[Expériences de laboratoire en lien avec la pollution plastique océanique : une revue des travaux passés et directions futures]
La pollution plastique mondiale est un sujet d’étude très actif pour de nombreuses communautés des sciences géophysiques. Un certain nombre de revues bibliographiques ont déjà abordé la pollution plastique des océans selon différents points de vue, avec des perspectives ciblées ou bien interdisciplinaires. Nous passons ici en revue les contributions récentes d’études expérimentales en laboratoire abordant certains aspects spécifiques de la pollution plastique marine. Plus précisément, nous avons considéré tous les processus basés sur la physique pour décrire l’origine, le devenir et le transport des particules plastiques dans les océans.
Plastic pollution is a very active research topic for a wide variety of scientific disciplines. While existing reviews of plastic pollution in the ocean cover the topic from different disciplinary and interdisciplinary viewpoints, this review addresses the contributions from laboratory experiments towards the geophysical processes important in marine plastic pollution research. We review the laboratory research on the transport, transformations, and origin and fate of marine plastic pollution with recommendations for future research.
Révisé le :
Accepté le :
Première publication :
Mots-clés : pollution plastique, dynamique océanique, expérience de laboratoire
Marie Poulain-Zarcos 1 ; Nimish Pujara 2 ; Gautier Verhille 3 ; Matthieu J. Mercier 4
@article{CRPHYS_2024__25_S3_A19_0, author = {Marie Poulain-Zarcos and Nimish Pujara and Gautier Verhille and Matthieu J. Mercier}, title = {Laboratory experiments related to marine plastic pollution: a review of past work and future directions}, journal = {Comptes Rendus. Physique}, publisher = {Acad\'emie des sciences, Paris}, year = {2024}, doi = {10.5802/crphys.217}, language = {en}, note = {Online first}, }
TY - JOUR AU - Marie Poulain-Zarcos AU - Nimish Pujara AU - Gautier Verhille AU - Matthieu J. Mercier TI - Laboratory experiments related to marine plastic pollution: a review of past work and future directions JO - Comptes Rendus. Physique PY - 2024 PB - Académie des sciences, Paris N1 - Online first DO - 10.5802/crphys.217 LA - en ID - CRPHYS_2024__25_S3_A19_0 ER -
%0 Journal Article %A Marie Poulain-Zarcos %A Nimish Pujara %A Gautier Verhille %A Matthieu J. Mercier %T Laboratory experiments related to marine plastic pollution: a review of past work and future directions %J Comptes Rendus. Physique %D 2024 %I Académie des sciences, Paris %Z Online first %R 10.5802/crphys.217 %G en %F CRPHYS_2024__25_S3_A19_0
Marie Poulain-Zarcos; Nimish Pujara; Gautier Verhille; Matthieu J. Mercier. Laboratory experiments related to marine plastic pollution: a review of past work and future directions. Comptes Rendus. Physique, Online first (2024), pp. 1-32. doi : 10.5802/crphys.217.
[1] et al. From Pollution to Solution: A global assessment of marine litter and plastic pollution (Nairobi) (2021) https://www.unep.org/resources/pollution-solution-global-assessment-marine-litter-and-plastic-pollution (Technical report)
[2] et al. An inshore–offshore sorting system revealed from global classification of ocean litter, Nat. Sustain., Volume 4 (2021) no. 6, pp. 484-493 | DOI
[3] The global odyssey of plastic pollution, Science, Volume 368 (2020) no. 6496, pp. 1184-1185 | DOI
[4] et al. The physical oceanography of the transport of floating marine debris, Environ. Res. Lett., Volume 15 (2020), 023003 | DOI
[5] Dispersion, Accumulation, and the Ultimate Fate of Microplastics in Deep-Marine Environments: A Review and Future Directions, Front. Earth Sci., Volume 7 (2019), pp. 41-42 | DOI
[6] Microplastics: An introduction to environmental transport processes, WIREs Water, Volume 5 (2018) no. 2, e1268 | DOI
[7] Plastic waste inputs from land into the ocean, Science, Volume 347 (2015) no. 6223, pp. 768-771 | DOI
[8] et al. Plastic waste discharge to the global ocean constrained by seawater observations, Nat. Commun., Volume 14 (2023) no. 1, 1372 | DOI
[9] et al. Plastic debris in the open ocean, P. Natl. Acad. Sci. USA, Volume 111 (2014) no. 28, pp. 10239-10244 | DOI
[10] et al. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea, PLoS ONE, Volume 9 (2014) no. 12, e111913 | DOI
[11] et al. A global inventory of small floating plastic debris, Environ. Res. Lett., Volume 10 (2015) no. 12, 124006 | DOI
[12] A marine plastic cloud – Global mass balance assessment of oceanic plastic pollution, Cont. Shelf Res., Volume 255 (2023), 104947 | DOI
[13] Ocean sediments as the global sink for marine micro- and mesoplastics, Limnol. Oceanogr. Lett., Volume 7 (2022) no. 3, pp. 235-243 | DOI
[14] High concentrations of plastic hidden beneath the surface of the Atlantic Ocean, Nat. Commun., Volume 11 (2020) no. 1, 4073 | DOI
[15] Global mass of buoyant marine plastics dominated by large long-lived debris, Nat. Geosci., Volume 16 (2023) no. 8, pp. 689-694 | DOI
[16] et al. Microplastics and nanoplastics in the marine-atmosphere environment, Nat. Rev. Earth Environ., Volume 3 (2022) no. 6, pp. 393-405 | DOI
[17] Exchange of Plankton, Pollutants, and Particles Across the Nearshore Region, Ann. Rev. Mar. Sci., Volume 15 (2022), pp. 167-202 | DOI
[18] et al. Microplastics particles in coastal zone: Approach of physical oceanography, Microplastic Contamination in Aquatic Environments, Elsevier, 2024, pp. 249-310 | DOI
[19] 2.15 – Transport of microplastic debris in estuaries, Treatise on Estuarine and Coastal Science (Second Edition). Volume 2: Physical Aspects (D-. Baird; M. Elliott, eds.), Academic Press Inc., 2024, pp. 368-409 | DOI
[20] Fluid dynamics challenges in predicting plastic pollution transport in the ocean: A perspective, Phys. Rev. Fluids, Volume 8 (2023) no. 7, 070701 | DOI
[21] Risk assessment of microplastic particles, Nat. Rev. Mater., Volume 7 (2022) no. 2, pp. 138-152 | DOI
[22] et al. A source-to-sink perspective of an anthropogenic marker: A first assessment of microplastics concentration, pathways, and accumulation across the environment, Earth-Sci. Rev., Volume 254 (2024), 104822 | DOI
[23] Plastic as a Sediment – A Universal and Objective practical solution to growing ambiguity in plastic litter classification schemes, Earth-Sci. Rev. (2024), 104994 (submission) | DOI
[24] et al. Lagrangian ocean analysis: Fundamentals and practices, Ocean Model., Volume 121 (2018), pp. 49-75 | DOI
[25] The role of Ekman currents, geostrophy, and stokes drift in the accumulation of floating microplastic, J. Geophys. Res. Oceans, Volume 124 (2019) no. 3, pp. 1474-1490 | DOI
[26] et al. Anticyclonic eddies increase accumulation of microplastic in the North Atlantic subtropical gyre, Mar. Pollut. Bull., Volume 126 (2018), pp. 191-196 | DOI
[27] A surface ‘superconvergence’ pathway connecting the South Indian Ocean to the subtropical South Pacific gyre, Geophys. Res. Lett., Volume 45 (2018) no. 4, pp. 1915-1922 | DOI
[28] Nonlinear dynamics of inertial particles in the ocean: from drifters and floats to marine debris and Sargassum, Nonlinear Dyn., Volume 103 (2021) no. 1, pp. 1-26 | DOI | Zbl
[29] On the theory of oscillatory waves, Trans. Camb. Philos. Soc., Volume 8 (1847), pp. 441-455
[30] Stokes drift, Philos. Trans. R. Soc. Lond., Ser. A, Volume 376 (2018) no. 2111, 20170104 | DOI | Zbl
[31] Experimental study of particle trajectories below deep-water surface gravity wave groups, J. Fluid Mech., Volume 879 (2019), pp. 168-186 | DOI | Zbl
[32] Stokes drift: theory and experiments, J. Fluid Mech., Volume 884 (2020), F1 | DOI | Zbl
[33] Laboratory Measurements of the Wave‐Induced Motion of Plastic Particles: Influence of Wave Period, Plastic Size and Plastic Density, J. Geophys. Res. Oceans, Volume 125 (2020) no. 12, e2020JC016294 | DOI
[34] A mechanism for the increased wave-induced drift of floating marine litter, J. Fluid Mech., Volume 915 (2021), A73 | DOI | Zbl
[35] Net currents in the wave bottom boundary layer: On waveshape streaming and progressive wave streaming, J. Geophys. Res. Earth Surf., Volume 117 (2012) no. F3, F03005 | DOI
[36] et al. A Laboratory Study of the Effects of Size, Density, and Shape on the Wave‐Induced Transport of Floating Marine Litter, J. Geophys. Res. Oceans, Volume 129 (2024), e2023JC020661 | DOI
[37] et al. Selective transport of microplastics and mesoplastics by drifting in coastal waters, Mar. Pollut. Bull., Volume 89 (2014) no. 1-2, pp. 324-330 | DOI
[38] How Winds and Ocean Currents Influence the Drift of Floating Objects, J. Phys. Oceanogr., Volume 52 (2022) no. 5, pp. 907-916 | DOI
[39] Passive buoyant tracers in the ocean surface boundary layer: 2. Observations and simulations of microplastic marine debris, J. Geophys. Res. Oceans, Volume 120 (2015) no. 11, pp. 7559-7573 | DOI
[40] et al. Ocean convergence and the dispersion of flotsam, P. Natl. Acad. Sci. USA, Volume 115 (2018) no. 6, pp. 1162-1167 | DOI
[41] Effects of Turbulence on the Transport of Positively Buoyant Particles in the Ocean Mixed Layer, Bulletin of the American Physical Society, Volume 67 (2022), T02.00002
[42] Role of Indian Ocean dynamics on accumulation of buoyant debris, J. Geophys. Res. Oceans, Volume 124 (2019) no. 4, pp. 2571-2590 | DOI
[43] Transport of Finite-Sized Particles in Chaotic Flow, Phys. Rev. Lett., Volume 101 (2008) no. 17, 174504 | DOI
[44] Sinking of floating plastic debris caused by biofilm development in a freshwater lake, Chemosphere, Volume 222 (2019), pp. 856-864 | DOI
[45] Modern conceptions of the mechanics of fluid turbulence, Transactions of the American Society of Civil Engineers, Volume 102 (1937) no. 1, pp. 463-505 | DOI
[46] Two-phase formulation of suspended sediment transport, J. Hydraul. Res., Volume 37 (1999) no. 4, pp. 479-500 | DOI
[47] A comprehensive two-phase flow model for unidirectional sheet-flows, J. Hydraul. Res., Volume 56 (2018) no. 1, pp. 15-28 | DOI
[48] Microplastics segregation by rise velocity at the ocean surface, Environ. Res. Lett., Volume 18 (2023) no. 2, 024036 | DOI
[49] Abundance, size and polymer composition of marine microplastics 10 m in the Atlantic Ocean and their modelled vertical distribution, Mar. Pollut. Bull., Volume 100 (2015), pp. 70-81 | DOI
[50] The effect of wind mixing on the vertical distribution of buoyant plastic debris, Geophys. Res. Lett., Volume 39 (2012) no. 7, L07601 | DOI
[51] Turbulent Schmidt numbers for CFD analysis with various types of flowfield, Atmos. Environ., Volume 41 (2007) no. 37, pp. 8091-8099 | DOI
[52] A generic length-scale equation for geophysical turbulence models, J. Mar. Res., Volume 61 (2003) no. 2, pp. 235-265 | DOI
[53] Modelling of sediment suspensions in oscillating grid turbulence, Fluid Dyn. Res., Volume 35 (2004) no. 2, 87 | DOI | Zbl
[54] Wake-driven dynamics of finite-sized buoyant spheres in turbulence, Phys. Rev. Lett., Volume 115 (2015) no. 12, 124501 | DOI
[55] Focus on dynamics of particles in turbulence, New J. Phys., Volume 16 (2014) no. 8, 085010 | DOI
[56] Effect of shape and size on the transport of floating particles on the free surface in a natural stream, Water Resour. Res., Volume 59 (2023) no. 10, e2023WR035716 | DOI
[57] Distribution of surface plastic debris in the eastern Pacific Ocean from an 11-year data set, Environ. Sci. Technol., Volume 48 (2014) no. 9, pp. 4732-4738 | DOI
[58] et al. Small microplastics as a main contributor to plastic mass balance in the North Atlantic subtropical gyre, Environ. Sci. Technol., Volume 53 (2018) no. 3, pp. 1157-1164 | DOI
[59] Effects of particle properties on the settling and rise velocities of microplastics in freshwater under laboratory conditions, Environ. Sci. Technol., Volume 53 (2019) no. 4, pp. 1958-1966 | DOI
[60] et al. Settling velocity of microplastic particles having regular and irregular shapes, Environ. Res., Volume 228 (2023), 115783 | DOI
[61] Rising and Sinking in Resonance: Mass Distribution Critically Affects Buoyancy-Driven Spheres via Rotational Dynamics, Phys. Rev. Lett., Volume 126 (2021) no. 17, 174502 | DOI
[62] Settling of nonuniform cylinders at intermediate Reynolds numbers, Phys. Rev. Fluids, Volume 9 (2024) no. 7, 070501 | DOI
[63] Inertial torques and a symmetry breaking orientational transition in the sedimentation of slender fibres, J. Fluid Mech., Volume 875 (2019), pp. 576-596 | DOI | Zbl
[64] Turbulence modulation by suspended sediment in a zero mean-shear geophysical flow, Coherent Flow Structures at Earth’s Surface, John Wiley & Sons, 2013, pp. 309-321 | DOI
[65] Settling of finite-size particles in turbulence at different volume fractions, Acta Mech., Volume 230 (2019), pp. 413-430 | DOI
[66] Turbulence effects on the settling of suspended particles, J. Sediment. Res., Volume 63 (1993) no. 5, pp. 835-838 | DOI
[67] Settling regimes of inertial particles in isotropic turbulence, J. Fluid Mech., Volume 759 (2014), R3 | DOI
[68] Reduced particle settling speed in turbulence, J. Fluid Mech., Volume 808 (2016), pp. 153-167 | DOI | Zbl
[69] Settling velocity of microplastics exposed to wave action, J. Mar. Sci. Eng., Volume 9 (2021) no. 2, 142 | DOI
[70] On the values for the turbulent Schmidt number in environmental flows, Fluids, Volume 2 (2017) no. 2, 17 | DOI
[71] Étude de la distribution verticale de particules plastiques dans l’océan: caractérisation, modélisation et comparaison avec des observations, Ph. D. Thesis, INPT, Toulouse, France (2020)
[72] Controversial turbulent Schmidt number value in particle-laden boundary layer flows, Phys. Rev. Fluids, Volume 7 (2022) no. 1, 014307 | DOI
[73] Effect of particle size on calibration of Schmidt number, J. Coast. Res., Volume 3 (2016) no. 75, pp. 148-152 | DOI
[74] Experiments on the mechanics of sediment suspension, Proceedings of the fifth international congress for applied mechanics, Volume 55, John Wiley & Sons: New York, NY, USA (1938), pp. 550-554
[75] Global characterization of oscillating grid turbulence in homogeneous and two-layer fluids, and its implication for mixing at high Peclet number, Phys. Rev. Fluids, Volume 7 (2022) no. 5, 054606 | DOI
[76] Modeling wave-enhanced turbulence in the ocean surface layer, J. Phys. Oceanogr., Volume 24 (1994) no. 12, pp. 2546-2559 | DOI
[77] Mixing across an interface due to turbulence generated by an oscillating grid, J. Fluid Mech., Volume 67 (1975) no. 2, pp. 349-368 | DOI
[78] Spatially decaying turbulence and its relation to mixing across density interfaces, J. Fluid Mech., Volume 78 (1976) no. 1, pp. 155-175 | DOI
[79] Empirical Lagrangian parametrization for wind-driven mixing of buoyant particles at the ocean surface, Geosci. Model Dev., Volume 15 (2022) no. 5, pp. 1995-2012 | DOI
[80] On the determination of the settling flux of cohesive sediments in a turbulent fluid, J. Geophys. Res. Oceans, Volume 110 (2005) no. C6, C06004 | DOI
[81] Determination of Microplastics’ Vertical Concentration Transport (Rouse) Profiles in Flumes, Environ. Sci. Technol., Volume 57 (2023) no. 14, pp. 5569-5579 | DOI
[82] Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., Volume 32 (1994) no. 4, pp. 363-403 | DOI
[83] Vertical mixing by Langmuir circulations, Spill Sci. Technol. Bull., Volume 6 (2000) no. 3-4, pp. 225-237 | DOI
[84] Ekman layer rectification, J. Phys. Oceanogr., Volume 36 (2006) no. 8, pp. 1646-1659 | DOI
[85] Global simulations of marine plastic transport show plastic trapping in coastal zones, Environ. Res. Lett., Volume 16 (2021), 064053 | DOI
[86] Profile of suspended sediment concentration in submerged vegetated shallow water flow, Water Resour. Res., Volume 56 (2020) no. 4, e2019WR025551 | DOI
[87] Settling of particles beneath water waves, J. Phys. Oceanogr., Volume 38 (2008) no. 12, pp. 2846-2853 | DOI
[88] Stokes drift for inertial particles transported by water waves, Eur. Phys. Lett., Volume 102 (2013), 14003 | DOI
[89] Transport of anisotropic particles under waves, J. Fluid Mech., Volume 837 (2018), pp. 320-340 | DOI | Zbl
[90] Wave-averaged motion of small particles in surface gravity waves: Effect of particle shape on orientation, drift, and dispersion, Phys. Rev. Fluids, Volume 8 (2023), 074801 | DOI
[91] Enhanced settling and dispersion of inertial particles in surface waves, J. Fluid Mech., Volume 936 (2022), A38 | DOI | Zbl
[92] Orientation dynamics of nonspherical particles under surface gravity waves, Phys. Rev. Fluids, Volume 4 (2019) no. 3, 034301 | DOI
[93] Settling of inertial nonspherical particles in wavy flow, Phys. Rev. Fluids, Volume 5 (2020) no. 12, 124301 | DOI
[94] Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids, Volume 26 (1983), pp. 883-889 | DOI | Zbl
[95] The motion of solid spherical particles falling in a cellular flow field at low Stokes number, Phys. Fluids, Volume 26 (2014), 093302 | DOI
[96] Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics, Environ. Sci. Technol., Volume 51 (2017) no. 14, pp. 7963-7971 | DOI
[97] Plastic microbeads from cosmetic products: an experimental study of their hydrodynamic behaviour, vertical transport and resuspension in phytoplankton and sediment aggregates, Elem. Sci. Anth., Volume 6 (2018), 61 | DOI
[98] Life in the ‘plastisphere’: microbial communities on plastic marine debris, Environ. Sci. Technol., Volume 47 (2013) no. 13, pp. 7137-7146 | DOI
[99] Biofouling on buoyant marine plastics: An experimental study into the effect of size on surface longevity, Environ. Pollut., Volume 210 (2016), pp. 354-360 | DOI
[100] Biofouling impacts on polyethylene density and sinking in coastal waters: a macro/micro tipping point?, Water Res., Volume 201 (2021), 117289 | DOI
[101] Behavior of Microplastics in Inland Waters: Aggregation, Settlement, and Transport, Bull. Environ. Contam. Toxicol., Volume 107 (2021) no. 4, pp. 700-709 | DOI
[102] Interactions between microplastics and phytoplankton aggregates: Impact on their respective fates, Mar. Chem., Volume 175 (2015), pp. 39-46 | DOI
[103] Rapid aggregation of biofilm-covered microplastics with marine biogenic particles, Proc. R. Soc. Lond., Ser. B, Volume 285 (2018) no. 1885, 20181203 | DOI
[104] Role of Marine Snows in Microplastic Fate and Bioavailability, Environ. Sci. Technol., Volume 52 (2018) no. 12, pp. 7111-7119 | DOI
[105] Microbial biofilms facilitate adhesion in biofouling invertebrates, Biol. Bull., Volume 214 (2008) no. 1, pp. 91-98 | DOI
[106] et al. Effects of organic matter on interaction forces between polystyrene microplastics: An experimental study, Sci. Total Environ., Volume 844 (2022), 157186 | DOI
[107] Non-buoyant microplastic settling velocity varies with biofilm growth and ambient water salinity, Commun. Earth Environ., Volume 4 (2023) no. 1, 30 | DOI
[108] Interactions between nano/micro plastics and suspended sediment in water: Implications on aggregation and settling, Water Res., Volume 161 (2019), pp. 486-495 | DOI
[109] Flocculation of PVC Microplastic and Fine-Grained Cohesive Sediment at Environmentally Realistic Concentrations, Biol. Bull., Volume 240 (2021) no. 1, pp. 42-51 | DOI
[110] Suspended clay and surfactants enhance buoyant microplastic settling, Commun. Earth Environ., Volume 4 (2023) no. 1, 393 | DOI
[111] et al. Environmental Fate Modeling of Nanoplastics in a Salinity Gradient Using a Lab-on-a-Chip: Where Does the Nanoscale Fraction of Plastic Debris Accumulate?, Environ. Sci. Technol., Volume 55 (2021) no. 5, pp. 3001-3008 | DOI
[112] et al. Effect of the Surface Hydrophobicity–Morphology–Functionality of Nanoplastics on Their Homoaggregation in Seawater, ACS EST Water, Volume 2 (2022) no. 1, pp. 88-95 | DOI
[113] et al. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation, Sci. adv., Volume 3 (2017), e1600582 | DOI
[114] Influence of Particle Size and Fragmentation on Large-Scale Microplastic Transport in the Mediterranean Sea, Environ. Sci. Technol., Volume 56 (2022), pp. 15528-15540 | DOI
[115] Mechanistic implications of plastic degradation, Polym. Degrad. Stabil., Volume 93 (2008), pp. 561-584 | DOI
[116] et al. Understanding the fragmentation pattern of marine plastic debris, Environ. Sci. Technol., Volume 50 (2016) no. 11, pp. 5668-5675 | DOI
[117] Estimation of the age of polyethylene microplastics collected from oceans: Application to the western North Pacific Ocean, Mar. Pollut. Bull., Volume 192 (2023), 114951 | DOI
[118] et al. Are we underestimating microplastic abundance in the marine environment? A comparison of microplastic capture with nets of different mesh-size, Environ. Pollut., Volume 265 (2020), 114721 | DOI
[119] Floating plastics in oceans: A matter of size, Curr. Opin. Green Sustain. Chem., Volume 32 (2021), 100543 | DOI
[120] Twenty years of microplastics pollution research—what have we learned?, Science, Volume 386 (2024) no. 6720, eadl2746 | DOI
[121] Near-Surface Turbulence in the Presence of Breaking Waves, J. Phys. Oceanogr., Volume 34 (2004) no. 5, pp. 1067-1086 | DOI
[122] Characterizing the multidimensionality of microplastics across environmental compartments, Water Res., Volume 202 (2021), 117429 | DOI
[123] Modelling size distributions of marine plastics under the influence of continuous cascading fragmentation, Environ. Res. Lett., Volume 16 (2021), 054075 | DOI
[124] Laboratory model for plastic fragmentation in the turbulent ocean, Phys. Rev. Fluids, Volume 6 (2021), 024601 | DOI
[125] Secondary Microplastics Generation in the Sea Swash Zone With Coarse Bottom Sediments: Laboratory Experiments, Front. Mar. Sci., Volume 5 (2018), 313 | DOI
[126] On mechanical fragmentation of single-use plastics in the sea swash zone with different types of bottom sediments: Insights from laboratory experiments, Mar. Pollut. Bull., Volume 150 (2020), 110726 | DOI
[127] Implications of a New Test Facility for Fragmentation Investigations on Virgin (Micro)plastics, Environ. Sci. Technol., Volume 57 (2023), pp. 10393-10403 | DOI
[128] New Universality Class for the Fragmentation of Plastic Materials, Phys. Rev. Lett., Volume 104 (2010) no. 9, 095502 | DOI
[129] Flexible Fiber in a Turbulent Flow: A Macroscopic Polymer, Phys. Rev. Lett., Volume 112 (2014) no. 7, 074501 | DOI
[130] A model for the size distribution of marine microplastics: A statistical mechanics, PLoS ONE, Volume 16 (2021) no. 11, e0259781 | DOI
[131] Direct observation of the intermittency of intense vorticity filaments in turbulence, Phys. Rev. Lett., Volume 67 (1991) no. 8, pp. 983-986 | DOI
[132] Simultaneous 3D measurement of the translation and rotation of finite-size particles and the flow field in a fully developed turbulent water flow, Meas. Sci. Technol., Volume 24 (2013), 024006 | DOI
[133] et al. Generation of a Magnetic Field by Dynamo Action in a Turbulent Flow of Liquid Sodium, Phys. Rev. Lett., Volume 98 (2007), 044502 | DOI
[134] A threshold model of plastic waste fragmentation: New insights into the distribution of microplastics in the ocean and its evolution over time, Mar. Pollut. Bull., Volume 199 (2024), 116012 | DOI
[135] Dynamics and fragmentation of small inextensible fibers in turbulence, Philos. Trans. R. Soc. Lond., Ser. A, Volume 378 (2020) no. 2175, 20190398 | DOI
[136] Plastics in the Marine Environment, Ann. Rev. Mar. Sci., Volume 9 (2017), pp. 205-229 | DOI
[137] et al. The missing ocean plastic sink: Gone with the rivers, Science, Volume 373 (2021) no. 6550, pp. 107-111 | DOI
[138] et al. Airborne microplastic particles detected in the remote marine atmosphere, Commun. Earth Environ., Volume 1 (2020), 64 | DOI
[139] Microplastics in sediments: A review of techniques, occurrence and effects, Mar. Environ. Res., Volume 111 (2015), pp. 5-17 | DOI
[140] et al. Microplastic Pollution in Deep-Sea Sediments From the Great Australian Bight, Front. Mar. Sci., Volume 7 (2020), 576170 | DOI
[141] et al. Learning from natural sediments to tackle microplastics challenges: A multidisciplinary perspective, Earth-Sci. Rev., Volume 228 (2022), 104021 | DOI
[142] Modelled transport of benthic marine microplastic pollution in the Nazaré Canyon, Biogeosciences, Volume 10 (2013) no. 12, pp. 7957-7970 | DOI
[143] Shields Diagram and the Incipient Motion of Microplastic Particles, Environ. Sci. Technol., Volume 57 (2023) no. 25, pp. 9362-9375 | DOI
[144] Methods for estimating the critical shear stress of individual fractions in mixed-size sediment, Water Resour. Res., Volume 24 (1988) no. 7, pp. 1127-1135 | DOI
[145] Plastic pollution in riverbeds fundamentally affects natural sand transport processes, Commun. Earth Environ., Volume 4 (2023) no. 1, 255 | DOI
[146] et al. Transport and accumulation of litter in submarine canyons: a geoscience perspective, Front. Mar. Sci., Volume 10 (2023), 1224859 | DOI
[147] Transport and Burial of Microplastics in Deep-Marine Sediments by Turbidity Currents, Environ. Sci. Technol., Volume 54 (2020) no. 7, pp. 4180-4189 | DOI
[148] Flow-process controls on grain type distribution in an experimental turbidity current deposit: Implications for detrital signal preservation and microplastic distribution in submarine fans, Depositional Rec., Volume 7 (2021) no. 3, pp. 392-415 | DOI
[149] Seafloor microplastic hotspots controlled by deep-sea circulation, Science, Volume 368 (2020) no. 6495, pp. 1140-1145 | DOI
[150] Scaling surf zone turbulence, Geophys. Res. Lett., Volume 39 (2012), L18613 | DOI
[151] The Estuarine Circulation, Annu. Rev. Fluid Mech., Volume 46 (2014), pp. 175–-197 | DOI | Zbl
[152] Mixing and Transport in Coastal River Plumes, Annu. Rev. Fluid Mech., Volume 47 (2015) no. 1, pp. 569-594 | DOI
[153] Advances in swash-zone research: Small-scale hydrodynamic and sediment transport processes, Coast. Eng., Volume 115 (2016), pp. 8-25 | DOI
[154] Surf Zone Turbulence and Suspended Sediment Dynamics—A Review, J. Mar. Sci. Eng., Volume 9 (2021), 1300 | DOI
[155] Evaluating Where and Why Drifters Die, J. Atmos. Ocean. Technol., Volume 29 (2012), pp. 300-308 | DOI
[156] Retention and dispersion of buoyant plastic debris in a well-mixed estuary from drifter observations, Mar. Pollut. Bull., Volume 180 (2022), 113793 | DOI
[157] A State-of-the-Art Compact Surface Drifter Reveals Pathways of Floating Marine Litter in the German Bight, Front. Mar. Sci., Volume 6 (2019), 58 | DOI
[158] The Grounding of Floating Objects in a Marginal Sea, J. Phys. Oceanogr., Volume 51 (2021), pp. 537-551 | DOI
[159] et al. The M/V X‑Press Pearl Nurdle Spill: Contamination of Burnt Plastic and Unburnt Nurdles along Sri Lanka’s Beaches, ACS Environ. Au, Volume 2 (2022), pp. 128-135 | DOI
[160] Modelling the fate of marine debris along a complex shoreline: Lessons from the Great Barrier Reef, Estuar. Coast. Shelf Sci., Volume 167 (2015), pp. 414-426 | DOI
[161] Closing the Mediterranean marine floating plastic mass budget: Inverse modeling of sources and sinks, Environ. Sci. Technol., Volume 54 (2020), pp. 11980-11989 | DOI
[162] Using machine learning and beach cleanup data to explain litter quantities along the Dutch North Sea coast, Ocean Science, Volume 18 (2022), pp. 269-293 | DOI
[163] Spatial Patterns of Plastic Debris along Estuarine Shorelines, Environ. Sci. Technol., Volume 44 (2010), pp. 3404-3409 | DOI
[164] Three-dimensional distribution of plastic pellets in sandy beaches: shifting paradigms, Sci. Rep., Volume 4 (2014), 4435 | DOI
[165] Comparison of the distribution and degradation of plastic debris along shorelines of the Great Lakes, North America, J. Gt. Lakes Res., Volume 40 (2014), pp. 288-299 | DOI
[166] Daily accumulation rates of marine debris on sub-Antarctic island beaches, Mar. Pollut. Bull., Volume 66 (2013), pp. 199-208 | DOI
[167] Spatial distribution of macro-and micro-litter items along rocky and sandy beaches of a Marine Protected Area in the western Mediterranean Sea, Mar. Pollut. Bull., Volume 178 (2022), 113520 | DOI
[168] Microplastic contamination of sediments across and within three beaches in western Lake Superior, J. Gt. Lakes Res., Volume 48 (2022), pp. 1563-1572 | DOI
[169] Behaviour of plastic litter in nearshore waters: First insights from wind and wave laboratory experiments, Mar. Pollut. Bull., Volume 153 (2020), 111023 | DOI
[170] Wave-Induced Distribution of Microplastic in the Surf Zone, Front. Mar. Sci., Volume 7 (2020), 590565 | DOI
[171] et al. Experimental study of non-buoyant microplastic transport beneath breaking irregular waves on a live sediment bed, Mar. Pollut. Bull., Volume 181 (2022), 113902 | DOI
[172] et al. Microplastic retention in marine vegetation canopies under breaking irregular waves, Sci. Total Environ., Volume 912 (2024), 169280 | DOI
[173] et al. Experimental investigation on the nearshore transport of buoyant microplastic particles, Mar. Pollut. Bull., Volume 187 (2023), 114610 | DOI
[174] Beaching model for buoyant marine debris in bore-driven swash, Flow, Volume 3 (2023), E35 | DOI
[175] Wave-induced cross-shore distribution of different densities, shapes, and sizes of plastic debris in coastal environments: A laboratory experiment, Mar. Pollut. Bull., Volume 187 (2023), 114561 | DOI
[176] Coastal Processes with Engineering Applications, Cambridge University Press, 2004 | DOI
[177] The swash of solitary waves on a plane beach: flow evolution, bed shear stress and run-up, J. Fluid Mech., Volume 779 (2015), pp. 556-597 | DOI | Zbl
[178] Observation of munitions migration and burial in the swash and breaker zones, Ocean Eng., Volume 205 (2020), 107322 | DOI
[179] Application of an optical tracking technique to characterize nearshore wave-driven transport and dispersion of model driftwood, Coast. Eng., Volume 189 (2024), 104481 | DOI
[180] Settling velocity of porous spherical particles, J. Hydraul. Eng., Volume 146 (2020) no. 1, 04019046 | DOI
[181] Particles, Drops, and Bubbles Moving Across Sharp Interfaces and Stratified Layers, Annu. Rev. Fluid Mech., Volume 52 (2020), pp. 61-91 | DOI | Zbl
[182] Constraining the atmospheric limb of the plastic cycle, Proc. Natl. Acad. Sci. USA, Volume 118 (2021) no. 16, e2020719118 | DOI
[183] Quantification of the Emission of Atmospheric Microplastics and Nanoplastics via Sea Spray, Environ. Sci. Technol. Letters, Volume 10 (2023) no. 6, pp. 513-519 | DOI
[184] et al. Arctic sea ice is an important temporal sink and means of transport for microplastic, Nat. Commun., Volume 9 (2018) no. 1, 1505 | DOI
[185] Micro- and nanoplastic transfer in freezing saltwater: implications for their fate in polar waters, Environ. Sci.: Processes Impacts, Volume 23 (2021) no. 11, pp. 1759-1770 | DOI
[186] Microplastics in sea ice: A fingerprint of bubble flotation, Sci. Total Environ., Volume 892 (2023), 164611 | DOI
[187] Settling of microplastics in mucus-rich water column: The role of biologically modified rheology of seawater, Sci. Total Environ., Volume 912 (2024), 168767 | DOI
Cité par Sources :
Commentaires - Politique