[De l’art de concevoir des espaces-temps effectifs avec des écoulements à surface libre en Gravitation Analogue]
Les écoulements transcritiques accélérés/décélérés (chutes d’eau/cataractes) sont analogues aux espaces-temps des trous noirs/fontaines blanches depuis les travaux pionniers de Schützhold & Unruh en 2002. Un seul nombre est généralement utilisé pour classifier la transcriticité, à savoir le nombre de Froude de profondeur local qui est le rapport entre la vitesse locale du courant et la célérité locale des ondes longues de gravité analogue à la célérité de la lumière. Lorsque le premier atteint 1, les vagues ne peuvent plus se propager vers l’amont : le trou noir hydraulique est pour elles une rivière sans retour. À un niveau de compréhension supérieur, deux nombres globaux sans dimension, le nombre de Froude en amont Frup et le taux d’obstruction rup (la hauteur d’un obstacle de fond, la géométrie sous-jacente induisant l’espace-temps effectif, divisé par la profondeur de l’eau en amont) sont essentiels pour distinguer les zones sous-critiques, trans-critiques et supercritiques dans le diagramme - Frup versus rup - hydraulique et non dispersif. La relation entre les deux paramètres globaux pour les écoulements transcritiques s’avère être une limite particulière du comportement des bateaux naviguant dans des milieux confinés comme des canaux ou des écluses avec un facteur d’obstruction généralisé basé sur le rapport entre la section du bateau et la section du canal. Ici, nous revisitons la classification des écoulements au-dessus des obstacles dans les canaux à surface libre en prenant en compte à la fois les effets de dispersion et d’échelle du à la tension de surface, deux sujets négligés jusqu’à présent. Pour la première fois, nous donnons une classification complète des écoulements dans un canal à surface libre basée sur des mesures avec une méthode de détection sous-pixel de la surface libre appuyées par des simulations numériques. Nous avons généralisé le facteur d’obstruction par un facteur de remplissage prenant en compte la hauteur maximale du canal à surface libre, paramètre crucial et oublié jusqu’à présent. Notre objectif ultime est de comprendre comment reproduire en laboratoire des analogues d’espaces-temps courbes du point de vue dynamique.
Compléments :
Des compléments sont fournis pour cet article dans les fichiers suivants :
Accelerating/decelerating trans-critical flows (waterfalls/cataracts) are analogous to space-times of black holes/white fountains since the pioneering work of Schützhold & Unruh in 2002. A single number is usually employed to classify trans-criticality namely the local depth Froude number which is the ratio between the local current speed and the local celerity of long gravity waves analogous to the light celerity. When the former reaches one, water waves are no more able to propagate upstream: the hydraulic black hole is a river of no return for them. At a higher level of understanding, two global dimensionless numbers, the upstream Froude number Frup and the obstruction ratio rup (the height of a bottom obstacle, the underlying geometry inducing the effective space-time, divided by the upstream water depth) are essential to distinguish subcritical, trans-critical and supercritical zones in the - Frup versus rup - hydraulic and non-dispersive diagram. The relationship between both global parameters for transcritical flows turns out to be a peculiar limit of the behaviour of boats navigating in confined media like canals or locks with a generalized obstruction factor based on the ratio between the boat section and the canal section. Here, we revisit the classification of flows over obstacles in open water channel taking into account both effects of dispersion and scale due to surface tension, two neglected topics so far. For the first time, we give a complete classification of flows in an open water channel based on sub-pixel detection method measurements of the free surface supported by numerical simulations. We generalized the obstruction factor by a filling factor taking into account the maximum height of the water channel, a crucial parameter that was overlooked so far. Our ultimate purpose is to understand how to reproduce in the laboratory analogues of curved space-times from the dynamical point of view.
Supplementary Materials:
Supplementary materials for this article are supplied as separate files:
Révisé le :
Accepté le :
Publié le :
Mots-clés : gravitation analogue, classification des écoulements, canal à surface libre, dispersion gravitaire et capillaire
Alexis Bossard 1 ; Nicolas James 2 ; Valentin Jules 1 ; Johan Fourdrinoy 1 ; Scott Robertson 1 ; Germain Rousseaux 1
@article{CRPHYS_2024__25_G1_457_0, author = {Alexis Bossard and Nicolas James and Valentin Jules and Johan Fourdrinoy and Scott Robertson and Germain Rousseaux}, title = {On the art of designing effective space-times with free surface flows in {Analogue} {Gravity}}, journal = {Comptes Rendus. Physique}, pages = {457--511}, publisher = {Acad\'emie des sciences, Paris}, volume = {25}, year = {2024}, doi = {10.5802/crphys.215}, language = {en}, }
TY - JOUR AU - Alexis Bossard AU - Nicolas James AU - Valentin Jules AU - Johan Fourdrinoy AU - Scott Robertson AU - Germain Rousseaux TI - On the art of designing effective space-times with free surface flows in Analogue Gravity JO - Comptes Rendus. Physique PY - 2024 SP - 457 EP - 511 VL - 25 PB - Académie des sciences, Paris DO - 10.5802/crphys.215 LA - en ID - CRPHYS_2024__25_G1_457_0 ER -
%0 Journal Article %A Alexis Bossard %A Nicolas James %A Valentin Jules %A Johan Fourdrinoy %A Scott Robertson %A Germain Rousseaux %T On the art of designing effective space-times with free surface flows in Analogue Gravity %J Comptes Rendus. Physique %D 2024 %P 457-511 %V 25 %I Académie des sciences, Paris %R 10.5802/crphys.215 %G en %F CRPHYS_2024__25_G1_457_0
Alexis Bossard; Nicolas James; Valentin Jules; Johan Fourdrinoy; Scott Robertson; Germain Rousseaux. On the art of designing effective space-times with free surface flows in Analogue Gravity. Comptes Rendus. Physique, Volume 25 (2024), pp. 457-511. doi : 10.5802/crphys.215. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.215/
[1] Analogue Gravity, Living Rev. Relativ., Volume 14 (2011), 3 | DOI
[2] The theory of Hawking radiation in laboratory analogues, J. Phys. B. At. Mol. Opt. Phys., Volume 45 (2012), 163001 | DOI
[3] Analogue gravity phenomenology: analogue spacetimes and horizons, from theory to experiment, Lecture Notes in Physics, 870, Springer, 2013 | DOI
[4] Classical hydrodynamics for analogue space-times: open channel flows and thin films, Philos. Trans. R. Soc. Lond., Ser. A, Volume 378 (2020) no. 2177, 20190233 | DOI
[5] Analogue black-hole horizons, Nat. Phys., Volume 15 (2019) no. 3, pp. 210-213 | DOI
[6] Analogue simulations of quantum gravity with fluids, Nat. Rev. Phys., Volume 5 (2023) no. 10, pp. 612-622 | DOI
[7] Analogue gravity and the Hawking effect: historical perspective and literature review, Eur. Phys. J. H, Volume 48 (2023) no. 1, 15 | DOI
[8] Building Black Holes: Analogue experiments and analogical reasoning, Ph. D. Thesis, University of Cambridge, United Kingdom (2024) | DOI
[9] Observation of noise correlated by the Hawking effect in a water tank, Phys. Rev. Lett., Volume 117 (2016) no. 12, 121301 | DOI
[10] Observation of quantum Hawking radiation and its entanglement in an analogue black hole, Nat. Phys., Volume 12 (2016) no. 10, pp. 959-965 | DOI
[11] Observation of Stimulated Hawking Radiation in an Optical Analogue, Phys. Rev. Lett., Volume 122 (2019) no. 1, 010404 | DOI
[12] Gravity wave analogues of black holes, Phys. Rev. D, Volume 66 (2002), 044019 | DOI
[13] The Basics of Water Waves Theory for Analogue Gravity, Lecture Notes in Physics, 870, Springer (2013), pp. 81-107 | DOI
[14] Fluid dynamics for physicists, Cambridge University Press, 1995 | DOI | Zbl
[15] Topographic effects in stratified flows, Cambridge University Press: Cambridge, 2022 | Zbl
[16] Some aspects of the flow of stratified fluids: II. Experiments with a two-fluid system, Tellus, Volume 6 (1954) no. 2, pp. 97-115 | DOI
[17] Nonlinear shallow fluid flow over an isolated ridge, Commun. Pure Appl. Math., Volume 21 (1968) no. 1, pp. 1-23 | DOI
[18] The dynamics of unsteady strait and still flow, Ph. D. Thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, USA (1982) | DOI
[19] On nonlinear flow with multiple obstructions, J. Atmos. Sci., Volume 41 (1984) no. 7, pp. 1214-1225 | DOI
[20] Steady flow over an obstacle, J. Hydraul. Eng., Volume 113 (1987) no. 8, pp. 981-991 | DOI
[21] Contribution à l’étude des ondes de surface dans un canal: application à l’écoulement au-dessus d’un obstacle immergé, Ph. D. Thesis, Poitiers, France (1988)
[22] Free-surface flow over a semi-circular obstruction, Int. J. Numer. Methods Fluids, Volume 30 (1999) no. 1, pp. 43-63 | DOI | Zbl
[23] A one-dimensional Boussinesq-type momentum model for steady rapidly varied open channel flows, Ph. D. Thesis, University of Melbourne, Department of Civil and Environmental Engineering, Australia (2004)
[24] About modelling inland vessels resistance and propulsion and interaction vessel-waterway key parameters driving restricted/shallow water effects, Proceeding of Smart Rivers 2015, The World Association for Waterborne Transport Infrastructure (PIANC): Buenos Aires (2015), 180
[25] Wave-current interaction as a spatial dynamical system: analogies with rainbow and black hole physics, Phys. Rev. Lett., Volume 102 (2009) no. 12, 124504 | DOI
[26] Horizon effects with surface waves on moving water, New J. Phys., Volume 12 (2010) no. 9, 095018 | DOI
[27] Measurement of stimulated Hawking emission in an analogue system, Phys. Rev. Lett., Volume 106 (2011) no. 2, 021302 | DOI
[28] Some aspects of dispersive horizons: lessons from surface waves, Analogue Gravity Phenomenology: Analogue Spacetimes and Horizons, from Theory to Experiment (Lecture Notes in Physics), Volume 870, Springer, 2013, pp. 145-165 | DOI
[29] Undulations from amplified low frequency surface waves, Phys. Fluids, Volume 26 (2014) no. 4, 044106 | DOI
[30] Probing the thermal character of analogue Hawking radiation for shallow water waves?, Phys. Rev. D, Volume 90 (2014), 044033 | DOI
[31] Analog wormholes and black hole laser effects in hydrodynamics, Phys. Rev. D, Volume 93 (2016) no. 8, 084032 | DOI
[32] Scattering of gravity waves in subcritical flows over an obstacle, Phys. Rev. D, Volume 93 (2016) no. 12, 124060 | DOI
[33] Classical analogue of an interstellar travel through a hydrodynamic wormhole, Phys. Rev. D, Volume 96 (2017), 064042 | DOI
[34] Interactions ondes-courant-obstacle: application à la physique des trous noirs, Ph. D. Thesis, Université de Poitiers, France (2017)
[35] Gravity waves on modulated flows downstream from an obstacle: The transcritical case, Phys. Rev. D, Volume 97 (2018), 065018 | DOI
[36] Low-frequency analogue Hawking radiation: The Bogoliubov–de Gennes model, Phys. Rev. D, Volume 97 (2018), 025006 | DOI
[37] Steady two-dimensional free-surface flow past disturbances in an open channel: solutions of the Korteweg–De Vries equation and analysis of the weakly nonlinear phase space, Fluids, Volume 4 (2019) no. 1, p. 24 | DOI
[38] Experimental Black-Hole Evaporation?, Phys. Rev. Lett., Volume 46 (1981), pp. 1351-1353 | DOI
[39] Histoire et Singularités de la Solution de Schwarzschild (1915-1923), Arch. Hist. Exact Sci., Volume 27 (1982), pp. 157-198 | DOI
[40] The river model of black holes, Am. J. Phys., Volume 76 (2008), pp. 519-532 | DOI
[41] Acoustic black holes: horizons, ergospheres and Hawking radiation, Class. Quant. Grav., Volume 15 (1998) no. 6, pp. 1767-1791 | DOI | Zbl
[42] Rotational superradiant scattering in a vortex flow, Nat. Phys., Volume 13 (2017), pp. 833-836 | DOI
[43] Amplification of Waves due to Quanta with Negative Energy, J. Appl. Phys., Volume 35 (1964) no. 1, pp. 137-141 | DOI
[44] Negative energy waves in hydrodynamics, Sov. Phys. Usp., Volume 29 (1986) no. 11, pp. 1040-1052 | DOI
[45] Propagation of waves in hydrodynamic shear flows, Sov. Phys. Usp., Volume 32 (1989) no. 9, pp. 783-805 | DOI
[46] Plasma-Hydrodynamic Analogy for Waves and Vortices in Shear Flows, Sound-Flow Interactions (Lecture Notes in Physics (Y. Aurégan; V. Pagneux; J.-F. Pinton; A. Maurel, eds.), Volume 586, Springer, 2002, pp. 192-209 | DOI
[47] Negative frequencies and negative norms in analogue Hawking radiation systems, C. R. Phys. Acad. Sci. Paris, Volume 25 (2024) no. S2, pp. 1-17 | DOI
[48] Sonic analogue of black holes and the effects of high frequencies on black hole evaporation, Phys. Rev. D, Volume 51 (1995) no. 6, pp. 2827-2838 | DOI
[49] Hawking radiation without trans-Planckian frequencies, Phys. Rev. D, Volume 52 (1995) no. 8, pp. 4559-4568 | DOI
[50] Black hole lasers, Phys. Rev. D, Volume 59 (1999) no. 12, 124011 | DOI
[51] Observation of negative-frequency waves in a water tank: a classical analogue to the Hawking effect?, New J. Phys., Volume 10 (2008) no. 5, 053015 | DOI
[52] Flow over obstacles of finite amplitude, Geofys. Publ., Volume 26 (1966), pp. 1-25
[53] How to create analogue black hole or white fountain horizons and LASER cavities in experimental free surface hydrodynamics? (2023) (preprint arXiv:2307.11022)
[54] Correlations on weakly time-dependent transcritical white-hole flows, Phys. Rev. D, Volume 105 (2022) no. 8, 085022 | DOI
[55] Classical aspects of Hawking radiation verified in analogue gravity experiment, Analogue gravity phenomenology: Analogue spacetimes and horizons, from theory to experiment (Lecture Notes in Physics), Volume 870, Springer, 2013, pp. 167-180 | DOI
[56] Particle creation by black holes, Commun. Math. Phys., Volume 43 (1975), pp. 199-220 | DOI
[57] Viscous dissipation of surface waves and its relevance to analogue gravity experiments (2017) (preprint, arXiv:1706.05255)
[58] Analog wormholes and black hole laser effects in hydrodynamics, Phys. Rev. D, Volume 93 (2016) no. 8, 084032 | DOI
[59] Non-linear processes and stimulated hawking radiation in hydrodynamics for decelerating subcritical free surface flows with a subluminal dispersion relation (2021) (preprint, arXiv:2112.12504)
[60] Intrinsic instability of sonic white holes (2002) (preprint, arXiv:gr-qc/0211069)
[61] Flow regimes and structure in pool and weir fishways, J. Environ. Eng. Sci., Volume 3 (2004) no. 5, pp. 379-390 | DOI
[62] Hydraulic control of sill flow with bottom friction, J. Phys. Oceanogr., Volume 16 (1986) no. 11, pp. 1970-1980 | DOI
[63] On the universality of Hawking radiation, Br. J. Philos. Sci., Volume 72 (2021) no. 3, pp. 809-837 | DOI
[64] Scattering of co-current surface waves on an analogue black hole, Phys. Rev. Lett., Volume 124 (2020) no. 14, 141101 | DOI
[65] Wave blocking and partial transmission in subcritical flows over an obstacle, Phys. Rev. D, Volume 91 (2015) no. 2, 024020 | DOI
[66] Tolman temperature gradients in a gravitational field, Eur. J. Phys., Volume 40 (2019) no. 2, 025604 | DOI
[67] A laboratory study of the transformation of regular gravity-capillary waves in inhomogeneous flows, Izv. Atmos. Ocean. Phys, Volume 19 (1983) no. 10, pp. 782-787
[68] A second-order cut-cell method for the numerical simulation of 2D flows past obstacles, Comput. Fluids, Volume 65 (2012), pp. 80-91 Sixth International Conference on Computational Fluid Dynamics (ICCFD6) | DOI
Cité par Sources :
Commentaires - Politique