Comptes Rendus
Article de recherche
Analogue black holes and scalar-dilaton theory
[Analogues de trous noirs et théorie scalaire-dilaton]
Comptes Rendus. Physique, Online first (2024), pp. 1-12.

Cette note analyse la dynamique des grandes longueurs d’onde d’un système analogue de trous noirs à deux horizons dans une dimension spatiale. En introduisant un modèle scalaire effectif du type dilaton, nous montrons que des expressions analytiques peuvent être obtenues pour le flux de Hawking dépendant du temps et la densité d’énergie du rayonnement de Hawking. Nous montrons qu’en l’absence de modes superluminaux, il existe une instabilité du vide. Cette instabilité est reconnaissable pour les relativistes comme l’analogue de la déstabilisation de l’horizon de Cauchy d’un trou noir due à la polarisation du vide.

This note analyses the long wavelength dynamics of a two horizon analogue black hole system in one spatial dimension. By introducing an effective scalar-dilaton model we show that closed form expressions can be obtained for the time-dependent Hawking flux and the energy density of the Hawking radiation. We show that, in the absence superluminal modes, there is a vacuum instability. This instability is recognisable to relativists as the analogue to the destabilisation of the Cauchy horizon of a black hole due to vacuum polarization.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/crphys.211
Keywords: Black holes, Bose–Einstein condensates, analogue gravity
Mots-clés : Trous noirs, condensats Bose–Einstein, gravité analogique

Ian G. Moss 1

1 School of Mathematics, Statistics and Physics, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2024__25_S2_A10_0,
     author = {Ian G. Moss},
     title = {Analogue black holes and scalar-dilaton theory},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2024},
     doi = {10.5802/crphys.211},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Ian G. Moss
TI  - Analogue black holes and scalar-dilaton theory
JO  - Comptes Rendus. Physique
PY  - 2024
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.211
LA  - en
ID  - CRPHYS_2024__25_S2_A10_0
ER  - 
%0 Journal Article
%A Ian G. Moss
%T Analogue black holes and scalar-dilaton theory
%J Comptes Rendus. Physique
%D 2024
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.211
%G en
%F CRPHYS_2024__25_S2_A10_0
Ian G. Moss. Analogue black holes and scalar-dilaton theory. Comptes Rendus. Physique, Online first (2024), pp. 1-12. doi : 10.5802/crphys.211.

[1] W. G. Unruh Experimental black hole evaporation, Phys. Rev. Lett., Volume 46 (1981), pp. 1351-1353 | DOI

[2] Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, Lecture Notes in Physics, 718 (2007) | DOI

[3] Carlos Barcelo; Stefano Liberati; Matt Visser Analogue gravity, Living Rev. Rel., Volume 8 (2005), 3 | DOI

[4] J. Steinhauer Observation of self-amplifying Hawking radiation in an analogue black-hole laser, Nat. Phys., Volume 10 (2014) no. 11, p. 864-–869 | DOI

[5] J. Steinhauer Observation of quantum Hawking radiation and its entanglement in an analogue black hole, Nature Phys., Volume 12 (2016), p. 959 | DOI

[6] S. Corley; T. Jacobson Black hole lasers, Phys. Rev. D, Volume 59 (1999), 124011 | DOI

[7] P. Jain; A. S. Bradley; C. W. Gardiner Quantum de Laval nozzle: Stability and quantum dynamics of sonic horizons in a toroidally trapped Bose gas containing a superflow, Phys. Rev. A, Volume 76 (2007) no. 2 | DOI

[8] A. Coutant; R. Parentani Black hole lasers, a mode analysis, Phys. Rev. D, Volume 81 (2009), 084042 | DOI

[9] M. Tettamanti; S. L. Cacciatori; A. Parola; I. Carusotto Numerical study of a recent black-hole lasing experiment, Eur. Phys. Lett., Volume 114 (2016) no. 6, 60011 | DOI

[10] J. Steinhauer; J. R. M. de Nova Self-amplifying Hawking radiation and its background: a numerical study, Phys. Rev. A, Volume 95 (2017) no. 3, 033604 | DOI

[11] Y.-H. Wang; M. Edwards; C. W. Clark; T. Jacobson Induced density correlations in a sonic black hole condensate, SciPost Phys., Volume 3 (2017) no. 3, p. 22 | DOI

[12] S. M. Christensen; S. A. Fulling Trace Anomalies and the Hawking Effect, Phys. Rev. D, Volume 15 (1977), pp. 2088-2104 | DOI

[13] N. D. Birrell; P. C. W. Davies On falling through a black hole into another universe, Nature, Volume 272 (1978), pp. 35-37 | DOI

[14] P. C. W. Davies; I. G. Moss Journey through a black hole, Class. Quant. Grav., Volume 6 (1989), L173 | DOI

[15] E. Poisson; W. Israel Internal structure of black holes, Phys. Rev. D, Volume 41 (1990), pp. 1796-1809 | DOI

[16] P. R. Brady; I. G. Moss; R. C. Myers Cosmic censorship: As strong as ever, Phys. Rev. Lett., Volume 80 (1998), pp. 3432-3435 | DOI

[17] C. Mallary; G. Khanna; L. M. Burko Physical objects approaching the Cauchy horizon of a rapidly rotating Kerr black hole, Phys. Rev. D, Volume 98 (2018) no. 10, 104024 | DOI

[18] L. M. Burko; A. Ori Are physical objects necessarily burnt up by the blue sheet inside a black hole?, Phys. Rev. Lett., Volume 74 (1995), pp. 1064-1066 | DOI

[19] R. Penrose Structure of space-time, Battelle rencontres – 1967 lectures in mathematics and physics (C. M. Dewitt; J. A. Wheeler, eds.), W. A. Benjamin, Inc. (1968)

[20] L. J. Garay; J. R. Anglin; J. I. Cirac; P. Zoller Sonic Analog of Gravitational Black Holes in Bose–Einstein Condensates, Phys. Rev. Lett., Volume 85 (2000) no. 22 | DOI

[21] F. Michel; J.-F. Coupechoux; R. Parentani Phonon spectrum and correlations in a transonic flow of an atomic Bose gas, Phys. Rev. D, Volume 94 (2016) no. 8, 084027 | DOI

[22] C. G. Jr. Callan; S. B. Giddings; J. A. Harvey; A. Strominger Evanescent black holes, Phys. Rev. D, Volume 45 (1992) no. 4, p. R1005-R1009 | DOI

[23] J. G. Russo; L. Susskind; L. Thorlacius Black hole evaporation in (1+1)-dimensions, Phys. Lett. B, Volume 292 (1992), pp. 13-18 | DOI

[24] R. Balbinot; A. Fabbri Hawking radiation by effective two-dimensional theories, Phys. Rev. D, Volume 59 (1999), 044031 | DOI

[25] W. Kummer; D. V. Vassilevich Hawking radiation from dilaton gravity in (1+1)-dimensions: A Pedagogical review, Annalen Phys., Volume 8 (1999), pp. 801-827 | DOI

[26] R. Balbinot; S. Fagnocchi; A. Fabbri; G. P. Procopio Backreaction in acoustic black holes, Phys. Rev. Lett., Volume 94 (2004), 161302 | DOI

[27] R. Balbinot; S. Fagnocchi; A. Fabbri Quantum effects in acoustic black holes: The Backreaction, Phys. Rev. D, Volume 71 (2005), 064019 | DOI

[28] J. S. Dowker Conformal anomaly in two-dimensional dilaton scalar theory, Class. Quant. Grav., Volume 15 (1998), pp. 1881-1884 | DOI

[29] R. Bousso; S. W. Hawking Trace anomaly of dilaton coupled scalars in two-dimensions, Phys. Rev. D, Volume 56 (1997), pp. 7788-7791 | DOI

[30] S. Finazzi; R. Parentani Black-hole lasers in Bose-Einstein condensates, New J. Phys., Volume 12 (1998), 095015 | DOI

Cité par Sources :

Commentaires - Politique