRESDYN precession experiment JO - Comptes Rendus. Physique PY - 2024 PB - Académie des sciences, Paris N1 - Online first DO - 10.5802/crphys.214 LA - en ID - CRPHYS_2024__25_S3_A18_0 ER -
%0 Journal Article %A Frank Stefani %A Sten Anders %A Sven Eckert %A Nico Freyer %A Gunter Gerbeth %A André Giesecke %A Thomas Gundrum %A Peter Kaever %A Vivaswat Kumar %A Federico Pizzi %A Dirk Räbiger %A Ján Šimkanin %A Christian Steglich %A Tobias Vogt %A Nicole Wagner %A Gerald Wedel %T The DRESDYN precession experiment %J Comptes Rendus. Physique %D 2024 %I Académie des sciences, Paris %Z Online first %R 10.5802/crphys.214 %G en %F CRPHYS_2024__25_S3_A18_0
Frank Stefani; Sten Anders; Sven Eckert; Nico Freyer; Gunter Gerbeth; André Giesecke; Thomas Gundrum; Peter Kaever; Vivaswat Kumar; Federico Pizzi; Dirk Räbiger; Ján Šimkanin; Christian Steglich; Tobias Vogt; Nicole Wagner; Gerald Wedel. The DRESDYN precession experiment. Comptes Rendus. Physique, Online first (2024), pp. 1-19. doi : 10.5802/crphys.214.
[1] Self-exciting fluid dynamos, Cambridge Texts in Applied Mathematics, 59, Cambridge University Press: Cambridge, 2019 | DOI | Zbl
[2] Dynamo theories, J. Plasma Phys., Volume 85 (2019), 205850401 | DOI
[3] The turbulent dynamo, J. Fluid Mech., Volume 912 (2021), P1 | DOI
[4] Colloquium: Laboratory experiments on hydromagnetic dynamos, Rev. Mod. Phys., Volume 74 (2002), pp. 973-990 | DOI
[5] Magnetohydrodynamic experiments on cosmic magnetic fields, Z. Angew. Math. Mech., Volume 88 (2008), pp. 930-954 | DOI
[6] Laboratory dynamo experiments, Space Sci. Rev., Volume 152 (2010), pp. 543-564 | DOI
[7] Magnetic dynamos in the lab, Phys. Today, Volume 64 (2011), pp. 40-45 | DOI
[8] Liquid metal experiments on geophysical and astrophysical phenomena, Nat. Rev. Phys., Volume 6 (2024), pp. 409-425 | DOI
[9] On the theory of hydromagnetic dynamos, Zh. Prikl. Mekh. & Tekh. Fiz. (USSR), Volume 6 (1973), pp. 47-51
[10] et al. Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility, Phys. Rev. Lett., Volume 84 (2000), pp. 4365-4368 | DOI
[11] et al. Magnetic field saturation in the Riga dynamo experiment, Phys. Rev. Lett., Volume 86 (2000), pp. 3024-3027 | DOI
[12] The Riga dynamo experiment, Surv. Geophys., Volume 24 (2003), pp. 247-267 | DOI
[13] Riga dynamo experiment and its theoretical background, Phys. Plasmas, Volume 11 (2004), p. 2838-2834 | DOI
[14] Self-excitation in a helical liquid metal flow: the Riga dynamo experiments, J. Plasma Phys., Volume 84 (2018), 73584030 | DOI
[15] The Karlsruhe dynamo experiment, Nonl. Proc. Geophys., Volume 9 (2002), pp. 165-170 | DOI
[16] A two-scale hydromagnetic dynamo experiment, J. Fluid Mech., Volume 498 (2004), pp. 31-71 | DOI
[17] Experiments at a two-scale dynamo test facility, J. Fluid Mech., Volume 552 (2006), pp. 419-440 | DOI
[18] The response of a two-scale kinematic dynamo to periodic flow forcing, Phys. Fluids, Volume 21 (2009), 034108 | DOI
[19] et al. Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium, Phys. Rev. Lett., Volume 98 (2007), 044502 | DOI
[20] et al. Magnetic field reversals in an experimental turbulent dynamo, Eur. Phys. Lett., Volume 77 (2007), 59001 | DOI
[21] et al. Chaotic dynamos generated by a turbulent flow of liquid sodium, Phys. Rev. Lett., Volume 101 (2008), 074502 | DOI
[22] et al. The von Kármán sodium experiment: Turbulent dynamical dynamos, Phys. Fluids, Volume 21 (2009), 035108 | DOI
[23] et al. Experimental observation of spatially localized dynamo magnetic fields, Phys. Rev. Lett., Volume 108 (2012), 144501 | DOI
[24] Role of soft-iron impellers on the mode selection in the von-Kármán-sodium dynamo experiment, Phys. Rev. Lett., Volume 104 (2010), 044503 | DOI
[25] Dynamo enhancement and mode selection triggered by high magnetic permeability, Phys. Rev. Lett., Volume 119 (2017), 234501 | DOI
[26] Numerical simulation of the von-Kármán-sodium dynamo experiment, J. Fluid Mech., Volume 854 (2018), pp. 164-195 | DOI
[27] Why dynamos are prone to reversals, Earth Planet. Sci. Lett., Volume 243 (2006), pp. 828-840 | DOI
[28] Simple mechanism for reversals of Earth’s magnetic field, Phys. Rev. Lett., Volume 102 (2009), 144503 | DOI
[29] Magnetic reversals in a simple model of magnetohydrodynamics, Phys. Rev. Lett., Volume 105 (2010), 024501 | DOI
[30] Flows driven by libration, precession, and tides, Annu. Rev. Fluid Mech., Volume 147 (2015), pp. 163-193 | DOI
[31] Stochastic resonance in geomagnetic polarity reversals, Phys. Rev. Lett., Volume 90 (2003), 058501 | DOI
[32] Inferring basic parameters of the geodynamo from sequences of polarity reversals, Inverse Probl., Volume 25 (2008), 065011 | DOI
[33] Multivariable statistical analysis between geomagnetic field, climate, and orbital periodicities over the last 500 kyr, and their relationships during the last interglacial, Global Planet. Change, Volume 213 (2022), 103836 | DOI
[34] Sustaining Earth’s magnetic dynamo, Nat. Rev. Earth Environ., Volume 3 (2022), pp. 255-269 | DOI
[35] A long-lived lunar dynamo driven by continuous mechanical stirring, Nature, Volume 479 (2011), pp. 212-214 | DOI
[36] A two-billion-year history for the lunar dynamo, Sci. Adv., Volume 3 (2017), e170020 | DOI
[37] et al. An ancient core dynamo in asteroid Vesta, Science, Volume 338 (2012), pp. 238-241 | DOI
[38] Tidally synchronized solar dynamo: A rebuttal, Solar Phys., Volume 297 (2022), 107 | DOI
[39] No evidence for synchronization of the solar cycle by a “clock”, Astron. Astrophys., Volume 671 (2023), A87 | DOI
[40] Apparent relations between solar activity and solar tides caused by the planets (2007) (no. NASA/TM-2007-214817) (Technical report)
[41] Does the Sun work as a nuclear fusion amplifier of planetary tidal forcing? A proposal for a physical mechanism based on the mass-luminosity relation, J. Atmos. Sol.-Terr. Phys., Volume 81-82 (2012), pp. 27-40 | DOI
[42] The Venus-Earth-Jupiter spin-orbit coupling model, Pattern Recogn. Phys., Volume 1 (2013), pp. 147-158 | DOI
[43] The gravitational influence of Venus, the Earth, and Jupiter on the 11-year cycle of solar activity, Mosc. Univ. Phys. Bull., Volume 71 (2016), pp. 440-446 | DOI
[44] Synchronized helicity oscillations: a link between planetary tides and the solar cycle?, Solar Phys., Volume 291 (2016), pp. 2197-2212 | DOI
[45] A model of a tidally synchronized solar dynamo, Solar Phys., Volume 294 (2019), 60 | DOI
[46] Shaken and Stirred: When Bond Meets Suess–de Vries and Gnevyshev–Ohl, Solar Phys., Volume 296 (2021), 88 | DOI
[47] External forcing of the solar dynamo, Front. Astron. Space Sci., Volume 9 (2022), 853676 | DOI
[48] A synchronized two-dimensional model of the solar dynamo, Solar Phys., Volume 298 (2023), 90 | DOI
[49] Tidally forced planetary waves in the tachocline of solar-like stars, Astrophys. J., Volume 944 (2023), 48 | DOI
[50] Rieger, Schwabe, Suess–de Vries: The sunny beats of resonance, Solar Phys., Volume 299 (2024), 51 | DOI
[51] Orbit-spin coupling and the circulation of the Martian atmosphere, Planet. Space Sci., Volume 141 (201), pp. 1-16 | DOI
[52] Orbit-spin coupling, the solar dynamo, and the planetary theory of sunspots (2023) (preprint, arXiv:2309.13076)
[53] Inviscid instabilities in rotating ellipsoids on eccentric Kepler orbits, J. Fluid Mech., Volume 833 (2017), pp. 469-511 | DOI
[54] Rotating convection with centrifugal buoyancy: Numerical predictions for laboratory experiments, Phys. Rev. Fluids, Volume 4 (2019), 073501 | DOI
[55] De la rotation de la terre supposée fluide à son intérieur, Bull. Soc. Imp. Natur. Mosc., Volume 2 (1895), pp. 285-318
[56] Sur la précession des corps déformables, Bull. Astron., Volume 27 (1910), pp. 321-356 | DOI
[57] Steady fluid flow in a precessing spheroidal shell, J. Fluid Mech., Volume 33 (1968), pp. 739-751 | DOI
[58] Breakdown regimes of inertia waves in a precessing cylinder, J. Fluid Mech., Volume 243 (1992), pp. 261-296 | DOI
[59] Azimuthal flow associated with inertial wave resonance in a precessing cylinder, J. Fluid Mech., Volume 319 (1996), pp. 387-406 | DOI
[60] Experimental study of fluid flows in a precessing cylindrical annulus, Phys. Fluids, Volume 26 (2014), 046604 | DOI
[61] Evidence of a cyclonic regime in a precessing cylindrical container, Exp. Fluids, Volume 53 (2012), pp. 1693-1700 | DOI
[62] et al. Turbulence driven by precession in spherical and slightly elongated spheroidal cavities, Phys. Fluids, Volume 26 (2014), 055107 | DOI
[63] Subcritical transition to turbulence of a precessing flow in a cylindrical vessel, Phys. Fluids, Volume 27 (2015), 124102 | DOI
[64] Three-dimensional flow structures of turbulence in precessing spheroids, Phys. Rev. Fluids, Volume 4 (2019), 014603 | DOI
[65] Hysteresis and instabilities in a spheroid in precession near the resonance with the tilt-over mode, J. Fluid Mech., Volume 909 (2021), A17 | DOI
[66] Precession-driven flows in non-axisymmetric ellipsoids, J. Fluid Mech., Volume 737 (2013), pp. 412-439 | DOI
[67] Experimental study of the flows in a non-axisymmetric ellipsoid under precession, J. Fluid Mech., Volume 923 (2022), A24 | DOI
[68] Precession driven dynamos, Phys. Fluids, Volume 17 (2005), 034104 | DOI
[69] On a dynamo driven by topographic precession, Geophys. Astrophys. Fluid Dyn., Volume 103 (2009), pp. 467-501 | DOI
[70] Numerical modeling of the magnetic field generation in a precessing cube with a conducting melt, Magnetohydrodynamics, Volume 46 (2010), pp. 271-280 | DOI
[71] Nonlinear dynamo action in a precessing cylindrical container, Phys. Rev. E, Volume 93 (2011), 043113 | DOI
[72] Precession-driven dynamos in a full sphere and the role of large scale cyclonic vortices, Phys. Fluids, Volume 28 (2016), 066601 | DOI
[73] Dynamos in precessing cubes, New J. Phys., Volume 18 (2016), 103019 | DOI
[74] Nonlinear large scale flow in a precessing cylinder and its ability to drive dynamo action, Phys. Rev. Lett., Volume 120 (2018), 024502 | DOI
[75] Kinematic dynamos in triaxial ellipsoids, Proc. R. Soc. Lond., Ser. A, Volume A477 (2021), 20210252 | DOI
[76] On hydromagnetic precession in a cylinder, J. Fluid Mech., Volume 45 (1971), pp. 111-130 | DOI
[77] On models of precession driven core flow, Stud. Geophys. Geod., Volume 42 (1998), pp. 232-238 | DOI
[78] A rotating fluid cylinder subject to weak precession, J. Fluid Mech., Volume 599 (2008), pp. 405-440 | DOI
[79] Precessional instability of a fluid cylinder, J. Fluid Mech., Volume 666 (2011), pp. 104-145 | DOI
[80] Zonal flow in a resonant precessing cylinder, J. Fluid Mech., Volume 923 (2021), A29 | DOI
[81] Inertial wave dynamics in a rotating and precessing cylinder, J. Fluid Mech., Volume 303 (1995), pp. 233-252 | DOI
[82] Triadic resonances in nonlinear simulations of a fluid flow in a precessing cylinder, New J. Phys., Volume 17 (2015), 113044 | DOI
[83] Nonlinear and detuning effects of the nutation angle in precessionally forced rotating cylinder flow, Phys. Rev. Fluids, Volume 1 (2016), 023602 | DOI
[84] On triadic resonance as an instability mechanism in precessing cylinder flow, J. Fluid Mech., Volume 841 (2018), R3 | DOI | Zbl
[85] Instability of precession driven Kelvin modes: Evidence of a detuning effect, Phys. Rev. Fluids, Volume 4 (2019), 033901 | DOI
[86] Instability of a fluid inside a precessing cylinder, Phys. Fluids, Volume 20 (2008), 081701 | DOI
[87] Geoinspired soft mixers, J. Fluid Mech., Volume 903 (2020), A15 | DOI
[88] Semtex: A spectral element–fourier solver for the incompressible Navier–Stokes equations in cylindrical or cartesian coordinates, Comput. Phys. Commun., Volume 245 (2019), 106804 | DOI
[89] Kinematic simulation of dynamo action by a hybrid boundary-element/finite-volume method, Magnetohydrodynamics, Volume 44 (2008), pp. 237-252 | DOI
[90] Toward an experimental von Kármán dynamo: Numerical studies for an optimized design, Phys. Fluids, Volume 17 (2005), 117104 | DOI
[91] et al. Ambivalent effects of added layers on steady kinematic dynamos in cylindrical geometry: application to the VKS experiment, Eur. J. Mech. B Fluids, Volume 25 (2006), pp. 894-908 | DOI
[92] Influence of high-permeability discs in an axisymmetric model of the Cadarache dynamo experiment, New J. Phys., Volume 14 (2012), 053005 | DOI
[93] Kinematic dynamo action of a precession-driven flow based on the results of water experiments and hydrodynamic simulations, Geophys. Astrophys. Fluid Dyn., Volume 113 (2019), pp. 235-255 | DOI
[94] Prograde and retrograde precession of a fluid-filled cylinder, New J. Phys., Volume 23 (2021), 123016 | DOI
[95] et al. The effect of nutation angle on the flow inside a precessing cylinder and its dynamo action, Phys. Fluids, Volume 35 (2023), 014114 | DOI
[96] Numerical and theoretical framework for the DRESDYN precession dynamo experiments, Magnetohydrodynamics, Volume 58 (2022), pp. 445-453 | DOI
[97] Liquid sodium models of the Earth’s core, Prog. in Earth and Planet. Sci., Volume 2 (2015), 29 | DOI
[98] et al. Driving large magnetic Reynolds number flow in highly ionized, unmagnetized plasmas, Phys. Plasmas, Volume 24 (2017), 056502 | DOI
[99] Strength assessment of a precession driven dynamo, Tech. Mech., Volume 37 (2017), pp. 120-128 | DOI
[100] et al. Towards a precession driven dynamo experiment, Magnetohydrodynamics, Volume 51 (2015), pp. 275-284 | DOI
[101] Input reduction for nonlinear thermal surface loads, Arch. Appl. Mech., Volume 93 (2023), pp. 1863-1878 | DOI
[102] Numerical investigation of the flow inside a precession driven cylindrical cavity with additional baffles using an immersed boundary method, Phys. Fluids, Volume 34 (2022), 96607 | DOI
[103] Effects of bottom topography on the spin-up in a cylinder, Phys. Fluids, Volume 30 (2018), 106601 | DOI
[104] Ignition and extinguishment of sodium fires in air diluted by nitrogen, Proceedings, 5th AOSFST, Newcastle, Australia, 2001 (M. A. Delichatsios; B. Z. Dlugogorski; E. M. Kennedy, eds.), International Association for Fire Safety Science (2001), pp. 285-294
[105] et al. Direct observation of the turbulent emf and transport of magnetic field in a liquid sodium experiment, Astrophys. J., Volume 759 (2012), 80 | DOI
Cité par Sources :
Commentaires - Politique