[L’effet Casimir dynamique dans les condensats de Bose quasi-unidimensionnels : l’anneau de respiration]
Nous présentons une enquête détaillée sur l’un des exemples les plus clairs où il est possible de détecter l’effet Casimir Dynamique « analogue » dans un condensat de Bose–Einstein : un gaz d’atomes ultrafroids en confinement toroïdal. La solution analytique de l’équation de Gross–Pitaevskii dépendant du temps permet de suivre l’évolution temporelle du spectre des phonons et montre que des oscillations périodiques du rayon de l’anneau n’induisent pas de modulations dans le profil de densité mais donnent lieu au mélange des modes dans le sens horaire et antihoraire, conduisant à la création de paires de phonons intriqués dans un état de vide comprimé, si la fréquence de l’entraînement est égale à deux fois la fréquence du mode de phonon. L’effet Casimir Dynamique est prévu se produire dans le régime d’interaction faible, où l’équation de Gross–Pitaevskii fournit une description fidèle de la dynamique à plusieurs corps. Dans la limite du couplage fort, lorsque le gaz ultrafroid se comporte comme des bosons de cœur dur, l’effet disparaît et aucune amplification ne se produit. La présence de perturbations de rupture de symétrie et des effets de température finie sont également considérés, ainsi que la comparaison avec le phénomène classique d’amplification paramétrique.
We present a detailed investigation of one of the cleanest examples where it is possible to detect the “analog” Dynamical Casimir Effect in a Bose–Einstein condensate: an ultracold atom gas in toroidal confinement. The analytical solution of the time dependent Gross–Pitaevskii equation allows to follow the time evolution of the phonon spectrum and shows that periodic oscillations of the ring radius do not induce modulations in the density profile but give rise to the mixing of clockwise and anticlockwise modes, leading to the creation of pairs of entangled phonons in a squeezed vacuum state, if the drive frequency equals twice the frequency of the phonon mode. The Dynamical Casimir Effect is predicted to occur in the weakly interacting regime, where the Gross–Pitaevskii equation provides a faithful description of the many body dynamics. In the strong coupling limit, when the ultracold gas behaves as hard core bosons, the effect disappears and no amplification occurs. The presence of symmetry-breaking perturbations and finite temperature effects are also considered, as well as the comparison with the classical phenomenon of parametric amplification.
Révisé le :
Accepté le :
Première publication :
Mot clés : Effet Casimir, Condensats Bose Einstein, fluctuations du vide
Manuele Tettamanti 1 ; Alberto Parola 2
@article{CRPHYS_2024__25_S2_A7_0, author = {Manuele Tettamanti and Alberto Parola}, title = {The {Dynamical} {Casimir} {Effect} in quasi-one-dimensional {Bose} condensates: the breathing ring}, journal = {Comptes Rendus. Physique}, publisher = {Acad\'emie des sciences, Paris}, year = {2024}, doi = {10.5802/crphys.210}, language = {en}, note = {Online first}, }
TY - JOUR AU - Manuele Tettamanti AU - Alberto Parola TI - The Dynamical Casimir Effect in quasi-one-dimensional Bose condensates: the breathing ring JO - Comptes Rendus. Physique PY - 2024 PB - Académie des sciences, Paris N1 - Online first DO - 10.5802/crphys.210 LA - en ID - CRPHYS_2024__25_S2_A7_0 ER -
Manuele Tettamanti; Alberto Parola. The Dynamical Casimir Effect in quasi-one-dimensional Bose condensates: the breathing ring. Comptes Rendus. Physique, Online first (2024), pp. 1-19. doi : 10.5802/crphys.210.
[1] The quantum vacuum, : An Introduction to Quantum Electrodynamics, Academic Press Inc., 1993
[2] Quantum Theory of the Electromagnetic Field in a Variable-Length One-Dimensional Cavity, J. Math. Phys., Volume 11 (1970) no. 9, pp. 2679-2691 | DOI
[3] Dynamical Casimir effect in a Josephson metamaterial, Proc. Natl. Acad. Sci. USA, Volume 110 (2013) no. 11, pp. 4234-4238 | DOI
[4] et al. Observation of the dynamical Casimir effect in a superconducting circuit, Nature, Volume 479 (2011) no. 7373, pp. 376-379 | DOI
[5] Black hole explosions?, Nature, Volume 248 (1974) no. 5443, pp. 30-31 | DOI
[6] Notes on black-hole evaporation, Phys. Rev. D, Volume 14 (1976) no. 4, pp. 870-892 | DOI
[7] Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits, Rev. Mod. Phys., Volume 84 (2012) no. 1, pp. 1-24 | DOI
[8] Acoustic Analog to the Dynamical Casimir Effect in a Bose–Einstein Condensate, Phys. Rev. Lett., Volume 109 (2012) no. 22, 220401 | DOI
[9] Observation of quantum Hawking radiation and its entanglement in an analogue black hole, Nat. Phys., Volume 12 (2016), pp. 959-965 | DOI
[10] Observation of thermal Hawking radiation and its temperature in an analogue black hole, Nature, Volume 569 (2019), pp. 688-691 | DOI
[11] Numerical study of a recent black hole lasing experiment, Eur. Phys. Lett., Volume 114 (2016) no. 6, 60011 | DOI
[12] Mechanism of stimulated Hawking radiation in a laboratory Bose–Einstein condensate, Phys. Rev. A, Volume 96 (2017) no. 2, 023616 | DOI
[13] Analogue Hawking radiation in an exactly solvable model of BEC, Eur. Phys. Lett., Volume 119 (2017) no. 5, 50002 | DOI
[14] Quantum quenches, sonic horizons, and the Hawking radiation in a class of exactly solvable models, Phys. Rev. D, Volume 99 (2019) no. 4, 045014 | DOI
[15] From the moving piston to the dynamical Casimir effect: Explorations with shaken condensates, Phys. Rev. A, Volume 99 (2019) no. 5, 053615 | DOI
[16] Density correlations and analog dynamical Casimir emission of Bogoliubov phonons in modulated atomic Bose–Einstein condensates, Eur. Phys. J. D, Atomic Mol. Opt. Plasma Phys., Volume 56 (2010) no. 3, pp. 391-404 | DOI
[17] Ring trap for ultracold atoms, Phys. Rev. A, Volume 74 (2006) no. 2, 023617 | DOI
[18] Dynamically controlled toroidal and ring-shaped magnetic traps, Phys. Rev. A, Volume 75 (2007) no. 6, 063406 | DOI
[19] Observation of Persistent Flow of a Bose–Einstein Condensate in a Toroidal Trap, Phys. Rev. Lett., Volume 99 (2007) no. 26, 260401 | DOI
[20] A ring trap for ultracold atoms in an RF-dressed state, New J. Phys., Volume 10 (2008), 043012 | DOI
[21] A toroidal trap for cold atoms using an rf-dressed quadrupole trap, J. Phys. B. At. Mol. Opt. Phys., Volume 49 (2016) no. 7, 075304 | DOI
[22] Bose–Einstein Condensation and Superfluidity, International Series of Monographs on Physics, Oxford University Press, 2016 | DOI | Zbl
[23] Transition from three dimensions to one dimension in Bose gases at zero temperature, Phys. Rev. A, Volume 70 (2004) no. 1, 013606 | DOI
[24] A Rapidly Expanding Bose–Einstein Condensate: An Expanding Universe in the Lab, Phys. Rev. X, Volume 8 (2018) no. 2, 021021 | DOI
[25] Collective oscillations of a one-dimensional trapped Bose–Einstein gas, Phys. Rev. A, Volume 66 (2002) no. 4, 043610 | DOI
[26] Quasi-one-dimensional bosons in three-dimensional traps: From strong-coupling to weak-coupling regime, Phys. Rev. A, Volume 72 (2005) no. 2, 025602 | DOI
[27] Relationship between Systems of Impenetrable Bosons and Fermions in One Dimension, J. Math. Phys., Volume 1 (1960), pp. 516-523 | DOI
[28] Numerical Studies of Back Reaction Effects in an Analog Model of Cosmological Preheating, Phys. Rev. Lett., Volume 130 (2023) no. 24, 241501 | DOI
[29] Quantum Theory of Many-Particle Systems, International Series in Pure and Applied Physics, McGraw-Hill, 1971
[30] Bose-Einstein condensates in atomic gases: Simple theoretical results, Les Houches Session LXXII – Coherent Atomic Matter Waves (R. Kaiser; C. Westbrook; F. David, eds.) (Les Houches - Ecole d’Ete de Physique Theorique), Volume 72, Springer: Berlin; EDP Sciences: Les Ulis, NATO, Advanced Study Institute (2001), pp. 5-136 (Les Houches Session LXXII on Coherent Atomic Matter Waves, Les Houches Phys Sch, Les Houches, France Jul 27-Aug 27, 1999) | DOI
[31] Squeezed quantum states of relic gravitons and primordial density fluctuations, Phys. Rev. D, Volume 42 (1990) no. 10, pp. 3413-3421 | DOI
[32] Inflation and squeezed quantum states, Phys. Rev. D, Volume 50 (1994) no. 8, pp. 4807-4820 | DOI
[33] Quantum discord of cosmic inflation: Can we show that CMB anisotropies are of quantum-mechanical origin?, Phys. Rev. D, Volume 93 (2016) no. 2, 023505 | DOI
[34] Bipartite and tripartite entanglement in a Bose–Einstein acoustic black hole, Phys. Rev. A, Volume 104 (2021) no. 6, 063302 | DOI
[35] Quantum Aspects of Stimulated Hawking Radiation in an Optical Analog White-Black Hole Pair, Phys. Rev. Lett., Volume 128 (2022) no. 9, 091301 | DOI
[36] Entanglement in an expanding toroidal Bose–Einstein condensate, Phys. Rev. A, Volume 109 (2024) no. 1, 013305 | DOI
[37] Quantum entanglement due to a modulated dynamical Casimir effect, Phys. Rev. A, Volume 89 (2014) no. 6, 063606 | DOI
[38] General Correlation Identity for Parametric Processes, Phys. Rev. Lett., Volume 52 (1984) no. 2, pp. 117-120 | DOI
[39] Violation of classical probability in parametric down-conversion, Opt. Commun., Volume 84 (1991) no. 5-6, pp. 351-354 | DOI
[40] On the Discrimination Between Classical and Quantum States, Found. Phys., Volume 41 (2011) no. 3, pp. 305-316 | DOI
[41] Sub-shot-noise photon-number correlation in a mesoscopic twin beam of light, Phys. Rev. A, Volume 76 (2007) no. 1, 013833 | DOI
[42] Intensity correlations, entanglement properties, and ghost imaging in multimode thermal-seeded parametric down-conversion: Theory, Phys. Rev. A, Volume 76 (2007) no. 6, 062309 | DOI
[43] Landau damping in dilute Bose gases, Phys. Lett. A, Volume 235 (1997) no. 4, pp. 398-402 | DOI
Cité par Sources :
Commentaires - Politique