Comptes Rendus
Article de recherche
The DRESDYN precession experiment
[L’expérience de précession DRESDYN]
Comptes Rendus. Physique, Online first (2024), pp. 1-19.

Le projet le plus ambitieux au sein de l’installation DREsden Sodium pour les études DYNamo et thermohydrauliques (DRESDYN) au Helmholtz-Zentrum Dresden-Rossendorf (HZDR) est la mise en place d’une expérience de dynamo entrainée par précession. Après avoir discuté du contexte scientifique, de quelques résultats d’expériences préliminaires en eau et de prédictions numériques, nous nous concentrons sur les nombreux problèmes structurels et de conception de la machine. Nous décrivons également l’avancement des travaux et donnons un aperçu des campagnes expérimentales prévues.

The most ambitious project within the DREsden Sodium facility for DYNamo and thermohydraulic studies (DRESDYN) at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) is the set-up of a precession-driven dynamo experiment. After discussing the scientific background and some results of water pre-experiments and numerical predictions, we focus on the numerous structural and design problems of the machine. We also outline the progress of the construction work and give an outlook for the upcoming experimental campaigns.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/crphys.214
Keywords: precession, dynamo, sodium
Mots-clés : précession, dynamo, sodium

Frank Stefani 1 ; Sten Anders 1 ; Sven Eckert 1 ; Nico Freyer 1 ; Gunter Gerbeth 1 ; André Giesecke 1 ; Thomas Gundrum 1 ; Peter Kaever 1 ; Vivaswat Kumar 1 ; Federico Pizzi 2 ; Dirk Räbiger 1 ; Ján Šimkanin 3 ; Christian Steglich 1 ; Tobias Vogt 1 ; Nicole Wagner 1 ; Gerald Wedel 1

1 Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, D-01328 Dresden, Germany
2 Department of Fluid Mechanics, Universitat Politècnica de Catalunya-Barcelona Tech, Barcelona 08034, Spain
3 Institute of Geophysics of the Czech Academy of Sciences, Boční II/1401, Praha 4-Spořilov 141 31, Czech Republic
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2024__25_S3_A18_0,
     author = {Frank Stefani and Sten Anders and Sven Eckert and Nico Freyer and Gunter Gerbeth and Andr\'e Giesecke and Thomas Gundrum and Peter Kaever and Vivaswat Kumar and Federico Pizzi and Dirk R\"abiger and J\'an \v{S}imkanin and Christian Steglich and Tobias Vogt and Nicole Wagner and Gerald Wedel},
     title = {The {DRESDYN} precession experiment},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2024},
     doi = {10.5802/crphys.214},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Frank Stefani
AU  - Sten Anders
AU  - Sven Eckert
AU  - Nico Freyer
AU  - Gunter Gerbeth
AU  - André Giesecke
AU  - Thomas Gundrum
AU  - Peter Kaever
AU  - Vivaswat Kumar
AU  - Federico Pizzi
AU  - Dirk Räbiger
AU  - Ján Šimkanin
AU  - Christian Steglich
AU  - Tobias Vogt
AU  - Nicole Wagner
AU  - Gerald Wedel
TI  - The DRESDYN precession experiment
JO  - Comptes Rendus. Physique
PY  - 2024
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.214
LA  - en
ID  - CRPHYS_2024__25_S3_A18_0
ER  - 
%0 Journal Article
%A Frank Stefani
%A Sten Anders
%A Sven Eckert
%A Nico Freyer
%A Gunter Gerbeth
%A André Giesecke
%A Thomas Gundrum
%A Peter Kaever
%A Vivaswat Kumar
%A Federico Pizzi
%A Dirk Räbiger
%A Ján Šimkanin
%A Christian Steglich
%A Tobias Vogt
%A Nicole Wagner
%A Gerald Wedel
%T The DRESDYN precession experiment
%J Comptes Rendus. Physique
%D 2024
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.214
%G en
%F CRPHYS_2024__25_S3_A18_0
Frank Stefani; Sten Anders; Sven Eckert; Nico Freyer; Gunter Gerbeth; André Giesecke; Thomas Gundrum; Peter Kaever; Vivaswat Kumar; Federico Pizzi; Dirk Räbiger; Ján Šimkanin; Christian Steglich; Tobias Vogt; Nicole Wagner; Gerald Wedel. The DRESDYN precession experiment. Comptes Rendus. Physique, Online first (2024), pp. 1-19. doi : 10.5802/crphys.214.

[1] H. K. Moffatt; E. Dormy Self-exciting fluid dynamos, Cambridge Texts in Applied Mathematics, 59, Cambridge University Press: Cambridge, 2019 | DOI | Zbl

[2] F. Rincon Dynamo theories, J. Plasma Phys., Volume 85 (2019), 205850401 | DOI

[3] S. Tobias The turbulent dynamo, J. Fluid Mech., Volume 912 (2021), P1 | DOI

[4] A. Gailitis; O. Lielausis; E. Platacis; G. Gerbeth; F. Stefani Colloquium: Laboratory experiments on hydromagnetic dynamos, Rev. Mod. Phys., Volume 74 (2002), pp. 973-990 | DOI

[5] F. Stefani; A. Gailitis; G. Gerbeth Magnetohydrodynamic experiments on cosmic magnetic fields, Z. Angew. Math. Mech., Volume 88 (2008), pp. 930-954 | DOI

[6] G. Verhille; N. Plihon; M. Bourgoin; P. P. Odier; J.-F. Pinton Laboratory dynamo experiments, Space Sci. Rev., Volume 152 (2010), pp. 543-564 | DOI

[7] D. P. Lathrop; C. B. Forest Magnetic dynamos in the lab, Phys. Today, Volume 64 (2011), pp. 40-45 | DOI

[8] F. Stefani Liquid metal experiments on geophysical and astrophysical phenomena, Nat. Rev. Phys., Volume 6 (2024), pp. 409-425 | DOI

[9] Y. B. Ponomarenko On the theory of hydromagnetic dynamos, Zh. Prikl. Mekh. & Tekh. Fiz. (USSR), Volume 6 (1973), pp. 47-51

[10] A. Gailitis; Olgerts Lielausis; Sergej Dement’ev et al. Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility, Phys. Rev. Lett., Volume 84 (2000), pp. 4365-4368 | DOI

[11] A. Gailitis; O. Lielausis; E. Platacis et al. Magnetic field saturation in the Riga dynamo experiment, Phys. Rev. Lett., Volume 86 (2000), pp. 3024-3027 | DOI

[12] A. Gailitis; O. Lielausis; E. Platacis; G. Gerbeth; F. Stefani The Riga dynamo experiment, Surv. Geophys., Volume 24 (2003), pp. 247-267 | DOI

[13] A. Gailitis; O. Lielausis; E. Platacis; G. Gerbeth; F. Stefani Riga dynamo experiment and its theoretical background, Phys. Plasmas, Volume 11 (2004), p. 2838-2834 | DOI

[14] A. Gailitis; G. Gerbeth; T. Gundrum; O. Lielausis; G. Lipsbergs; E. Platacis; F. Stefani Self-excitation in a helical liquid metal flow: the Riga dynamo experiments, J. Plasma Phys., Volume 84 (2018), 73584030 | DOI

[15] U. Müller; R. Stieglitz The Karlsruhe dynamo experiment, Nonl. Proc. Geophys., Volume 9 (2002), pp. 165-170 | DOI

[16] U. Müller; R. Stieglitz; S. Horanyi A two-scale hydromagnetic dynamo experiment, J. Fluid Mech., Volume 498 (2004), pp. 31-71 | DOI

[17] U. Müller; R. Stieglitz; S. Horanyi Experiments at a two-scale dynamo test facility, J. Fluid Mech., Volume 552 (2006), pp. 419-440 | DOI

[18] U. Müller; R. Stieglitz The response of a two-scale kinematic dynamo to periodic flow forcing, Phys. Fluids, Volume 21 (2009), 034108 | DOI

[19] R. Monchaux; M. Berhanu; M. Bourgoin et al. Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium, Phys. Rev. Lett., Volume 98 (2007), 044502 | DOI

[20] M. Berhanu; R. Monchaux; S. Fauve et al. Magnetic field reversals in an experimental turbulent dynamo, Eur. Phys. Lett., Volume 77 (2007), 59001 | DOI

[21] F. Ravelet; M. Berhanu; R. Monchaux et al. Chaotic dynamos generated by a turbulent flow of liquid sodium, Phys. Rev. Lett., Volume 101 (2008), 074502 | DOI

[22] R. Monchaux; M. Berhanu; S. Aumaître et al. The von Kármán sodium experiment: Turbulent dynamical dynamos, Phys. Fluids, Volume 21 (2009), 035108 | DOI

[23] B. Gallet; S. Aumaître; J. Boisson et al. Experimental observation of spatially localized dynamo magnetic fields, Phys. Rev. Lett., Volume 108 (2012), 144501 | DOI

[24] A. Giesecke; F. Stefani; G. Gerbeth Role of soft-iron impellers on the mode selection in the von-Kármán-sodium dynamo experiment, Phys. Rev. Lett., Volume 104 (2010), 044503 | DOI

[25] S. Kreuzahler; Y. Ponty; N. Plihon; H. Homann; R. Grauer Dynamo enhancement and mode selection triggered by high magnetic permeability, Phys. Rev. Lett., Volume 119 (2017), 234501 | DOI

[26] C. Nore; D. C. Quiroz; L. Cappanera; J.-L. Guermond Numerical simulation of the von-Kármán-sodium dynamo experiment, J. Fluid Mech., Volume 854 (2018), pp. 164-195 | DOI

[27] F. Stefani; G. Gerbeth; U. Günther; M. Xu Why dynamos are prone to reversals, Earth Planet. Sci. Lett., Volume 243 (2006), pp. 828-840 | DOI

[28] F. Pétrélis; S. Fauve; E. Dormy; J.-P. Valet Simple mechanism for reversals of Earth’s magnetic field, Phys. Rev. Lett., Volume 102 (2009), 144503 | DOI

[29] R. Benzi; J.-F. Pinton Magnetic reversals in a simple model of magnetohydrodynamics, Phys. Rev. Lett., Volume 105 (2010), 024501 | DOI

[30] M. Le Bars; D. Cébron; P. Le Gal Flows driven by libration, precession, and tides, Annu. Rev. Fluid Mech., Volume 147 (2015), pp. 163-193 | DOI

[31] G. Consolini; P. De Michelis Stochastic resonance in geomagnetic polarity reversals, Phys. Rev. Lett., Volume 90 (2003), 058501 | DOI

[32] M. Fischer; G. Gerbeth; A. Giesecke; F. Stefani Inferring basic parameters of the geodynamo from sequences of polarity reversals, Inverse Probl., Volume 25 (2008), 065011 | DOI

[33] L. Cappellotto; M. J. Orgeira; V. M. V. Herrera; R. G. Cionco Multivariable statistical analysis between geomagnetic field, climate, and orbital periodicities over the last 500 kyr, and their relationships during the last interglacial, Global Planet. Change, Volume 213 (2022), 103836 | DOI

[34] M. Landeau; A. Fournier; H.-C. Nataf; D. Cebron; N. Schaeffer Sustaining Earth’s magnetic dynamo, Nat. Rev. Earth Environ., Volume 3 (2022), pp. 255-269 | DOI

[35] C. A. Dwyer; D. J. Stevenson; F. Nimmo A long-lived lunar dynamo driven by continuous mechanical stirring, Nature, Volume 479 (2011), pp. 212-214 | DOI

[36] S. M. Tikoo; B. P. Weiss; D. L. Shuster; C. Suavet; H. Wang; T. L. Grove A two-billion-year history for the lunar dynamo, Sci. Adv., Volume 3 (2017), e170020 | DOI

[37] R. R. Fu; B. P. Weiss; D. L. Shuster et al. An ancient core dynamo in asteroid Vesta, Science, Volume 338 (2012), pp. 238-241 | DOI

[38] H.-C. Nataf Tidally synchronized solar dynamo: A rebuttal, Solar Phys., Volume 297 (2022), 107 | DOI

[39] E. Weisshaar; R. H. Cameron; M. Schüssler No evidence for synchronization of the solar cycle by a “clock”, Astron. Astrophys., Volume 671 (2023), A87 | DOI

[40] C.-C. Hung Apparent relations between solar activity and solar tides caused by the planets (2007) (no. NASA/TM-2007-214817) (Technical report)

[41] N. Scafetta Does the Sun work as a nuclear fusion amplifier of planetary tidal forcing? A proposal for a physical mechanism based on the mass-luminosity relation, J. Atmos. Sol.-Terr. Phys., Volume 81-82 (2012), pp. 27-40 | DOI

[42] I. R. G. Wilson The Venus-Earth-Jupiter spin-orbit coupling model, Pattern Recogn. Phys., Volume 1 (2013), pp. 147-158 | DOI

[43] V. P. Okhlopkov The gravitational influence of Venus, the Earth, and Jupiter on the 11-year cycle of solar activity, Mosc. Univ. Phys. Bull., Volume 71 (2016), pp. 440-446 | DOI

[44] F. Stefani; A. Giesecke; N. Weber; T. Weier Synchronized helicity oscillations: a link between planetary tides and the solar cycle?, Solar Phys., Volume 291 (2016), pp. 2197-2212 | DOI

[45] F. Stefani; A. Giesecke; T. Weier A model of a tidally synchronized solar dynamo, Solar Phys., Volume 294 (2019), 60 | DOI

[46] F. Stefani; R. Stepanov; T. Weier Shaken and Stirred: When Bond Meets Suess–de Vries and Gnevyshev–Ohl, Solar Phys., Volume 296 (2021), 88 | DOI

[47] P. Charbonneau External forcing of the solar dynamo, Front. Astron. Space Sci., Volume 9 (2022), 853676 | DOI

[48] M. Klevs; L. Jouve; F. Stefani; T. Weier A synchronized two-dimensional α-Ω model of the solar dynamo, Solar Phys., Volume 298 (2023), 90 | DOI

[49] G. Horstmann; G. Mamatsashvili; A. Giesecke; T. Zaqarashvili; F. Stefani Tidally forced planetary waves in the tachocline of solar-like stars, Astrophys. J., Volume 944 (2023), 48 | DOI

[50] F. Stefani; G. Horstmann; G. Mamatsashvili; T. Weier Rieger, Schwabe, Suess–de Vries: The sunny beats of resonance, Solar Phys., Volume 299 (2024), 51 | DOI

[51] J. H. Shirley Orbit-spin coupling and the circulation of the Martian atmosphere, Planet. Space Sci., Volume 141 (201), pp. 1-16 | DOI

[52] J. H. Shirley Orbit-spin coupling, the solar dynamo, and the planetary theory of sunspots (2023) (preprint, arXiv:2309.13076)

[53] J. Vidal; D. Cébron Inviscid instabilities in rotating ellipsoids on eccentric Kepler orbits, J. Fluid Mech., Volume 833 (2017), pp. 469-511 | DOI

[54] S. Horn; J. M. Aurnou Rotating convection with centrifugal buoyancy: Numerical predictions for laboratory experiments, Phys. Rev. Fluids, Volume 4 (2019), 073501 | DOI

[55] Th. Sloudsky De la rotation de la terre supposée fluide à son intérieur, Bull. Soc. Imp. Natur. Mosc., Volume 2 (1895), pp. 285-318

[56] H. Poincaré Sur la précession des corps déformables, Bull. Astron., Volume 27 (1910), pp. 321-356 | DOI

[57] F. Busse Steady fluid flow in a precessing spheroidal shell, J. Fluid Mech., Volume 33 (1968), pp. 739-751 | DOI

[58] R. Manasseh Breakdown regimes of inertia waves in a precessing cylinder, J. Fluid Mech., Volume 243 (1992), pp. 261-296 | DOI

[59] J. J. Kobine Azimuthal flow associated with inertial wave resonance in a precessing cylinder, J. Fluid Mech., Volume 319 (1996), pp. 387-406 | DOI

[60] Y. Lin; J. Noir; A. Jackson Experimental study of fluid flows in a precessing cylindrical annulus, Phys. Fluids, Volume 26 (2014), 046604 | DOI

[61] W. Mouhali; T. Lehner; J. Léorat; R. Vitry Evidence of a cyclonic regime in a precessing cylindrical container, Exp. Fluids, Volume 53 (2012), pp. 1693-1700 | DOI

[62] S. Goto; A. Matsunaga; M. Fujiwara et al. Turbulence driven by precession in spherical and slightly elongated spheroidal cavities, Phys. Fluids, Volume 26 (2014), 055107 | DOI

[63] J. Herault; T. Gundrum; A. Giesecke; F. Stefani Subcritical transition to turbulence of a precessing flow in a cylindrical vessel, Phys. Fluids, Volume 27 (2015), 124102 | DOI

[64] K. Komoda; S. Goto Three-dimensional flow structures of turbulence in precessing spheroids, Phys. Rev. Fluids, Volume 4 (2019), 014603 | DOI

[65] C. Nobili; P. Meunier; B. Favier; M. Le Bars Hysteresis and instabilities in a spheroid in precession near the resonance with the tilt-over mode, J. Fluid Mech., Volume 909 (2021), A17 | DOI

[66] J. Noir; D. Cébron Precession-driven flows in non-axisymmetric ellipsoids, J. Fluid Mech., Volume 737 (2013), pp. 412-439 | DOI

[67] F. Burmann; J. Noir Experimental study of the flows in a non-axisymmetric ellipsoid under precession, J. Fluid Mech., Volume 923 (2022), A24 | DOI

[68] A. Tilgner Precession driven dynamos, Phys. Fluids, Volume 17 (2005), 034104 | DOI

[69] C.-C. Wu; P. H. Roberts On a dynamo driven by topographic precession, Geophys. Astrophys. Fluid Dyn., Volume 103 (2009), pp. 467-501 | DOI

[70] A. Krauze Numerical modeling of the magnetic field generation in a precessing cube with a conducting melt, Magnetohydrodynamics, Volume 46 (2010), pp. 271-280 | DOI

[71] C. Nore; J. Léorat; J.-L. Guermond; F. Luddens Nonlinear dynamo action in a precessing cylindrical container, Phys. Rev. E, Volume 93 (2011), 043113 | DOI

[72] Y. Lin; P. Marti; J. Noir; A. Jackson Precession-driven dynamos in a full sphere and the role of large scale cyclonic vortices, Phys. Fluids, Volume 28 (2016), 066601 | DOI

[73] O. Goepfert; A. Tilgner Dynamos in precessing cubes, New J. Phys., Volume 18 (2016), 103019 | DOI

[74] A. Giesecke; T. Vogt; T. Gundrum; F. Stefani Nonlinear large scale flow in a precessing cylinder and its ability to drive dynamo action, Phys. Rev. Lett., Volume 120 (2018), 024502 | DOI

[75] J. Vidal; D. Cébron Kinematic dynamos in triaxial ellipsoids, Proc. R. Soc. Lond., Ser. A, Volume A477 (2021), 20210252 | DOI

[76] R. F. Gans On hydromagnetic precession in a cylinder, J. Fluid Mech., Volume 45 (1971), pp. 111-130 | DOI

[77] A. Tilgner On models of precession driven core flow, Stud. Geophys. Geod., Volume 42 (1998), pp. 232-238 | DOI

[78] P. Meunier; C. Eloy; R. Lagrange; F. Nadal A rotating fluid cylinder subject to weak precession, J. Fluid Mech., Volume 599 (2008), pp. 405-440 | DOI

[79] R. Lagrange; P. Meunier; F. Nadal; C. Eloy Precessional instability of a fluid cylinder, J. Fluid Mech., Volume 666 (2011), pp. 104-145 | DOI

[80] D. Gao; P. Meunier; S. Les Dizès; C. Eloy Zonal flow in a resonant precessing cylinder, J. Fluid Mech., Volume 923 (2021), A29 | DOI

[81] J. J. Kobine Inertial wave dynamics in a rotating and precessing cylinder, J. Fluid Mech., Volume 303 (1995), pp. 233-252 | DOI

[82] A. Giesecke; T. Albrecht; T. Gundrum; J. Herault; F. Stefani Triadic resonances in nonlinear simulations of a fluid flow in a precessing cylinder, New J. Phys., Volume 17 (2015), 113044 | DOI

[83] J. M. Lopez; F. Marquez Nonlinear and detuning effects of the nutation angle in precessionally forced rotating cylinder flow, Phys. Rev. Fluids, Volume 1 (2016), 023602 | DOI

[84] T. Albrecht; H. M. Blackburn; J. M. Lopez; R. Manasseh; P. Meunier On triadic resonance as an instability mechanism in precessing cylinder flow, J. Fluid Mech., Volume 841 (2018), R3 | DOI | Zbl

[85] J. Herault; A. Giesecke; T. Gundrum; F. Stefani Instability of precession driven Kelvin modes: Evidence of a detuning effect, Phys. Rev. Fluids, Volume 4 (2019), 033901 | DOI

[86] R. Lagrange; C. Eloy; F. Nadal; P. Meunier Instability of a fluid inside a precessing cylinder, Phys. Fluids, Volume 20 (2008), 081701 | DOI

[87] P. Meunier Geoinspired soft mixers, J. Fluid Mech., Volume 903 (2020), A15 | DOI

[88] H. Blackburn; D. Lee; T. Albrecht; J. Singh Semtex: A spectral element–fourier solver for the incompressible Navier–Stokes equations in cylindrical or cartesian coordinates, Comput. Phys. Commun., Volume 245 (2019), 106804 | DOI

[89] A. Giesecke; F. Stefani; G. Gerbeth Kinematic simulation of dynamo action by a hybrid boundary-element/finite-volume method, Magnetohydrodynamics, Volume 44 (2008), pp. 237-252 | DOI

[90] F. Ravelet; A. Chiffaudel; F. Daviaud; J. Léorat Toward an experimental von Kármán dynamo: Numerical studies for an optimized design, Phys. Fluids, Volume 17 (2005), 117104 | DOI

[91] F. Stefani; M. Xu; G. Gerbeth et al. Ambivalent effects of added layers on steady kinematic dynamos in cylindrical geometry: application to the VKS experiment, Eur. J. Mech. B Fluids, Volume 25 (2006), pp. 894-908 | DOI

[92] A. Giesecke; F. Stefani; G. Gerbeth Influence of high-permeability discs in an axisymmetric model of the Cadarache dynamo experiment, New J. Phys., Volume 14 (2012), 053005 | DOI

[93] A. Giesecke; T. Vogt; T. Gundrum; F. Stefani Kinematic dynamo action of a precession-driven flow based on the results of water experiments and hydrodynamic simulations, Geophys. Astrophys. Fluid Dyn., Volume 113 (2019), pp. 235-255 | DOI

[94] F. Pizzi; A. Giesecke; J. Šimkanin; F. Stefani Prograde and retrograde precession of a fluid-filled cylinder, New J. Phys., Volume 23 (2021), 123016 | DOI

[95] V. Kumar; F. Pizzi; A. Giesecke et al. The effect of nutation angle on the flow inside a precessing cylinder and its dynamo action, Phys. Fluids, Volume 35 (2023), 014114 | DOI

[96] F. Pizzi; A. Giesecke; J. Šimkanin; V. Kumar; T. Gundrum; F. Stefani Numerical and theoretical framework for the DRESDYN precession dynamo experiments, Magnetohydrodynamics, Volume 58 (2022), pp. 445-453 | DOI

[97] M. M. Adams; D. R. Stone; D. S. Zimmerman; D. P. Lathrop Liquid sodium models of the Earth’s core, Prog. in Earth and Planet. Sci., Volume 2 (2015), 29 | DOI

[98] D. B. Weisberg; E. Peterson; J. Milhone et al. Driving large magnetic Reynolds number flow in highly ionized, unmagnetized plasmas, Phys. Plasmas, Volume 24 (2017), 056502 | DOI

[99] S. Rother; M. Beitelschmidt Strength assessment of a precession driven dynamo, Tech. Mech., Volume 37 (2017), pp. 120-128 | DOI

[100] F. Stefani; T. Albrecht; G. Gerbeth et al. Towards a precession driven dynamo experiment, Magnetohydrodynamics, Volume 51 (2015), pp. 275-284 | DOI

[101] S. Rother; M. Beitelschmidt Input reduction for nonlinear thermal surface loads, Arch. Appl. Mech., Volume 93 (2023), pp. 1863-1878 | DOI

[102] M. Wilbert; A. Giesecke; R. Grauer Numerical investigation of the flow inside a precession driven cylindrical cavity with additional baffles using an immersed boundary method, Phys. Fluids, Volume 34 (2022), 96607 | DOI

[103] F. Burmann; J. Noir Effects of bottom topography on the spin-up in a cylinder, Phys. Fluids, Volume 30 (2018), 106601 | DOI

[104] N. Saito; C. Liao; T. Tsuruda Ignition and extinguishment of sodium fires in air diluted by nitrogen, Proceedings, 5th AOSFST, Newcastle, Australia, 2001 (M. A. Delichatsios; B. Z. Dlugogorski; E. M. Kennedy, eds.), International Association for Fire Safety Science (2001), pp. 285-294

[105] K. Rahbarnia; B. P. Brown; M. M. Clark et al. Direct observation of the turbulent emf and transport of magnetic field in a liquid sodium experiment, Astrophys. J., Volume 759 (2012), 80 | DOI

Cité par Sources :

Commentaires - Politique