Comptes Rendus
Review article
Turbulence of internal gravity waves in the laboratory
Comptes Rendus. Physique, Online first (2024), pp. 1-20.

In this article, we review the recent efforts of several teams that aimed at observing in the laboratory a turbulence of internal gravity waves in a density stratified fluid in the weakly non-linear regime. The common feature to these studies is that they adopted the same strategy of injecting energy in weakly non-linear waves before increasing the forcing amplitude in order to trigger a transition to a wave turbulence regime. The motivation to these works is twofold. On the one hand, it has long been proposed that the dynamics of small oceanic scales is driven by a regime of weakly non-linear internal wave turbulence, without however a definitive confirmation so far. A better understanding of the weakly non-linear internal wave turbulence thus appears as an important lever for improving the parameterization of small oceanic scales in climate models. On the other hand, the identification of valid solutions to the theory of internal gravity wave turbulence is still an open problem, and the experimental observation of this regime is therefore of great interest to guide future theoretical developments. We conclude that two features should be improved in the experiments in order to access to a genuine weakly non-linear wave turbulence in the laboratory. First, one should mitigate the finite size effects and especially prevent the concentration of the energy in wave eigenmodes of the fluid domain. Second, one should implement a significant increase of the wavelength at which the energy is injected in order to access to larger Reynolds numbers and lower flow Froude numbers and build a turbulence with well developed power law spectra while remaining in the weakly non-linear regime.

Dans cet article, nous passons en revue les efforts récents de plusieurs équipes visant à observer au laboratoire une turbulence d’ondes internes de gravité dans un fluide stratifié en densité dans le régime faiblement non-linéaire. Ces études ont en commun d’adopter la même stratégie consistant à injecter l’énergie dans des ondes faiblement non-linéaires avant d’augmenter l’amplitude du forçage afin de déclencher une transition vers un régime de turbulence d’ondes. La motivation à ces travaux est double. D’une part, il est depuis longtemps proposé que la dynamique des petites échelles océaniques soit pilotée par le régime de turbulence d’ondes internes faiblement non-linéaire, sans toutefois qu’une confirmation définitive n’ait pour l’instant pu être apportée. Une meilleure compréhension de la turbulence d’ondes internes faiblement non-linéaire apparaît ainsi comme un levier important pour améliorer la paramétrisation des petites échelles océaniques dans les modèles climatiques. D’autre part, l’identification de solutions valides à la théorie de la turbulence d’ondes internes de gravité reste un problème ouvert et l’observation expérimentale de ce régime apparaît donc d’un grand intérêt pour guider les développements théoriques. Nous concluons que deux caractéristiques doivent être améliorées dans les expériences afin d’accéder à un véritable régime de turbulence d’ondes faiblement non-linéaire au laboratoire. Il faut d’une part contrôler les effets de taille finie et en particulier empêcher la concentration de l’énergie dans les modes propres d’ondes du domaine fluide. Il convient d’autre part d’augmenter sensiblement la longueur d’onde à laquelle l’énergie est injectée afin d’accéder à des nombres de Reynolds plus élevés et des nombres de Froude plus faibles pour construire une turbulence avec des spectres en loi de puissance développés tout en restant dans un régime faiblement non linéaire.

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/crphys.192
Keywords: Internal gravity waves, Stratified fluids, Turbulence, Oceans
Mot clés : Ondes internes de gravité, Fluides stratifiés, Turbulence, Océans

Pierre-Philippe Cortet 1; Nicolas Lanchon 1

1 Université Paris-Saclay, CNRS, FAST, 91405 Orsay, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2024__25_S3_A2_0,
     author = {Pierre-Philippe Cortet and Nicolas Lanchon},
     title = {Turbulence of internal gravity waves in the laboratory},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2024},
     doi = {10.5802/crphys.192},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Pierre-Philippe Cortet
AU  - Nicolas Lanchon
TI  - Turbulence of internal gravity waves in the laboratory
JO  - Comptes Rendus. Physique
PY  - 2024
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.192
LA  - en
ID  - CRPHYS_2024__25_S3_A2_0
ER  - 
%0 Journal Article
%A Pierre-Philippe Cortet
%A Nicolas Lanchon
%T Turbulence of internal gravity waves in the laboratory
%J Comptes Rendus. Physique
%D 2024
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.192
%G en
%F CRPHYS_2024__25_S3_A2_0
Pierre-Philippe Cortet; Nicolas Lanchon. Turbulence of internal gravity waves in the laboratory. Comptes Rendus. Physique, Online first (2024), pp. 1-20. doi : 10.5802/crphys.192.

[1] C. Staquet; J. Sommeria Internal gravity waves: From instabilities to turbulence, Annu. Rev. Fluid Mech., Volume 34 (2002), pp. 559-593 | DOI | Zbl

[2] B. R. Sutherland Internal Gravity Waves, Cambridge University Press, 2010, 046603 | DOI

[3] T. Dauxois; S. Joubaud; P. Odier; A. Venaille Instabilities of internal wave beams, Annu. Rev. Fluid Mech., Volume 50 (2018), pp. 131-156 | DOI | Zbl

[4] C. Brouzet; I. N. Sibgatullin; E. V. Ermanyuk; S. Joubaud; T. Dauxois Scale effects in internal wave attractors, Phys. Rev. Fluids, Volume 2 (2017), 114803 | DOI

[5] M. Brunet; T. Dauxois; P.-P. Cortet Linear and non linear regimes of an inertial wave attractor, Phys. Rev. Fluids, Volume 4 (2019), 034801 | DOI

[6] H. P. Greenspan The Theory of Rotating Fluids, Cambridge University Press, 1968

[7] J. Lighthill Waves in Fluids, Cambridge University Press, 1978

[8] F. Beckebanze; C. Brouzet; I. N. Sibgatullin; L. R. M. Maas Damping of quasi-two-dimensional internal wave attractors by rigid-wall friction, J. Fluid Mech., Volume 841 (2018), 034801, pp. 614-635 | DOI | Zbl

[9] L. R. M. Maas On the amphidromic structure of inertial waves in a rectangular parallelepiped, Fluid Dyn. Res., Volume 33 (2003), 44001, p. 373 | DOI | Zbl

[10] C. Pacary; T. Dauxois; E. Ermanyuk; P. Metz; M. Moulin; S. Joubaud Observation of inertia-gravity wave attractors in an axisymmetric enclosed basin, Phys. Rev. Fluids, Volume 8 (2023), 104802 | DOI

[11] D. O. Mora; E. Monsalve; M. Brunet; T. Dauxois; P.-P. Cortet Three-dimensionality of the triadic resonance instability of a plane inertial wave, Phys. Rev. Fluids, Volume 6 (2021), 074801, 014105 | DOI

[12] M. Remmel; J. Sukhatme; L. M. Smith Nonlinear gravity-wave interactions in stratified turbulence, Theor. Comput. Fluid Dyn., Volume 28 (2014), p. 131-–145 | DOI | Zbl

[13] J. Pedlosky Geophysical Fluid Dynamics, Springer, 1987 | DOI

[14] G. K. Vallis Atmospheric and Oceanic Fluid Dynamics, Cambridge University Press, 2006, 114803 | DOI

[15] C. Wunsch; R. Ferrari Vertical mixing, energy and the general circulation of the oceans, Annu. Rev. Fluid Mech., Volume 36 (2004), pp. 281-314 | DOI | Zbl

[16] J. A. MacKinnon; Z. Zhao; C. B. Whalen et al. Climate Process Team on Internal Wave-Driven Ocean Mixing, Bull. Am. Meteorol. Soc., Volume 98 (2017), p. 2429-–2454 | DOI

[17] D. J. Stensrud Parametrization schemes: Keys to Understanding Numerical Weather Prediction Models, Cambridge University Press, 2007, 043016 | DOI

[18] K. L. Polzin; A. C. N. Garabato; T. N. Huussen; B. M. Sloyan; S. Waterman Finescale parameterizations of turbulent dissipation, J. Geophys. Res., Volume 119 (2014), pp. 1383-1419 | DOI

[19] M. C. Gregg; E. A. D’Asaro; J. Riley; E. Kunze Mixing efficiency in the ocean, Ann. Rev. Mar. Sci., Volume 10 (2018), pp. 443-473 | DOI | Zbl

[20] G. Dematteis; A. Le Boyer; F. Pollmann; K. L. Polzin; M. H. Alford; C. B. Whalen; Y. V. Lvov Interacting internal waves explain global patterns of interior ocean mixing (2023) (preprint, arXiv:2310.19980) | DOI

[21] P. A. Davidson Turbulence in Rotating, Stratified and Electrically Conducting Fluids, Cambridge University Press, 2013 | DOI

[22] J. Riley; E. Lindborg Recent Progress in Stratified Turbulence, Ten Chapters in Turbulence (P. Davidson; Y. Kaneda; K. Sreenivasan, eds.), Cambridge University Press, Cambdrige, UK, 2012, 132, pp. 269-317 | DOI | Zbl

[23] C. P. Caulfield Layering, Instabilities, and Mixing in Turbulent Stratified Flows, Annu. Rev. Fluid Mech., Volume 53 (2021), pp. 113-145 | DOI | Zbl

[24] K. Shah; G. P. Chini; C.-C. P. Caulfield; P. Garaud Regimes of stratified turbulence at low Prandtl number (2023) (preprint, arXiv:2311.06424) | DOI

[25] G. Brethouwer; P. Billant; E. Lindborg; J.-M. Chomaz Scaling analysis and simulation of strongly stratified turbulent flows, J. Fluid Mech., Volume 585 (2007), 204502, pp. 343-368 | DOI | Zbl

[26] N. Lanchon; P.-P. Cortet Energy Spectra of Nonlocal Internal Gravity Wave Turbulence, Phys. Rev. Lett., Volume 131 (2023), 264001 | DOI

[27] E. Dewan Saturated-cascade similitude theory of gravity wave spectra, J. Geophys. Res., Volume 102 (1997), A129, pp. 29799-29817 | DOI

[28] S. V. Nazarenko; A. A. Chekochihin Critical balance in magnetohydrodynamic, rotating and stratified turbulence: towards a universal scaling conjecture, J. Fluid Mech., Volume 677 (2011), pp. 134-153 | DOI | Zbl

[29] E. Lindborg The energy cascade in a strongly stratified fluid, J. Fluid Mech., Volume 550 (2006), pp. 207-242 | DOI | Zbl

[30] S. Nazarenko Wave Turbulence, Springer, 2011 | DOI

[31] S. Galtier Physics of Wave Turbulence, Cambridge University Press, 2022 | DOI

[32] Y. V. Lvov; K. L. Polzin; E. G. Tabak; N. Yokoyama Oceanic internal-wave field: Theory of scale-invariant spectra, J. Phys. Oceanogr., Volume 40 (2010), p. 2605-–2623 | DOI

[33] C. H. McComas; P. Müller The dynamic balance of internal waves, J. Phys. Oceanogr., Volume 11 (1981), pp. 970–-986 | DOI

[34] K. L. Polzin; Y. V. Lvov Toward regional characterizations of the oceanic internal wavefield, Rev. Geophys., Volume 49 (2011), RG4003 | DOI

[35] P. Caillol; V. Zeitlin Kinetic equations and stationary energy spectra of weakly nonlinear internal gravity waves, Dyn. Atmos. Oceans, Volume 32 (2000), pp. 81-112 | DOI

[36] Y. V. Lvov; E. G. Tabak Hamiltonian Formalism and the Garrett–Munk Spectrum of Internal Waves in the Ocean, Phys. Rev. Lett., Volume 87 (2001), 168501 | DOI

[37] Y. V. Lvov; K. L. Polzin; E. G. Tabak Energy Spectra of the Ocean’s Internal Wave Field: Theory and Observations, Phys. Rev. Lett., Volume 92 (2004), 128501 | DOI

[38] G. Dematteis; Y. V. Lvov Downscale energy fluxes in scale-invariant oceanic internal wave turbulence, J. Fluid Mech., Volume 915 (2021), A129 | DOI | Zbl

[39] V. Labarre; N. Lanchon; P.-P. Cortet; G. Krstulovic; S. Nazarenko Kinetics of internal gravity waves beyond hydrostatic regime (2023) (preprint, arXiv:2311.14370) | DOI

[40] J. J. Riley; E. Lindborg Stratified Turbulence: A Possible Interpretation of Some Geophysical Turbulence Measurements, J. Atmos. Sci. (2008)

[41] M. L. Waite; P. Bartello Stratified turbulence generated by internal gravity waves, J. Fluid Mech., Volume 546 (2006), pp. 313-339 | DOI | Zbl

[42] C. Rorai; P. D. Mininni; A. Pouquet Stably stratified turbulence in the presence of largescale forcing, Phys. Rev. E, Volume 92 (2015), 013003, 041703 | DOI

[43] P. Billant; J.-M. Chomaz Self-similarity of strongly stratified inviscid flows, Phys. Fluids, Volume 13 (2001), pp. 1645–-1651 | DOI | Zbl

[44] J. J. Riley; S. M. de Bruyn Kops Dynamics of turbulence strongly influenced by buoyancy, Phys. Fluids, Volume 15 (2003), 264001, p. 2047-–2059 | DOI | Zbl

[45] P. Billant; J.-M. Chomaz Experimental evidence for a new instability of a vertical columnar vortex pair in a strongly stratified fluid, J. Fluid Mech., Volume 418 (2000), pp. 167-188 | DOI | Zbl

[46] P. Billant; J.-M. Chomaz Theoretical analysis of the zigzag instability of a vertical columnar vortex pair in a strongly stratified fluid, J. Fluid Mech., Volume 419 (2000), pp. 29-63 | DOI | Zbl

[47] P. Augier; P. Billant; J.-M. Chomaz Stratified turbulence forced with columnar dipoles: numerical study, J. Fluid Mech., Volume 769 (2015), pp. 403-443 | DOI | Zbl

[48] A. Maffioli Vertical spectra of stratified turbulence at large horizontal scales, Phys. Rev. Fluids, Volume 2 (2017), 104802, 054802 | DOI

[49] G. D. Nastrom; K. S. Gage A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft, J. Atmos. Sci., Volume 42 (1985), 128501, pp. 950-960 | DOI

[50] E. M. Dewan; R. E. Good Saturation and the ‘Universal’ spectrum for vertical profiles of horizontal scalar winds in the atmosphere, J. Geophys. Res., Volume 91 (1986), pp. 2742-2748 | DOI

[51] C. Cot Equatorial mesoscale wind and temperature fluctuations in the lower atmosphere, J. Geophys. Res., Volume 106 (2001), pp. 1523-1532 | DOI

[52] E. N. Pelinovsky; M. A. Raevsky Weak turbulence of the internal waves in the ocean, Izv. Acad. Sci. USSR Atmos. Oceanic Phys., Volume 13 (1977), 168501, pp. 187-193

[53] C. Garrett; W. Munk Internal waves in the ocean, Annu. Rev. Fluid Mech., Volume 11 (1979), pp. 339-369 | DOI

[54] C. Garrett; W. Munk Space-Time Scales of Internal Waves, Geophys. Fluid Dyn., Volume 2 (1972), pp. 225-264 | DOI

[55] C. Garrett; W. Munk Space-Time Scales of Internal Waves: A Progress report, J. Geophys. Res., Volume 80 (1975), 104802, pp. 291-297 | DOI | Zbl

[56] E. Falcon; N. Mordant Experiments in Surface Gravity-Capillary Wave Turbulence, Annu. Rev. Fluid Mech., Volume 54 (2022), pp. 1-25 | DOI | Zbl

[57] E. Monsalve; M. Brunet; B. Gallet; P.-P. Cortet Quantitative Experimental Observation of Weak Inertial-Wave Turbulence, Phys. Rev. Lett., Volume 125 (2020), 254502 | DOI

[58] C. H. McComas; F. P. Bretherton Resonant Interaction of Oceanic Internal Waves, J. Geophys. Res., Volume 82 (1977), pp. 1397-1412 | DOI

[59] D. Benielli; J. Sommeria Excitation of internal waves and stratified turbulence by parametric instability, Dyn. Atmos. Oceans, Volume 23 (1996), pp. 335-343 | DOI

[60] D. Benielli; J. Sommeria Excitation and breaking of internal gravity waves by parametric instability, J. Fluid Mech., Volume 374 (1998), pp. 117-144 | DOI | Zbl

[61] H. Scolan; E. Ermanyuk; T. Dauxois Nonlinear Fate of Internal Wave Attractors, Phys. Rev. Lett., Volume 110 (2013), 234501, 074801 | DOI

[62] C. Brouzet; E. V. Ermanyuk; S. Joubaud; I. N. Sibgatullin; T. Dauxois Energy cascade in internal-wave attractors, Eur. Phys. Lett., Volume 113 (2016), 44001 | DOI

[63] C. Brouzet; I. N. Sibgatullin; H. Scolan; E. V. Ermanyuk; T. Dauxois Internal wave attractors examined using laboratory experiments and 3D numerical simulations, J. Fluid Mech., Volume 793 (2016), pp. 109-131 | DOI

[64] C. Brouzet; E. Ermanyuk; S. Joubaud; G. Pillet; T. Dauxois Internal wave attractors: Different scenarios of instability, J. Fluid Mech., Volume 811 (2017), pp. 544-568 | DOI | Zbl

[65] T. Le Reun; B. Favier; M. Le Bars Parametric instability and wave turbulence driven by tidal excitation of internal waves, J. Fluid Mech., Volume 840 (2018), pp. 498-529 | DOI | Zbl

[66] G. Davis; T. Jamin; J. Deleuze; S. Joubaud; T. Dauxois Succession of Resonances to Achieve Internal Wave Turbulence, Phys. Rev. Lett., Volume 124 (2020), 204502 | DOI

[67] C. Savaro; A. Campagne; M. Calpe Linares; P. Augier; J. Sommeria; T. Valran; S. Viboud; N. Mordant Generation of weakly nonlinear turbulence of internal gravity waves in the Coriolis facility, Phys. Rev. Fluids, Volume 5 (2020), 073801, 104802 | DOI

[68] C. Rodda; C. Savaro; G. Davis; J. Reneuve; P. Augier; J. Sommeria; T. Valran; S. Viboud; N. Mordant Experimental observations of internal wave turbulence transition in a stratified fluid, Phys. Rev. Fluids, Volume 7 (2022), 094802 | DOI

[69] C. Rodda; C. Savaro; V. Bouillaut; P. Augier; J. Sommeria; T. Valran; S. Viboud; N. Mordant From Internal Waves to Turbulence in a Stably Stratified Fluid, Phys. Rev. Lett., Volume 131 (2023), 264101 | DOI

[70] N. Lanchon; D. O. Mora; E. Monsalve; P.-P. Cortet Internal wave turbulence in a stratified fluid with and without eigenmodes of the experimental domain, Phys. Rev. Fluids, Volume 8 (2023), 054802 | DOI

[71] A. M. Fincham; T. Maxworthy; G. R. Spedding Energy dissipation and vortex structure in freely decaying, stratified grid turbulence, Dyn. Atmos. Oceans, Volume 23 (1996), pp. 155-169 | DOI

[72] O. Praud; A. M. Fincham; J. Sommeria Decaying grid turbulence in a strongly stratified fluid, J. Fluid Mech., Volume 522 (2005), RG4003, pp. 1-33 | DOI | Zbl

[73] V. J. H. Lienhard; C. W. Van Atta The decay of turbulence in thermally stratified flow, J. Fluid Mech., Volume 210 (1990), pp. 57-112 | DOI

[74] K. Yoon; Z. Warhaft The evolution of grid-generated turbulence under conditions of stable thermal stratification, J. Fluid Mech., Volume 215 (1990), eadh2899, pp. 601-638 | DOI

[75] S. A. Thorpe On the layers produced by rapidly oscillating a vertical grid in a uniformly stratified fluid, J. Fluid Mech., Volume 124 (1982), pp. 391-409 | DOI

[76] P. Augier; P. Billant; M. E. Negretti; J.-M. Chomaz Experimental study of stratified turbulence forced with columnar dipoles, Phys. Fluids, Volume 26 (2014), 046603 | DOI

[77] G. Oster; M. Yamamoto Density gradient techniques, Chem. Rev., Volume 63 (1963), 013003, p. 257-–268 | DOI

[78] D. F. Hill General density gradients in general domains: the ‘two-tank’ method revisited, Exp. Fluids, Volume 32 (2002), 264101, pp. 434-440 | DOI

[79] G. J. Daviero; P. J. W. Roberts; K. Maile Refractive index matching in largescale stratified experiments, Exp. Fluids, Volume 31 (2001), 094802, pp. 119–-126 | DOI

[80] Y. Dossmann; B. Bourget; C. Brouzet; T. Dauxois; S. Joubaud; P. Odier Mixing by internal waves quantified using combined PIV/PLIF technique, Exp. Fluids, Volume 57 (2016), 132 | DOI

[81] A. Campagne; B. Gallet; F. Moisy; P.-P. Cortet Disentangling inertial waves from eddy turbulence in a forced rotating-turbulence experiment, Phys. Rev. E, Volume 91 (2015), 043016 | DOI

[82] C. Staquet Internal gravity waves: parametric instability and deep ocean mixing, C. R. Mécanique, Volume 335 (2007), 073801, pp. 665-678 | DOI

[83] O. M. Phillips The Dynamics of the Upper Ocean, Cambridge University Press, 1966, 234501

[84] T. Dauxois; W. R. Young Near-critical reflection of internal waves, J. Fluid Mech., Volume 390 (1999), pp. 271-295 | DOI | Zbl

[85] L. R. M. Maas; F.-P. A. Lam Geometric focusing of internal waves, J. Fluid Mech., Volume 300 (1995), pp. 1-41 | DOI | Zbl

[86] L. R. M. Maas; D. Benielli; J. Sommeria; F.-P. A. Lam Observation of an internal wave attractor in a confined stably stratified fluid, Nature, Volume 388 (1997), pp. 557–-561 | DOI | Zbl

[87] N. Grisouard; C. Staquet; I. Pairaud Numerical simulation of a two-dimensional internal wave attractor, J. Fluid Mech., Volume 614 (2008), pp. 1-14 | DOI

[88] J. Hazewinkel; P. van Breevoort; S. Dalziel; L. R. M. Maas Observations on the wavenumber spectrum and evolution of an internal wave attractor, J. Fluid Mech., Volume 598 (2008), pp. 373-382 | DOI | Zbl

[89] S. Joubaud; J. Munroe; P. Odier; T. Dauxois Experimental parametric subharmonic instability in stratified fluids, Phys. Fluids, Volume 24 (2012), 041703 | DOI

[90] G. Davis Attracteurs d’ondes internes de gravité : des résonances en cascade : une approche expérimentale des régimes linéaire et non linéaire, Ph. D. Thesis, Université de Lyon, Lyon, France (2019)

[91] G. Bordes; F. Moisy; T. Dauxois; P.-P. Cortet Experimental evidence of a triadic resonance of plane inertial waves in a rotating fluid, Phys. Fluids, Volume 24 (2012), 014105 | DOI

[92] C. Peretti; J. Vessaire; E. Durozoy; M. Gibert Direct visualization of the quantum vortex lattice structure, oscillations, and destabilization in rotating 4 He, Sci. adv., Volume 9 (2023), eadh2899 | DOI

Cited by Sources:

Comments - Policy