[La convection engendrée par forçage radiatif, ou comment reproduire en laboratoire les régimes « ultimes » des écoulements géo- et astrophysiques]
Cet article traite du transport turbulent de chaleur engendré par convection thermique. Si la croyance dominante est que les propriétés de transport de l’écoulement turbulent sont asymptotiquement indépendantes des diffusivités moléculaires du fluide, ce régime dit « ultime » semble difficile à mettre en évidence dans les expériences traditionnelles de laboratoire (dispositif de Rayleigh–Bénard). Nous avons donc récemment développé un dispositif de convection par chauffage radiatif, dans lequel le fluide est chauffé en volume dans sa partie inférieure. Nous montrerons comment ce dispositif conduit naturellement à l’observation du régime ultime de convection thermique en laboratoire. Nous décrirons ensuite l’ajout d’une rotation globale à ce dispositif expérimental, ingrédient important des écoulements géophysiques et astrophysiques. Nous montrerons en particulier comment ce dispositif a permis la première observation expérimentale du régime ultime de convection en rotation rapide, dit régime de « turbulence géostrophique » .
We consider the turbulent heat transport induced by thermal convection. The widespread belief is that the transport properties of the turbulent flow should be independent of the tiny molecular diffusivities for asymptotically strong driving, but the associated “ultimate” scaling regime proves challenging to observe experimentally using standard convection cells (Rayleigh–Bénard geometry). We thus recently introduced an alternate experimental setup where convection is driven radiatively, with internal heating within the lower region of the body of fluid. This setup naturally leads to the ultimate regime of thermal convection. We then discuss how adding global rotation to the experimental setup has led to the first laboratory observation of the diffusivity-free regime of rapidly rotating turbulent convection, also known as the “geostrophic turbulence” scaling regime.
Révisé le :
Accepté le :
Première publication :
Mots-clés : convection turbulente, dynamique des fluides géophysiques et astrophysiques, turbulence en rotation
Gabriel Hadjerci 1 ; Vincent Bouillaut 2 ; Benjamin Miquel 3 ; Sébastien Aumaître 1 ; Basile Gallet 1
@article{CRPHYS_2024__25_S3_A14_0, author = {Gabriel Hadjerci and Vincent Bouillaut and Benjamin Miquel and S\'ebastien Auma{\^\i}tre and Basile Gallet}, title = {Radiatively driven convection: diffusivity-free regimes of geophysical and astrophysical flows in the laboratory}, journal = {Comptes Rendus. Physique}, publisher = {Acad\'emie des sciences, Paris}, year = {2024}, doi = {10.5802/crphys.207}, language = {en}, note = {Online first}, }
TY - JOUR AU - Gabriel Hadjerci AU - Vincent Bouillaut AU - Benjamin Miquel AU - Sébastien Aumaître AU - Basile Gallet TI - Radiatively driven convection: diffusivity-free regimes of geophysical and astrophysical flows in the laboratory JO - Comptes Rendus. Physique PY - 2024 PB - Académie des sciences, Paris N1 - Online first DO - 10.5802/crphys.207 LA - en ID - CRPHYS_2024__25_S3_A14_0 ER -
%0 Journal Article %A Gabriel Hadjerci %A Vincent Bouillaut %A Benjamin Miquel %A Sébastien Aumaître %A Basile Gallet %T Radiatively driven convection: diffusivity-free regimes of geophysical and astrophysical flows in the laboratory %J Comptes Rendus. Physique %D 2024 %I Académie des sciences, Paris %Z Online first %R 10.5802/crphys.207 %G en %F CRPHYS_2024__25_S3_A14_0
Gabriel Hadjerci; Vincent Bouillaut; Benjamin Miquel; Sébastien Aumaître; Basile Gallet. Radiatively driven convection: diffusivity-free regimes of geophysical and astrophysical flows in the laboratory. Comptes Rendus. Physique, Online first (2024), pp. 1-16. doi : 10.5802/crphys.207.
[1] Turbulent thermal convection in the presence of rotation and a magnetic field: A heuristic theory, Geophys. Astrophys. Fluid Dyn., Volume 12 (1979) no. 1, pp. 139-169 | DOI | Zbl
[2] Open‐ocean convection: Observations, theory, and models, Rev. Geophys., Volume 37 (1999) no. 1, pp. 1-64 | DOI
[3] et al. Rotating convective turbulence in Earth and planetary cores, Phys. Earth Planet. Inter., Volume 246 (2015), pp. 52-71 | DOI
[4] Strong winter cooling over the Irminger Sea in winter 2014–2015, exceptional deep convection, and the emergence of anomalously low SST, Geophys. Res. Lett., Volume 43 (2016) no. 13, pp. 7106-7113 | DOI
[5] Ocean dynamics of outer solar system satellites, Geophys. Res. Lett., Volume 46 (2019) no. 15, pp. 8700-8710 | DOI
[6] Morphological Classification of the Convective Regimes in Rotating Stars, Astrophys. J., Volume 898 (2020) no. 2, p. 120 | DOI
[7] Exploring ocean circulation on icy moons heated below, J. Geophys. Res. Planets, Volume 127 (2022) no. 3, e2021JE007025 | DOI
[8] Turbulence: The Legacy of A.N. Kolmogorov, Cambridge University Press, 1995 | DOI
[9] et al. Scaling of hard thermal turbulence in Rayleigh–Bénard convection, J. Fluid Mech., Volume 204 (1989), p. 1-–30 | DOI
[10] Strongly turbulent Rayleigh–-Bénard convection in mercury: comparison with results at moderate Prandtl number, J. Fluid Mech., Volume 335 (1997), pp. 111–-140 | DOI
[11] High-Reynolds-number thermal turbulence in mercury, Phys. Rev. E, Volume 56 (1997) no. 2, p. R1302-R1305 | DOI
[12] Turbulent Rayleigh-–Bénard convection in gaseous and liquid He, Phys. Fluids, Volume 13 (2001) no. 5, 1300 | DOI | Zbl
[13] On the triggering of the Ultimate Regime of convection, New J. Phys., Volume 12 (2010) no. 8, 085014 | DOI
[14] Transition to the Ultimate State of Turbulent Rayleigh–Bénard Convection, Phys. Rev. Lett., Volume 108 (2012) no. 2, 024502 | DOI
[15] Absence of Evidence for the Ultimate State of Turbulent Rayleigh–Bénard Convection, Phys. Rev. Lett., Volume 124 (2020) no. 22, 229401 | DOI
[16] High-Rayleigh-Number Convection in a Vertical Channel, Phys. Rev. Lett., Volume 96 (2006) no. 8, 084501 | DOI
[17] Heat convection in a vertical channel: Plumes versus turbulent diffusion, Phys. Fluids, Volume 21 (2009) no. 3, 035109 | DOI | Zbl
[18] Convection in a vertical channel, New J. Phys., Volume 12 (2010) no. 7, 075024 | DOI
[19] Axially homogeneous, zero mean flow buoyancy-driven turbulence in a vertical pipe, J. Fluid Mech., Volume 621 (2009), pp. 69-102 | DOI | Zbl
[20] Two regimes of flux scaling in axially homogeneous turbulent convection in vertical tube, Phys. Rev. Fluids, Volume 1 (2016) no. 4, 042401 | DOI
[21] Turbulent Convection over Rough Surfaces, Phys. Rev. Lett., Volume 76 (1996) no. 6, pp. 908-911 | DOI
[22] Random Roughness of Boundary Increases the Turbulent Convection Scaling Exponent, Phys. Rev. Lett., Volume 82 (1999) no. 20, pp. 3998-4001 | DOI
[23] Turbulent thermal convection in a cell with ordered rough boundaries, J. Fluid Mech., Volume 407 (2000), pp. 57-84 | DOI
[24] Observation of the 1/2 power law in Rayleigh–Bénard convection, Phys. Rev. E, Volume 63 (2001) no. 4, 045303 | DOI
[25] Experimental study of velocity boundary layer near a rough conducting surface in turbulent natural convection, J. Turbul., Volume 6 (2005), N30 | DOI
[26] Comparison between rough and smooth plates within the same Rayleigh–-Bénard cell, Phys. Fluids, Volume 23 (2011) no. 1, 015105 | DOI
[27] Thermal transfer in Rayleigh-–Bénard cell with smooth or rough boundaries, J. Fluid Mech., Volume 837 (2018), pp. 443-460 | DOI
[28] Radiative heating achieves the ultimate regime of thermal convection, Proc. Natl. Acad. Sci. USA, Volume 115 (2018) no. 36, pp. 8937-8941 | DOI | Zbl
[29] Transition to the ultimate regime in a radiatively driven convection experiment, J. Fluid Mech., Volume 861 (2019), R5 | DOI | Zbl
[30] Experimental observation of the geostrophic turbulence regime of rapidly rotating convection, Proc. Natl. Acad. Sci. USA, Volume 118 (2021) no. 44, e2105015118 | DOI
[31] On the Boussinesq approximation for a compressible fluid, Astrophys. J., Volume 131 (1960), pp. 442-447
[32] Heat transport by turbulent convection, J. Fluid Mech., Volume 17 (1963) no. 3, pp. 405-432 | DOI | Zbl
[33] A Generalization of the Mixing-Length Theory of Turbulent Convection., Astrophys. J., Volume 138 (1963), pp. 216-225 | DOI | Zbl
[34] Convection in Stars I. Basic Boussinesq Convection, Annu. Rev. Astron. Astrophys., Volume 9 (1971) no. 1, pp. 323-352 | DOI
[35] Turbulent Thermal Convection at Arbitrary Prandtl Number, Phys. Fluids, Volume 5 (1962) no. 11, pp. 1374-1389 | DOI | Zbl
[36] Turbulent thermal convection over rough plates with varying roughness geometries, J. Fluid Mech., Volume 825 (2017), pp. 573-599 | DOI
[37] Roughness-facilitated local 1/2 scaling does not imply the onset of the ultimate regime of thermal convection, Phys. Rev. Lett., Volume 119 (2017) no. 15, 154501 | DOI
[38] Thermal convection over fractal surfaces, J. Fluid Mech., Volume 907 (2021), A12 | DOI
[39] Coral: a parallel spectral solver for fluid dynamics and partial differential equations, J. Open Source Softw., Volume 6 (2021) no. 65, 2978 | DOI
[40] Transition between boundary-limited scaling and mixing-length scaling of turbulent transport in internally heated convection, Phys. Rev. Lett., Volume 129 (2022) no. 2, 024501 | DOI
[41] On the role of the Prandtl number in convection driven by heat sources and sinks, J. Fluid Mech., Volume 900 (2020), R1 | DOI | Zbl
[42] The heat transport and spectrum of thermal turbulence, Proc. R. Soc. Lond., Ser. A, Volume 225 (1954) no. 1161, pp. 196-212 | DOI | Zbl
[43] Variational bounds on energy dissipation in incompressible flows. III. Convection, Phys. Rev. E, Volume 53 (1996) no. 6, pp. 5957-5981 | DOI
[44] On Howard’s upper bound for heat transport by turbulent convection, J. Fluid Mech., Volume 37 (1969), pp. 457-477 | DOI
[45] Convection driven by internal heat sources and sinks: Heat transport beyond the mixing-length or ‘ultimate’ scaling regime, Phys. Rev. Fluids, Volume 4 (2019) no. 12, 121501 | DOI
[46] Velocity-informed upper bounds on the convective heat transport induced by internal heat sources and sinks, Philos. Trans. R. Soc. Lond., Ser. A, Volume 380 (2022) no. 2225, 20210034 | DOI
[47] Bounds on heat transfer by incompressible flows between balanced sources and sinks, Phys. D: Nonlinear Phenom., Volume 444 (2023), 133591 | DOI | Zbl
[48] Boundary layer control of rotating convection systems, Nature, Volume 457 (2009) no. 7227, pp. 301-304 | DOI
[49] The geostrophic regime of rapidly rotating turbulent convection, J. Turbul., Volume 22 (2021) no. 4-5, pp. 267-296 | DOI
[50] Suppression of wall modes in rapidly rotating Rayleigh–Bénard convection by narrow horizontal fins, Phys. Rev. Lett., Volume 130 (2023) no. 17, 174002 | DOI
[51] Heat transfer by rapidly rotating Rayleigh–-Bénard convection, J. Fluid Mech., Volume 691 (2012), pp. 568-582 | DOI
[52] Heat transfer in rotating Rayleigh–Bénard convection with rough plates, J. Fluid Mech., Volume 830 (2017), p. R3 | DOI
[53] Regimes in rotating Rayleigh– Bénard convection over rough boundaries, J. Fluid Mech., Volume 982 (2024), A15 | DOI
[54] Effects of rotation on the bulk turbulent convection, J. Fluid Mech., Volume 881 (2019), pp. 648-659 | DOI
[55] Fixed-flux Rayleigh–-Bénard convection in doubly periodic domains: generation of large-scale shear, J. Fluid Mech., Volume 979 (2024), A19 | DOI | Zbl
[56] A New Class of Equations for Rotationally Constrained Flows, Theor. Comput. Fluid Dyn., Volume 11 (1998) no. 3-4, pp. 251-261 | DOI | Zbl
[57] Generalized quasi-geostrophy for spatially anisotropic rotationally constrained flows, J. Fluid Mech., Volume 555 (2006), pp. 233–-274 | DOI | Zbl
[58] Heat Transport in Low-Rossby-Number Rayleigh–Bénard Convection, Phys. Rev. Lett., Volume 109 (2012) no. 25, 254503 | DOI
[59] Statistical and physical balances in low Rossby number Rayleigh-–Bénard convection, Geophys. Astrophys. Fluid Dyn., Volume 106 (2012) no. 4-5, pp. 392-428 | DOI | Zbl
[60] Theory and simulations of rotating convection, Astrophys. J., Volume 791 (2014) no. 1, 13 | DOI
[61] et al. Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics, Phys. Rev. Lett., Volume 113 (2014) no. 25, 254501 | DOI
[62] Scaling regimes in rapidly rotating thermal convection at extreme Rayleigh numbers, J. Fluid Mech., Volume 984 (2024), A45 | DOI
[63] Rapidly rotating radiatively driven convection: experimental and numerical validation of the ‘geostrophic turbulence’ scaling predictions, J. Fluid Mech., Volume 998 (2024), A9 | DOI
[64] Connections between nonrotating, slowly rotating, and rapidly rotating turbulent convection transport scalings, Phys. Rev. Res., Volume 2 (2020) no. 4, 043115 | DOI
Cité par Sources :
Commentaires - Politique