[Analogues de trous noirs et théorie scalaire-dilaton]
Cette note analyse la dynamique des grandes longueurs d’onde d’un système analogue de trous noirs à deux horizons dans une dimension spatiale. En introduisant un modèle scalaire effectif du type dilaton, nous montrons que des expressions analytiques peuvent être obtenues pour le flux de Hawking dépendant du temps et la densité d’énergie du rayonnement de Hawking. Nous montrons qu’en l’absence de modes superluminaux, il existe une instabilité du vide. Cette instabilité est reconnaissable pour les relativistes comme l’analogue de la déstabilisation de l’horizon de Cauchy d’un trou noir due à la polarisation du vide.
This note analyses the long wavelength dynamics of a two horizon analogue black hole system in one spatial dimension. By introducing an effective scalar-dilaton model we show that closed form expressions can be obtained for the time-dependent Hawking flux and the energy density of the Hawking radiation. We show that, in the absence superluminal modes, there is a vacuum instability. This instability is recognisable to relativists as the analogue to the destabilisation of the Cauchy horizon of a black hole due to vacuum polarization.
Révisé le :
Accepté le :
Première publication :
Mots-clés : Trous noirs, condensats Bose–Einstein, gravité analogique
Ian G. Moss 1
@article{CRPHYS_2024__25_S2_A10_0, author = {Ian G. Moss}, title = {Analogue black holes and scalar-dilaton theory}, journal = {Comptes Rendus. Physique}, publisher = {Acad\'emie des sciences, Paris}, year = {2024}, doi = {10.5802/crphys.211}, language = {en}, note = {Online first}, }
Ian G. Moss. Analogue black holes and scalar-dilaton theory. Comptes Rendus. Physique, Online first (2024), pp. 1-12. doi : 10.5802/crphys.211.
[1] Experimental black hole evaporation, Phys. Rev. Lett., Volume 46 (1981), pp. 1351-1353 | DOI
[2] Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, Lecture Notes in Physics, 718 (2007) | DOI
[3] Analogue gravity, Living Rev. Rel., Volume 8 (2005), 3 | DOI
[4] Observation of self-amplifying Hawking radiation in an analogue black-hole laser, Nat. Phys., Volume 10 (2014) no. 11, p. 864-–869 | DOI
[5] Observation of quantum Hawking radiation and its entanglement in an analogue black hole, Nature Phys., Volume 12 (2016), p. 959 | DOI
[6] Black hole lasers, Phys. Rev. D, Volume 59 (1999), 124011 | DOI
[7] Quantum de Laval nozzle: Stability and quantum dynamics of sonic horizons in a toroidally trapped Bose gas containing a superflow, Phys. Rev. A, Volume 76 (2007) no. 2 | DOI
[8] Black hole lasers, a mode analysis, Phys. Rev. D, Volume 81 (2009), 084042 | DOI
[9] Numerical study of a recent black-hole lasing experiment, Eur. Phys. Lett., Volume 114 (2016) no. 6, 60011 | DOI
[10] Self-amplifying Hawking radiation and its background: a numerical study, Phys. Rev. A, Volume 95 (2017) no. 3, 033604 | DOI
[11] Induced density correlations in a sonic black hole condensate, SciPost Phys., Volume 3 (2017) no. 3, p. 22 | DOI
[12] Trace Anomalies and the Hawking Effect, Phys. Rev. D, Volume 15 (1977), pp. 2088-2104 | DOI
[13] On falling through a black hole into another universe, Nature, Volume 272 (1978), pp. 35-37 | DOI
[14] Journey through a black hole, Class. Quant. Grav., Volume 6 (1989), L173 | DOI
[15] Internal structure of black holes, Phys. Rev. D, Volume 41 (1990), pp. 1796-1809 | DOI
[16] Cosmic censorship: As strong as ever, Phys. Rev. Lett., Volume 80 (1998), pp. 3432-3435 | DOI
[17] Physical objects approaching the Cauchy horizon of a rapidly rotating Kerr black hole, Phys. Rev. D, Volume 98 (2018) no. 10, 104024 | DOI
[18] Are physical objects necessarily burnt up by the blue sheet inside a black hole?, Phys. Rev. Lett., Volume 74 (1995), pp. 1064-1066 | DOI
[19] Structure of space-time, Battelle rencontres – 1967 lectures in mathematics and physics (C. M. Dewitt; J. A. Wheeler, eds.), W. A. Benjamin, Inc. (1968)
[20] Sonic Analog of Gravitational Black Holes in Bose–Einstein Condensates, Phys. Rev. Lett., Volume 85 (2000) no. 22 | DOI
[21] Phonon spectrum and correlations in a transonic flow of an atomic Bose gas, Phys. Rev. D, Volume 94 (2016) no. 8, 084027 | DOI
[22] Evanescent black holes, Phys. Rev. D, Volume 45 (1992) no. 4, p. R1005-R1009 | DOI
[23] Black hole evaporation in -dimensions, Phys. Lett. B, Volume 292 (1992), pp. 13-18 | DOI
[24] Hawking radiation by effective two-dimensional theories, Phys. Rev. D, Volume 59 (1999), 044031 | DOI
[25] Hawking radiation from dilaton gravity in -dimensions: A Pedagogical review, Annalen Phys., Volume 8 (1999), pp. 801-827 | DOI
[26] Backreaction in acoustic black holes, Phys. Rev. Lett., Volume 94 (2004), 161302 | DOI
[27] Quantum effects in acoustic black holes: The Backreaction, Phys. Rev. D, Volume 71 (2005), 064019 | DOI
[28] Conformal anomaly in two-dimensional dilaton scalar theory, Class. Quant. Grav., Volume 15 (1998), pp. 1881-1884 | DOI
[29] Trace anomaly of dilaton coupled scalars in two-dimensions, Phys. Rev. D, Volume 56 (1997), pp. 7788-7791 | DOI
[30] Black-hole lasers in Bose-Einstein condensates, New J. Phys., Volume 12 (1998), 095015 | DOI
Cité par Sources :
Commentaires - Politique