Comptes Rendus
Article de synthèse
Laboratory experiments related to marine plastic pollution: a review of past work and future directions
[Expériences de laboratoire en lien avec la pollution plastique océanique  : une revue des travaux passés et directions futures]
Comptes Rendus. Physique, Online first (2024), pp. 1-32.

La pollution plastique mondiale est un sujet d’étude très actif pour de nombreuses communautés des sciences géophysiques. Un certain nombre de revues bibliographiques ont déjà abordé la pollution plastique des océans selon différents points de vue, avec des perspectives ciblées ou bien interdisciplinaires. Nous passons ici en revue les contributions récentes d’études expérimentales en laboratoire abordant certains aspects spécifiques de la pollution plastique marine. Plus précisément, nous avons considéré tous les processus basés sur la physique pour décrire l’origine, le devenir et le transport des particules plastiques dans les océans.

Plastic pollution is a very active research topic for a wide variety of scientific disciplines. While existing reviews of plastic pollution in the ocean cover the topic from different disciplinary and interdisciplinary viewpoints, this review addresses the contributions from laboratory experiments towards the geophysical processes important in marine plastic pollution research. We review the laboratory research on the transport, transformations, and origin and fate of marine plastic pollution with recommendations for future research.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/crphys.217
Keywords: plastic pollution, ocean dynamics, laboratory approaches
Mots-clés : pollution plastique, dynamique océanique, expérience de laboratoire

Marie Poulain-Zarcos 1 ; Nimish Pujara 2 ; Gautier Verhille 3 ; Matthieu J. Mercier 4

1 Ecole Centrale de Lyon, CNRS, Universite Claude Bernard Lyon 1, INSA Lyon, LMFA, UMR5509, 69130, Ecully, France
2 Department of Civil & Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
3 Aix Marseille Univ, CNRS, Centrale Med, IRPHE, Marseille, France
4 Institut de Mécanique des Fluides de Toulouse (IMFT) - UMR 5502, CNRS, Université de Toulouse, Toulouse INP, Université Paul Sabatier UT3, Toulouse, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2024__25_S3_A19_0,
     author = {Marie Poulain-Zarcos and Nimish Pujara and Gautier Verhille and Matthieu J. Mercier},
     title = {Laboratory experiments related to marine plastic pollution: a review of past work and future directions},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2024},
     doi = {10.5802/crphys.217},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Marie Poulain-Zarcos
AU  - Nimish Pujara
AU  - Gautier Verhille
AU  - Matthieu J. Mercier
TI  - Laboratory experiments related to marine plastic pollution: a review of past work and future directions
JO  - Comptes Rendus. Physique
PY  - 2024
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.217
LA  - en
ID  - CRPHYS_2024__25_S3_A19_0
ER  - 
%0 Journal Article
%A Marie Poulain-Zarcos
%A Nimish Pujara
%A Gautier Verhille
%A Matthieu J. Mercier
%T Laboratory experiments related to marine plastic pollution: a review of past work and future directions
%J Comptes Rendus. Physique
%D 2024
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.217
%G en
%F CRPHYS_2024__25_S3_A19_0
Marie Poulain-Zarcos; Nimish Pujara; Gautier Verhille; Matthieu J. Mercier. Laboratory experiments related to marine plastic pollution: a review of past work and future directions. Comptes Rendus. Physique, Online first (2024), pp. 1-32. doi : 10.5802/crphys.217.

[1] J. McGlade; S. Fahim; I. Green et al. From Pollution to Solution: A global assessment of marine litter and plastic pollution (Nairobi) (2021) https://www.unep.org/resources/pollution-solution-global-assessment-marine-litter-and-plastic-pollution (Technical report)

[2] C. Morales-Caselles; J. Viejo; E. Martí et al. An inshore–offshore sorting system revealed from global classification of ocean litter, Nat. Sustain., Volume 4 (2021) no. 6, pp. 484-493 | DOI

[3] C. M. Rochman; T. Hoellein The global odyssey of plastic pollution, Science, Volume 368 (2020) no. 6496, pp. 1184-1185 | DOI

[4] E. Van Sebille; S. Aliani; K. L. Law et al. The physical oceanography of the transport of floating marine debris, Environ. Res. Lett., Volume 15 (2020), 023003 | DOI

[5] I. A. Kane; M. A. Clare Dispersion, Accumulation, and the Ultimate Fate of Microplastics in Deep-Marine Environments: A Review and Future Directions, Front. Earth Sci., Volume 7 (2019), pp. 41-42 | DOI

[6] A. A. Horton; S. J. Dixon Microplastics: An introduction to environmental transport processes, WIREs Water, Volume 5 (2018) no. 2, e1268 | DOI

[7] J. R. Jambeck; R. Geyer; C. Wilcox; T. R. Siegler; M. Perryman; A. Andrady; R. Narayan; K. L. Law Plastic waste inputs from land into the ocean, Science, Volume 347 (2015) no. 6223, pp. 768-771 | DOI

[8] Y. Zhang; P. Wu; R. Xu et al. Plastic waste discharge to the global ocean constrained by seawater observations, Nat. Commun., Volume 14 (2023) no. 1, 1372 | DOI

[9] A. Cózar; F. Echevarria; J. I. Irigoien et al. Plastic debris in the open ocean, P. Natl. Acad. Sci. USA, Volume 111 (2014) no. 28, pp. 10239-10244 | DOI

[10] M. Eriksen; L. C. M. Lebreton; H. S. Carson et al. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea, PLoS ONE, Volume 9 (2014) no. 12, e111913 | DOI

[11] E. Van Sebille; C. Wilcox; L. Lebreton et al. A global inventory of small floating plastic debris, Environ. Res. Lett., Volume 10 (2015) no. 12, 124006 | DOI

[12] P. T. Harris; T. Maes; K. Raubenheimer; J. P. Walsh A marine plastic cloud – Global mass balance assessment of oceanic plastic pollution, Cont. Shelf Res., Volume 255 (2023), 104947 | DOI

[13] C. Martin; C. A. Young; L. Valluzzi; C. M. Duarte Ocean sediments as the global sink for marine micro- and mesoplastics, Limnol. Oceanogr. Lett., Volume 7 (2022) no. 3, pp. 235-243 | DOI

[14] K. Pabortsava; R. S. Lampitt High concentrations of plastic hidden beneath the surface of the Atlantic Ocean, Nat. Commun., Volume 11 (2020) no. 1, 4073 | DOI

[15] M. L. A. Kaandorp; D. Lobelle; C. Kehl; H. A. Dijkstra; E. Van Sebille Global mass of buoyant marine plastics dominated by large long-lived debris, Nat. Geosci., Volume 16 (2023) no. 8, pp. 689-694 | DOI

[16] D. Allen; S. Allen; S. Abbasi et al. Microplastics and nanoplastics in the marine-atmosphere environment, Nat. Rev. Earth Environ., Volume 3 (2022) no. 6, pp. 393-405 | DOI

[17] M. Moulton; S. H. Suanda; J. C. Garwood; N. Kumar; M. R. Fewings; J. M. Pringle Exchange of Plankton, Pollutants, and Particles Across the Nearshore Region, Ann. Rev. Mar. Sci., Volume 15 (2022), pp. 167-202 | DOI

[18] I. Chubarenko; E. Esiukova; A. Bagaev et al. Microplastics particles in coastal zone: Approach of physical oceanography, Microplastic Contamination in Aquatic Environments, Elsevier, 2024, pp. 249-310 | DOI

[19] I. Jalón-Rojas; S. Defontaine; M. Bermúdez; M. Díez-Minguito 2.15 – Transport of microplastic debris in estuaries, Treatise on Estuarine and Coastal Science (Second Edition). Volume 2: Physical Aspects (D-. Baird; M. Elliott, eds.), Academic Press Inc., 2024, pp. 368-409 | DOI

[20] B. R. Sutherland; M. DiBenedetto; A. Kaminski; T. van den Bremer Fluid dynamics challenges in predicting plastic pollution transport in the ocean: A perspective, Phys. Rev. Fluids, Volume 8 (2023) no. 7, 070701 | DOI

[21] A. A. Koelmans; P. E. Redondo-Hasselerharm; N. H. M. Nor; V. N. de Ruijter; S. M. Mintenig; M. Kooi Risk assessment of microplastic particles, Nat. Rev. Mater., Volume 7 (2022) no. 2, pp. 138-152 | DOI

[22] S. Rohais; J. J. Armitage; M.-F. Romero-Sarmiento et al. A source-to-sink perspective of an anthropogenic marker: A first assessment of microplastics concentration, pathways, and accumulation across the environment, Earth-Sci. Rev., Volume 254 (2024), 104822 | DOI

[23] C. E. Russell; F. Pohl; R. Fernández Plastic as a Sediment – A Universal and Objective practical solution to growing ambiguity in plastic litter classification schemes, Earth-Sci. Rev. (2024), 104994 (submission) | DOI

[24] E. Van Sebille; S. M. Griffies; R. Abernathey et al. Lagrangian ocean analysis: Fundamentals and practices, Ocean Model., Volume 121 (2018), pp. 49-75 | DOI

[25] V. Onink; D. Wichmann; P. Delandmeter; E. Van Sebille The role of Ekman currents, geostrophy, and stokes drift in the accumulation of floating microplastic, J. Geophys. Res. Oceans, Volume 124 (2019) no. 3, pp. 1474-1490 | DOI

[26] L. Brach; P. Deixonne; M.-F. Bernard et al. Anticyclonic eddies increase accumulation of microplastic in the North Atlantic subtropical gyre, Mar. Pollut. Bull., Volume 126 (2018), pp. 191-196 | DOI

[27] C. Maes; N. Grima; B. Blanke; E. Martinez; T. Paviet-Salomon; T. Huck A surface ‘superconvergence’ pathway connecting the South Indian Ocean to the subtropical South Pacific gyre, Geophys. Res. Lett., Volume 45 (2018) no. 4, pp. 1915-1922 | DOI

[28] F. J. Beron-Vera Nonlinear dynamics of inertial particles in the ocean: from drifters and floats to marine debris and Sargassum, Nonlinear Dyn., Volume 103 (2021) no. 1, pp. 1-26 | DOI | Zbl

[29] G. G. Stokes On the theory of oscillatory waves, Trans. Camb. Philos. Soc., Volume 8 (1847), pp. 441-455

[30] T. S. van den Bremer; Õ. Breivik Stokes drift, Philos. Trans. R. Soc. Lond., Ser. A, Volume 376 (2018) no. 2111, 20170104 | DOI | Zbl

[31] T. S. van den Bremer; C. Whittaker; R. Calvert; A. Raby; P. H. Taylor Experimental study of particle trajectories below deep-water surface gravity wave groups, J. Fluid Mech., Volume 879 (2019), pp. 168-186 | DOI | Zbl

[32] Stephen G Monismith Stokes drift: theory and experiments, J. Fluid Mech., Volume 884 (2020), F1 | DOI | Zbl

[33] J. M. Alsina; C. E. Jongedijk; E. Van Sebille Laboratory Measurements of the Wave‐Induced Motion of Plastic Particles: Influence of Wave Period, Plastic Size and Plastic Density, J. Geophys. Res. Oceans, Volume 125 (2020) no. 12, e2020JC016294 | DOI

[34] Ross Calvert; ML McAllister; C. Whittaker; Alison Raby; AGL Borthwick; TS Van Den Bremer A mechanism for the increased wave-induced drift of floating marine litter, J. Fluid Mech., Volume 915 (2021), A73 | DOI | Zbl

[35] W. M. Kranenburg; J. S. Ribberink; R. E. Uittenbogaard; S. J. M. H. Hulscher Net currents in the wave bottom boundary layer: On waveshape streaming and progressive wave streaming, J. Geophys. Res. Earth Surf., Volume 117 (2012) no. F3, F03005 | DOI

[36] R. Calvert; A. Peytavin; Y. Pham et al. A Laboratory Study of the Effects of Size, Density, and Shape on the Wave‐Induced Transport of Floating Marine Litter, J. Geophys. Res. Oceans, Volume 129 (2024), e2023JC020661 | DOI

[37] A. Isobe; K. Kubo; Y. Tamura; E. Nakashima; N Fujii et al. Selective transport of microplastics and mesoplastics by drifting in coastal waters, Mar. Pollut. Bull., Volume 89 (2014) no. 1-2, pp. 324-330 | DOI

[38] T. J. W. Wagner; I. Eisenman; A. M. Ceroli; N. C. Constantinou How Winds and Ocean Currents Influence the Drift of Floating Objects, J. Phys. Oceanogr., Volume 52 (2022) no. 5, pp. 907-916 | DOI

[39] K. Brunner; T. Kukulka; G. Proskurowski; K. L. Law Passive buoyant tracers in the ocean surface boundary layer: 2. Observations and simulations of microplastic marine debris, J. Geophys. Res. Oceans, Volume 120 (2015) no. 11, pp. 7559-7573 | DOI

[40] E. A. D’Asaro; A. Y. Shcherbina; J. M. Klymak et al. Ocean convergence and the dispersion of flotsam, P. Natl. Acad. Sci. USA, Volume 115 (2018) no. 6, pp. 1162-1167 | DOI

[41] Marcelo Chamecki; Tomas Chor Effects of Turbulence on the Transport of Positively Buoyant Particles in the Ocean Mixed Layer, Bulletin of the American Physical Society, Volume 67 (2022), T02.00002

[42] M. Van der Mheen; C. Pattiaratchi; E. Van Sebille Role of Indian Ocean dynamics on accumulation of buoyant debris, J. Geophys. Res. Oceans, Volume 124 (2019) no. 4, pp. 2571-2590 | DOI

[43] N. T. Ouellette; P. J. J. O’Malley; J. P. Gollub Transport of Finite-Sized Particles in Chaotic Flow, Phys. Rev. Lett., Volume 101 (2008) no. 17, 174504 | DOI

[44] X. Chen; X. Xiong; X. Jiang; H. Shi; C. Wu Sinking of floating plastic debris caused by biofilm development in a freshwater lake, Chemosphere, Volume 222 (2019), pp. 856-864 | DOI

[45] H. Rouse Modern conceptions of the mechanics of fluid turbulence, Transactions of the American Society of Civil Engineers, Volume 102 (1937) no. 1, pp. 463-505 | DOI

[46] B. P. Greimann; M. Muste; F. M. Holly Jr Two-phase formulation of suspended sediment transport, J. Hydraul. Res., Volume 37 (1999) no. 4, pp. 479-500 | DOI

[47] J. Chauchat A comprehensive two-phase flow model for unidirectional sheet-flows, J. Hydraul. Res., Volume 56 (2018) no. 1, pp. 15-28 | DOI

[48] M. H. DiBenedetto; J. Donohue; K. Tremblay; E. Edson; K. L. Law Microplastics segregation by rise velocity at the ocean surface, Environ. Res. Lett., Volume 18 (2023) no. 2, 024036 | DOI

[49] K. Enders; R. Lenz; C. A. Stedmon; T. G. Nielsen Abundance, size and polymer composition of marine microplastics 10 μm in the Atlantic Ocean and their modelled vertical distribution, Mar. Pollut. Bull., Volume 100 (2015), pp. 70-81 | DOI

[50] T. Kukulka; G. Proskurowski; S. Morét-Ferguson; D. W. Meyer; K. L. Law The effect of wind mixing on the vertical distribution of buoyant plastic debris, Geophys. Res. Lett., Volume 39 (2012) no. 7, L07601 | DOI

[51] Y. Tominaga; T. Stathopoulos Turbulent Schmidt numbers for CFD analysis with various types of flowfield, Atmos. Environ., Volume 41 (2007) no. 37, pp. 8091-8099 | DOI

[52] L. Umlauf; H. Burchard A generic length-scale equation for geophysical turbulence models, J. Mar. Res., Volume 61 (2003) no. 2, pp. 235-265 | DOI

[53] H. Michallet; M. Mory Modelling of sediment suspensions in oscillating grid turbulence, Fluid Dyn. Res., Volume 35 (2004) no. 2, 87 | DOI | Zbl

[54] V. Mathai; V. N. Prakash; J. Brons; C. Sun; D. Lohse Wake-driven dynamics of finite-sized buoyant spheres in turbulence, Phys. Rev. Lett., Volume 115 (2015) no. 12, 124501 | DOI

[55] M. Bourgoin; H. Xu Focus on dynamics of particles in turbulence, New J. Phys., Volume 16 (2014) no. 8, 085010 | DOI

[56] H. R. S. Salmon; L. J. Baker; J. L Kozarek; F. Coletti Effect of shape and size on the transport of floating particles on the free surface in a natural stream, Water Resour. Res., Volume 59 (2023) no. 10, e2023WR035716 | DOI

[57] K. L. Law; S. E. Morét-Ferguson; D. S. Goodwin; E. R. Zettler; E. DeForce; T. Kukulka; G. Proskurowski Distribution of surface plastic debris in the eastern Pacific Ocean from an 11-year data set, Environ. Sci. Technol., Volume 48 (2014) no. 9, pp. 4732-4738 | DOI

[58] M. Poulain; M. J. Mercier; L. Brach et al. Small microplastics as a main contributor to plastic mass balance in the North Atlantic subtropical gyre, Environ. Sci. Technol., Volume 53 (2018) no. 3, pp. 1157-1164 | DOI

[59] K. Waldschläger; H. Schüttrumpf Effects of particle properties on the settling and rise velocities of microplastics in freshwater under laboratory conditions, Environ. Sci. Technol., Volume 53 (2019) no. 4, pp. 1958-1966 | DOI

[60] K. D. Goral; H. G. Guler; B. E. Larsen et al. Settling velocity of microplastic particles having regular and irregular shapes, Environ. Res., Volume 228 (2023), 115783 | DOI

[61] J. B. Will; D. Krug Rising and Sinking in Resonance: Mass Distribution Critically Affects Buoyancy-Driven Spheres via Rotational Dynamics, Phys. Rev. Lett., Volume 126 (2021) no. 17, 174502 | DOI

[62] B. R. Angle; M. J. Rau; M. L. Byron Settling of nonuniform cylinders at intermediate Reynolds numbers, Phys. Rev. Fluids, Volume 9 (2024) no. 7, 070501 | DOI

[63] A. Roy; R. J. Hamati; L. Tierney; D. L. Koch; G. A. Voth Inertial torques and a symmetry breaking orientational transition in the sedimentation of slender fibres, J. Fluid Mech., Volume 875 (2019), pp. 576-596 | DOI | Zbl

[64] S. J. Bennett; J. F. Atkinson; Y. Hou; M. J. Fay Turbulence modulation by suspended sediment in a zero mean-shear geophysical flow, Coherent Flow Structures at Earth’s Surface, John Wiley & Sons, 2013, pp. 309-321 | DOI

[65] W. Fornari; S. Zade; L. Brandt; F. Picano Settling of finite-size particles in turbulence at different volume fractions, Acta Mech., Volume 230 (2019), pp. 413-430 | DOI

[66] P. Nielsen Turbulence effects on the settling of suspended particles, J. Sediment. Res., Volume 63 (1993) no. 5, pp. 835-838 | DOI

[67] G. H. Good; P. J. Ireland; G. P. Bewley; E. Bodenschatz; L. R. Collins; Z. Warhaft Settling regimes of inertial particles in isotropic turbulence, J. Fluid Mech., Volume 759 (2014), R3 | DOI

[68] W. Fornari; F. Picano; G. Sardina; L. Brandt Reduced particle settling speed in turbulence, J. Fluid Mech., Volume 808 (2016), pp. 153-167 | DOI | Zbl

[69] A. De Leo; L. Cutroneo; D. Sous; A. Stocchino Settling velocity of microplastics exposed to wave action, J. Mar. Sci. Eng., Volume 9 (2021) no. 2, 142 | DOI

[70] C. Gualtieri; A. Angeloudis; F. Bombardelli; S. Jha; T. Stoesser On the values for the turbulent Schmidt number in environmental flows, Fluids, Volume 2 (2017) no. 2, 17 | DOI

[71] M. Poulain-Zarcos Étude de la distribution verticale de particules plastiques dans l’océan: caractérisation, modélisation et comparaison avec des observations, Ph. D. Thesis, INPT, Toulouse, France (2020)

[72] J. Chauchat; D. Hurther; T. Revil-Baudard; Z. Cheng; T.-J. Hsu Controversial turbulent Schmidt number value in particle-laden boundary layer flows, Phys. Rev. Fluids, Volume 7 (2022) no. 1, 014307 | DOI

[73] M. Son; J. Byun; S. U. Kim; E.-S. Chung Effect of particle size on calibration of Schmidt number, J. Coast. Res., Volume 3 (2016) no. 75, pp. 148-152 | DOI

[74] H. Rouse Experiments on the mechanics of sediment suspension, Proceedings of the fifth international congress for applied mechanics, Volume 55, John Wiley & Sons: New York, NY, USA (1938), pp. 550-554

[75] M. Poulain-Zarcos; M. J. Mercier; A. ter Halle Global characterization of oscillating grid turbulence in homogeneous and two-layer fluids, and its implication for mixing at high Peclet number, Phys. Rev. Fluids, Volume 7 (2022) no. 5, 054606 | DOI

[76] P. D Craig; M. L. Banner Modeling wave-enhanced turbulence in the ocean surface layer, J. Phys. Oceanogr., Volume 24 (1994) no. 12, pp. 2546-2559 | DOI

[77] S. M. Thompson; J. S. Turner Mixing across an interface due to turbulence generated by an oscillating grid, J. Fluid Mech., Volume 67 (1975) no. 2, pp. 349-368 | DOI

[78] E. J. Hopfinger; J.-A. Toly Spatially decaying turbulence and its relation to mixing across density interfaces, J. Fluid Mech., Volume 78 (1976) no. 1, pp. 155-175 | DOI

[79] V. Onink; E. Van Sebille; C. Laufkötter Empirical Lagrangian parametrization for wind-driven mixing of buoyant particles at the ocean surface, Geosci. Model Dev., Volume 15 (2022) no. 5, pp. 1995-2012 | DOI

[80] N. Gratiot; H. Michallet; M. Mory On the determination of the settling flux of cohesive sediments in a turbulent fluid, J. Geophys. Res. Oceans, Volume 110 (2005) no. C6, C06004 | DOI

[81] M. P. Born; C. Brüll; D. Schaefer; G. Hillebrand; H. Schüttrumpf Determination of Microplastics’ Vertical Concentration Transport (Rouse) Profiles in Flumes, Environ. Sci. Technol., Volume 57 (2023) no. 14, pp. 5569-5579 | DOI

[82] W. G. Large; J. C. McWilliams; S. C. Doney Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., Volume 32 (1994) no. 4, pp. 363-403 | DOI

[83] J. C. McWilliams; P. P. Sullivan Vertical mixing by Langmuir circulations, Spill Sci. Technol. Bull., Volume 6 (2000) no. 3-4, pp. 225-237 | DOI

[84] J. C. McWilliams; E. Huckle Ekman layer rectification, J. Phys. Oceanogr., Volume 36 (2006) no. 8, pp. 1646-1659 | DOI

[85] V. Onink; C. E. Jongedijk; M. J. Hoffman; E. Van Sebille; C. Laufkötter Global simulations of marine plastic transport show plastic trapping in coastal zones, Environ. Res. Lett., Volume 16 (2021), 064053 | DOI

[86] Y. Li; L. Xie; T. C. Su Profile of suspended sediment concentration in submerged vegetated shallow water flow, Water Resour. Res., Volume 56 (2020) no. 4, e2019WR025551 | DOI

[87] I. Eames Settling of particles beneath water waves, J. Phys. Oceanogr., Volume 38 (2008) no. 12, pp. 2846-2853 | DOI

[88] F. Santamaria; G. Boffetta; M. Martins Afonso; A. Mazzino; M. Onorato; D. Pugliese Stokes drift for inertial particles transported by water waves, Eur. Phys. Lett., Volume 102 (2013), 14003 | DOI

[89] M. H. DiBenedetto; N. T. Ouellette; J. R. Koseff Transport of anisotropic particles under waves, J. Fluid Mech., Volume 837 (2018), pp. 320-340 | DOI | Zbl

[90] N. Pujara; J.-L. Thiffeault Wave-averaged motion of small particles in surface gravity waves: Effect of particle shape on orientation, drift, and dispersion, Phys. Rev. Fluids, Volume 8 (2023), 074801 | DOI

[91] M. H. DiBenedetto; L. K. Clark; N. Pujara Enhanced settling and dispersion of inertial particles in surface waves, J. Fluid Mech., Volume 936 (2022), A38 | DOI | Zbl

[92] M. H. DiBenedetto; J. R. Koseff; N. T. Ouellette Orientation dynamics of nonspherical particles under surface gravity waves, Phys. Rev. Fluids, Volume 4 (2019) no. 3, 034301 | DOI

[93] L. K. Clark; M. H. DiBenedetto; N. T. Ouellette; J. R. Koseff Settling of inertial nonspherical particles in wavy flow, Phys. Rev. Fluids, Volume 5 (2020) no. 12, 124301 | DOI

[94] M. R Maxey; J. J. Riley Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids, Volume 26 (1983), pp. 883-889 | DOI | Zbl

[95] L. Bergougnoux; G. Bouchet; D. Lopez; É. Guazzelli The motion of solid spherical particles falling in a cellular flow field at low Stokes number, Phys. Fluids, Volume 26 (2014), 093302 | DOI

[96] M. Kooi; E. H. van Nes; M. Scheffer; A. A. Koelmans Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics, Environ. Sci. Technol., Volume 51 (2017) no. 14, pp. 7963-7971 | DOI

[97] P. Möhlenkamp; A. Purser; L. Thomsen Plastic microbeads from cosmetic products: an experimental study of their hydrodynamic behaviour, vertical transport and resuspension in phytoplankton and sediment aggregates, Elem. Sci. Anth., Volume 6 (2018), 61 | DOI

[98] E. R. Zettler; T. J. Mincer; L. A. Amaral-Zettler Life in the ‘plastisphere’: microbial communities on plastic marine debris, Environ. Sci. Technol., Volume 47 (2013) no. 13, pp. 7137-7146 | DOI

[99] F. M. C. Fazey; P. G. Ryan Biofouling on buoyant marine plastics: An experimental study into the effect of size on surface longevity, Environ. Pollut., Volume 210 (2016), pp. 354-360 | DOI

[100] L. A. Amaral-Zettler; E. R. Zettler; T. J. Mincer; M. A. Klaassen; S. M. Gallager Biofouling impacts on polyethylene density and sinking in coastal waters: a macro/micro tipping point?, Water Res., Volume 201 (2021), 117289 | DOI

[101] M. Yan; L. Wang; Y. Dai; H. Sun; C. Liu Behavior of Microplastics in Inland Waters: Aggregation, Settlement, and Transport, Bull. Environ. Contam. Toxicol., Volume 107 (2021) no. 4, pp. 700-709 | DOI

[102] M. Long; B. Moriceau; M. Gallinari; C. Lambert; A. Huvet; J. Raffray; P. Soudant Interactions between microplastics and phytoplankton aggregates: Impact on their respective fates, Mar. Chem., Volume 175 (2015), pp. 39-46 | DOI

[103] J. Michels; A. Stippkugel; M. Lenz; K. Wirtz; A. Engel Rapid aggregation of biofilm-covered microplastics with marine biogenic particles, Proc. R. Soc. Lond., Ser. B, Volume 285 (2018) no. 1885, 20181203 | DOI

[104] A. Porter; B. P. Lyons; T. S. Galloway; C. Lewis Role of Marine Snows in Microplastic Fate and Bioavailability, Environ. Sci. Technol., Volume 52 (2018) no. 12, pp. 7111-7119 | DOI

[105] J. D. Zardus; B. T. Nedved; Y. Huang; C. Tran; M. G Hadfield Microbial biofilms facilitate adhesion in biofouling invertebrates, Biol. Bull., Volume 214 (2008) no. 1, pp. 91-98 | DOI

[106] J. Zhang; Q. Zhang; J. P.-Y. Maa et al. Effects of organic matter on interaction forces between polystyrene microplastics: An experimental study, Sci. Total Environ., Volume 844 (2022), 157186 | DOI

[107] F. Mendrik; R. Fernández; C. R. Hackney; C. Waller; D. R. Parsons Non-buoyant microplastic settling velocity varies with biofilm growth and ambient water salinity, Commun. Earth Environ., Volume 4 (2023) no. 1, 30 | DOI

[108] Y. Li; X. Wang; and Fu Interactions between nano/micro plastics and suspended sediment in water: Implications on aggregation and settling, Water Res., Volume 161 (2019), pp. 486-495 | DOI

[109] T. J. Andersen; S. Rominikan; I. S. Olsen; K. H. Skinnebach; M. Fruergaard Flocculation of PVC Microplastic and Fine-Grained Cohesive Sediment at Environmentally Realistic Concentrations, Biol. Bull., Volume 240 (2021) no. 1, pp. 42-51 | DOI

[110] B. R. Sutherland; M. S. Dhaliwal; D. Thai; Y. Li; M. Gingras; K. Konhauser Suspended clay and surfactants enhance buoyant microplastic settling, Commun. Earth Environ., Volume 4 (2023) no. 1, 393 | DOI

[111] Z. Venel; H. Tabuteau; A. Pradel et al. Environmental Fate Modeling of Nanoplastics in a Salinity Gradient Using a Lab-on-a-Chip: Where Does the Nanoscale Fraction of Plastic Debris Accumulate?, Environ. Sci. Technol., Volume 55 (2021) no. 5, pp. 3001-3008 | DOI

[112] C. Veclin; C. Desmet; A. Pradel et al. Effect of the Surface Hydrophobicity–Morphology–Functionality of Nanoplastics on Their Homoaggregation in Seawater, ACS EST Water, Volume 2 (2022) no. 1, pp. 88-95 | DOI

[113] A. Cózar; E. Martí; C. M. Duarte et al. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation, Sci. adv., Volume 3 (2017), e1600582 | DOI

[114] V. Onink; M. L. A. Kaandorp; C. Van Sebille Influence of Particle Size and Fragmentation on Large-Scale Microplastic Transport in the Mediterranean Sea, Environ. Sci. Technol., Volume 56 (2022), pp. 15528-15540 | DOI

[115] B. Singh; N. Sharma Mechanistic implications of plastic degradation, Polym. Degrad. Stabil., Volume 93 (2008), pp. 561-584 | DOI

[116] A. ter Halle; L. Ladirat; X. Gendre Goudounèche et al. Understanding the fragmentation pattern of marine plastic debris, Environ. Sci. Technol., Volume 50 (2016) no. 11, pp. 5668-5675 | DOI

[117] R. Okubo; A. Yamamoto; A. Kurima; T. Sakabe; Y. Ide; A. Isobe Estimation of the age of polyethylene microplastics collected from oceans: Application to the western North Pacific Ocean, Mar. Pollut. Bull., Volume 192 (2023), 114951 | DOI

[118] P. K. Lindeque; M. Cole; R. L. Coppock et al. Are we underestimating microplastic abundance in the marine environment? A comparison of microplastic capture with nets of different mesh-size, Environ. Pollut., Volume 265 (2020), 114721 | DOI

[119] M. George; P. Fabre Floating plastics in oceans: A matter of size, Curr. Opin. Green Sustain. Chem., Volume 32 (2021), 100543 | DOI

[120] R. C. Thompson; W. Courtene-Jones; S. Phal; K. Raubenheimer; A. A. Koelmans Twenty years of microplastics pollution research—what have we learned?, Science, Volume 386 (2024) no. 6720, eadl2746 | DOI

[121] J. R. Gemmrich; D. M. Farmer Near-Surface Turbulence in the Presence of Breaking Waves, J. Phys. Oceanogr., Volume 34 (2004) no. 5, pp. 1067-1086 | DOI

[122] M. Kooi; S. Primpke; S. M. Mintenig; C. Lorenz; G. Gerdts; A. A. Koelmans Characterizing the multidimensionality of microplastics across environmental compartments, Water Res., Volume 202 (2021), 117429 | DOI

[123] M. L. A. Kaandorp; H. A. Dijkstra; E. Van Sebille Modelling size distributions of marine plastics under the influence of continuous cascading fragmentation, Environ. Res. Lett., Volume 16 (2021), 054075 | DOI

[124] C. Brouzet; R. Guiné; M.-J. Dalbe; B. Favier; N. Vandenberghe; E. Villermaux; G. Verhille Laboratory model for plastic fragmentation in the turbulent ocean, Phys. Rev. Fluids, Volume 6 (2021), 024601 | DOI

[125] I. Efimova; M. Bagaeva; A. Bagaev; A. Kileso; I. P. Chubarenko Secondary Microplastics Generation in the Sea Swash Zone With Coarse Bottom Sediments: Laboratory Experiments, Front. Mar. Sci., Volume 5 (2018), 313 | DOI

[126] I. Chubarenko; I. Efimova; M. Bagaeva; A. Bagaev; I. Isachenko On mechanical fragmentation of single-use plastics in the sea swash zone with different types of bottom sediments: Insights from laboratory experiments, Mar. Pollut. Bull., Volume 150 (2020), 110726 | DOI

[127] M. P. Born; C. Brüll; H. Schüttrumpf Implications of a New Test Facility for Fragmentation Investigations on Virgin (Micro)plastics, Environ. Sci. Technol., Volume 57 (2023), pp. 10393-10403 | DOI

[128] G. Timár; J. Blömer; F. Kun; H. J. Herrmann New Universality Class for the Fragmentation of Plastic Materials, Phys. Rev. Lett., Volume 104 (2010) no. 9, 095502 | DOI

[129] C. Brouzet; G. Verhille; P. Le Gal Flexible Fiber in a Turbulent Flow: A Macroscopic Polymer, Phys. Rev. Lett., Volume 112 (2014) no. 7, 074501 | DOI

[130] K. Aoki; R. Furue A model for the size distribution of marine microplastics: A statistical mechanics, PLoS ONE, Volume 16 (2021) no. 11, e0259781 | DOI

[131] S. Douady; Y. Couder; M. E. Brachet Direct observation of the intermittency of intense vorticity filaments in turbulence, Phys. Rev. Lett., Volume 67 (1991) no. 8, pp. 983-986 | DOI

[132] S. Klein; M. Gibert; A. Bérut; E. Bodenschatz Simultaneous 3D measurement of the translation and rotation of finite-size particles and the flow field in a fully developed turbulent water flow, Meas. Sci. Technol., Volume 24 (2013), 024006 | DOI

[133] R. Monchaux; M. Berhanu; M. Bourgoin et al. Generation of a Magnetic Field by Dynamo Action in a Turbulent Flow of Liquid Sodium, Phys. Rev. Lett., Volume 98 (2007), 044502 | DOI

[134] M. George; F. Nallet; P. Fabre A threshold model of plastic waste fragmentation: New insights into the distribution of microplastics in the ocean and its evolution over time, Mar. Pollut. Bull., Volume 199 (2024), 116012 | DOI

[135] S. Allende; C. Henry; J. Bec Dynamics and fragmentation of small inextensible fibers in turbulence, Philos. Trans. R. Soc. Lond., Ser. A, Volume 378 (2020) no. 2175, 20190398 | DOI

[136] K. L. Law Plastics in the Marine Environment, Ann. Rev. Mar. Sci., Volume 9 (2017), pp. 205-229 | DOI

[137] L. Weiss; W. Ludwig; S. Heussner et al. The missing ocean plastic sink: Gone with the rivers, Science, Volume 373 (2021) no. 6550, pp. 107-111 | DOI

[138] M. Trainic; J. M. Flores; I. Pinkas et al. Airborne microplastic particles detected in the remote marine atmosphere, Commun. Earth Environ., Volume 1 (2020), 64 | DOI

[139] L. Van Cauwenberghe; L. Devriese; F. Galgani; J. Robbens; C. R. Janssen Microplastics in sediments: A review of techniques, occurrence and effects, Mar. Environ. Res., Volume 111 (2015), pp. 5-17 | DOI

[140] J. Barrett; Z. Chase; J. Zhang et al. Microplastic Pollution in Deep-Sea Sediments From the Great Australian Bight, Front. Mar. Sci., Volume 7 (2020), 576170 | DOI

[141] K. Waldschläger; M. Z. M. Brückner; Bethanie Carney Almroth et al. Learning from natural sediments to tackle microplastics challenges: A multidisciplinary perspective, Earth-Sci. Rev., Volume 228 (2022), 104021 | DOI

[142] A. Ballent; S. Pando; A. Purser; M. F. Juliano; L. Thomsen Modelled transport of benthic marine microplastic pollution in the Nazaré Canyon, Biogeosciences, Volume 10 (2013) no. 12, pp. 7957-7970 | DOI

[143] K. D. Goral; H. G. Guler; B. E. Larsen; S. Carstensen; E. D. Christensen; N. B. Kerpen; T. Schlurmann; D. R. Fuhrman Shields Diagram and the Incipient Motion of Microplastic Particles, Environ. Sci. Technol., Volume 57 (2023) no. 25, pp. 9362-9375 | DOI

[144] P. R. Wilcock Methods for estimating the critical shear stress of individual fractions in mixed-size sediment, Water Resour. Res., Volume 24 (1988) no. 7, pp. 1127-1135 | DOI

[145] C. E. Russell; R. Fernández; D. R. Parsons; S. E. Gabbott Plastic pollution in riverbeds fundamentally affects natural sand transport processes, Commun. Earth Environ., Volume 4 (2023) no. 1, 255 | DOI

[146] M. Pierdomenico; A. Bernhardt; J. T. Eggenhuisen et al. Transport and accumulation of litter in submarine canyons: a geoscience perspective, Front. Mar. Sci., Volume 10 (2023), 1224859 | DOI

[147] F. Pohl; J. T. Eggenhuisen; I. A. Kane; M. A. Clare Transport and Burial of Microplastics in Deep-Marine Sediments by Turbidity Currents, Environ. Sci. Technol., Volume 54 (2020) no. 7, pp. 4180-4189 | DOI

[148] D. Bell; E. L. Soutter; Z. A. Cumberpatch; R. A. Ferguson; Y. T. Spychala; I. A. Kane; J. T. Eggenhuisen Flow-process controls on grain type distribution in an experimental turbidity current deposit: Implications for detrital signal preservation and microplastic distribution in submarine fans, Depositional Rec., Volume 7 (2021) no. 3, pp. 392-415 | DOI

[149] I. A. Kane; M. A. Clare; E. Miramontes; R. Wogelius; J. J. Rothwell; P. Garreau; F. Pohl Seafloor microplastic hotspots controlled by deep-sea circulation, Science, Volume 368 (2020) no. 6495, pp. 1140-1145 | DOI

[150] F. Feddersen Scaling surf zone turbulence, Geophys. Res. Lett., Volume 39 (2012), L18613 | DOI

[151] W. R. Geyer; P. MacCready The Estuarine Circulation, Annu. Rev. Fluid Mech., Volume 46 (2014), pp. 175–-197 | DOI | Zbl

[152] A. R. Horner-Devine; R. D. Hetland; D. G. MacDonald Mixing and Transport in Coastal River Plumes, Annu. Rev. Fluid Mech., Volume 47 (2015) no. 1, pp. 569-594 | DOI

[153] P. Chardón-Maldonado; J. C. Pintado-Patiño; J. A. Puleo Advances in swash-zone research: Small-scale hydrodynamic and sediment transport processes, Coast. Eng., Volume 115 (2016), pp. 8-25 | DOI

[154] T. Aagaard; J. Brinkkemper; D. F. Christensen; M. G. Hughes; G. Ruessink Surf Zone Turbulence and Suspended Sediment Dynamics—A Review, J. Mar. Sci. Eng., Volume 9 (2021), 1300 | DOI

[155] R. Lumpkin; N. Maximenko; M. Pazos Evaluating Where and Why Drifters Die, J. Atmos. Ocean. Technol., Volume 29 (2012), pp. 300-308 | DOI

[156] Z. Chen; M. Bowen; G. Li; G. Coco; B. Hall Retention and dispersion of buoyant plastic debris in a well-mixed estuary from drifter observations, Mar. Pollut. Bull., Volume 180 (2022), 113793 | DOI

[157] J. Meyerjürgens; T. H. Badewien; S. P. Garaba; J.-O. Wolff; O. Zielinski A State-of-the-Art Compact Surface Drifter Reveals Pathways of Floating Marine Litter in the German Bight, Front. Mar. Sci., Volume 6 (2019), 58 | DOI

[158] R Pawlowicz The Grounding of Floating Objects in a Marginal Sea, J. Phys. Oceanogr., Volume 51 (2021), pp. 537-551 | DOI

[159] A. de Vos; L. Aluwihare; Sarah Youngs et al. The M/V X‑Press Pearl Nurdle Spill: Contamination of Burnt Plastic and Unburnt Nurdles along Sri Lanka’s Beaches, ACS Environ. Au, Volume 2 (2022), pp. 128-135 | DOI

[160] K. Critchell; A. Grech; J. Schlaefer; F. P. Andutta; J. Lambrechts; E. Wolanski; M. Hamann Modelling the fate of marine debris along a complex shoreline: Lessons from the Great Barrier Reef, Estuar. Coast. Shelf Sci., Volume 167 (2015), pp. 414-426 | DOI

[161] M. L. A. Kaandorp; H. A. Dijkstra; E. Van Sebille Closing the Mediterranean marine floating plastic mass budget: Inverse modeling of sources and sinks, Environ. Sci. Technol., Volume 54 (2020), pp. 11980-11989 | DOI

[162] M. L. A. Kaandorp; S. L. Ypma; M. Boonstra; H. A. Dijkstra; E. Van Sebille Using machine learning and beach cleanup data to explain litter quantities along the Dutch North Sea coast, Ocean Science, Volume 18 (2022), pp. 269-293 | DOI

[163] M. A. Browne; T. S. Galloway; R. C. Thompson Spatial Patterns of Plastic Debris along Estuarine Shorelines, Environ. Sci. Technol., Volume 44 (2010), pp. 3404-3409 | DOI

[164] A. Turra; A. B. Manzano; R. J. S. Dias; M. M. Mahiques; L. Barbosa; D. Balthazar-Silva; F. T. Moreira Three-dimensional distribution of plastic pellets in sandy beaches: shifting paradigms, Sci. Rep., Volume 4 (2014), 4435 | DOI

[165] M. Zbyszewski; P. L. Corcoran; A. Hockin Comparison of the distribution and degradation of plastic debris along shorelines of the Great Lakes, North America, J. Gt. Lakes Res., Volume 40 (2014), pp. 288-299 | DOI

[166] C. Eriksson; H. Burton; S. Fitch; M. Schulz; J. van den Hoff Daily accumulation rates of marine debris on sub-Antarctic island beaches, Mar. Pollut. Bull., Volume 66 (2013), pp. 199-208 | DOI

[167] M. Compa; C. Alomar; M. Morató; E. Álvarez; S. Deudero Spatial distribution of macro-and micro-litter items along rocky and sandy beaches of a Marine Protected Area in the western Mediterranean Sea, Mar. Pollut. Bull., Volume 178 (2022), 113520 | DOI

[168] B. Davidson; K. Batista; S. Samrah; L. M. Rios Mendoza; N. Pujara Microplastic contamination of sediments across and within three beaches in western Lake Superior, J. Gt. Lakes Res., Volume 48 (2022), pp. 1563-1572 | DOI

[169] P. L. Forsberg; D. Sous; A. Stocchino; R. Chemin Behaviour of plastic litter in nearshore waters: First insights from wind and wave laboratory experiments, Mar. Pollut. Bull., Volume 153 (2020), 111023 | DOI

[170] N. B. Kerpen; T. Schlurmann; A. Schendel; J. Gundlach; D. Marquard; M. Hüpgen Wave-Induced Distribution of Microplastic in the Surf Zone, Front. Mar. Sci., Volume 7 (2020), 590565 | DOI

[171] H. G. Guler; B. E. Larsen; O. Quintana et al. Experimental study of non-buoyant microplastic transport beneath breaking irregular waves on a live sediment bed, Mar. Pollut. Bull., Volume 181 (2022), 113902 | DOI

[172] N. B. Kerpen; B. E. Larsen; T. Schlurmann et al. Microplastic retention in marine vegetation canopies under breaking irregular waves, Sci. Total Environ., Volume 912 (2024), 169280 | DOI

[173] B. E. Larsen; M. A. A. Al-Obaidi; H. G. Guler et al. Experimental investigation on the nearshore transport of buoyant microplastic particles, Mar. Pollut. Bull., Volume 187 (2023), 114610 | DOI

[174] B. Davidson; J. Brenner; N. Pujara Beaching model for buoyant marine debris in bore-driven swash, Flow, Volume 3 (2023), E35 | DOI

[175] P. Núñez; A. Romano; J. García-Alba; G. Besio; R. Medina Wave-induced cross-shore distribution of different densities, shapes, and sizes of plastic debris in coastal environments: A laboratory experiment, Mar. Pollut. Bull., Volume 187 (2023), 114561 | DOI

[176] R. G. Dean; R. A. Dalrymple Coastal Processes with Engineering Applications, Cambridge University Press, 2004 | DOI

[177] N. Pujara; P. L. F. Liu; H. Yeh The swash of solitary waves on a plane beach: flow evolution, bed shear stress and run-up, J. Fluid Mech., Volume 779 (2015), pp. 556-597 | DOI | Zbl

[178] D. Cristaudo; J. A. Puleo Observation of munitions migration and burial in the swash and breaker zones, Ocean Eng., Volume 205 (2020), 107322 | DOI

[179] E. Murphy; I. Nistor; A. Cornett; A. Rayner; S. Baker; J. Stolle Application of an optical tracking technique to characterize nearshore wave-driven transport and dispersion of model driftwood, Coast. Eng., Volume 189 (2024), 104481 | DOI

[180] A. Emadzadeh; Y.-M. Chiew Settling velocity of porous spherical particles, J. Hydraul. Eng., Volume 146 (2020) no. 1, 04019046 | DOI

[181] J. Magnaudet; M. J. Mercier Particles, Drops, and Bubbles Moving Across Sharp Interfaces and Stratified Layers, Annu. Rev. Fluid Mech., Volume 52 (2020), pp. 61-91 | DOI | Zbl

[182] J. Brahney; N. Mahowald; M. Prank; G. Cornwell; Z. Klimont; H. Matsui; K. A. Prather Constraining the atmospheric limb of the plastic cycle, Proc. Natl. Acad. Sci. USA, Volume 118 (2021) no. 16, e2020719118 | DOI

[183] C. Harb; N. Pokhrel; H. Foroutan Quantification of the Emission of Atmospheric Microplastics and Nanoplastics via Sea Spray, Environ. Sci. Technol. Letters, Volume 10 (2023) no. 6, pp. 513-519 | DOI

[184] I. Peeken; S. Primpke; B. Beyer et al. Arctic sea ice is an important temporal sink and means of transport for microplastic, Nat. Commun., Volume 9 (2018) no. 1, 1505 | DOI

[185] A. Pradel; M. Gautier; D. Bavay; J. Gigault Micro- and nanoplastic transfer in freezing saltwater: implications for their fate in polar waters, Environ. Sci.: Processes Impacts, Volume 23 (2021) no. 11, pp. 1759-1770 | DOI

[186] I. Chubarenko; I. Bocherikova; E. Esiukova; I. Isachenko; A. Kupriyanova; O. Lobchuk; S. Fetisov Microplastics in sea ice: A fingerprint of bubble flotation, Sci. Total Environ., Volume 892 (2023), 164611 | DOI

[187] M. M. Mrokowska; A. Krztoń-Maziopa Settling of microplastics in mucus-rich water column: The role of biologically modified rheology of seawater, Sci. Total Environ., Volume 912 (2024), 168767 | DOI

Cité par Sources :

Commentaires - Politique