[Méthodes d’optique géométrique pour les milieux anisotropes en mouvement : un outil pour les plasmas magnétisés]
La propagation d’une onde dans un milieu est en général modifiée lorsque celui-ci est en mouvement. Les configurations d’équilibre d’un plasma reposant souvent sur un champ de vitesse, comme par exemple en astrophysique ou pour la fusion par confinement magnétique, une compréhension des effets du mouvement sur les ondes plasmas est particulièrement souhaitable. On s’intéresse ici à développer une méthode de lancer de rayon pour étudier la trajectoire des rayons se propageant dans un milieu anisotrope en mouvement dans l’approximation de l’optique géométrique. Une relation de dispersion effective pour le milieu en mouvement vu du laboratoire est identifiée en effectuant une transformation de Lorentz de la relation de dispersion du milieu au repos. Cette relation de dispersion est alors utilisée dans des équations de lancer de rayon, permettant ainsi de modéliser l’effet du mouvement sur la trajectoire des différents modes supportés par le milieu. Le potentiel de cette méthode est pour finir illustré en considérant le cas des ondes d’Alfvén basse fréquence et celui des modes ordinaire et extraordinaire classiques d’un plasma magnétisé.
The propagation of a wave in a medium is generally affected when the medium is moving with respect to the observer. Because plasma equilibria often involve plasma flows, for instance in astrophysics or in magnetic confinement nuclear fusion devices, understanding the effect of motion on plasma waves is important. Meanwhile, the presence of a background magnetic field in a plasma makes it anisotropic. To address this problem, we derive here ray tracing equations for the trajectory of rays propagating in a moving anisotropic medium. The proposed approach is to use an effective dispersion relation for the moving medium as seen from the laboratory, obtained by performing a Lorentz transformation of the dispersion relation known for the medium at rest. This formalism is illustrated by considering the low frequency Alfvén waves and the standard ordinary and extraordinary modes in a magnetized plasma at rest.
Révisé le :
Accepté le :
Publié le :
Mots-clés : optique géométrique, lancer de rayon, entraînement de la lumière, écoulement plasma, diélectrique en mouvement
Aymeric Braud 1 ; Julien Langlois 1 ; Renaud Gueroult 1
@article{CRPHYS_2025__26_G1_7_0, author = {Aymeric Braud and Julien Langlois and Renaud Gueroult}, title = {Geometrical optics methods for moving anisotropic media: a tool for magnetized plasmas}, journal = {Comptes Rendus. Physique}, pages = {7--23}, publisher = {Acad\'emie des sciences, Paris}, volume = {26}, year = {2025}, doi = {10.5802/crphys.218}, language = {en}, }
TY - JOUR AU - Aymeric Braud AU - Julien Langlois AU - Renaud Gueroult TI - Geometrical optics methods for moving anisotropic media: a tool for magnetized plasmas JO - Comptes Rendus. Physique PY - 2025 SP - 7 EP - 23 VL - 26 PB - Académie des sciences, Paris DO - 10.5802/crphys.218 LA - en ID - CRPHYS_2025__26_G1_7_0 ER -
Aymeric Braud; Julien Langlois; Renaud Gueroult. Geometrical optics methods for moving anisotropic media: a tool for magnetized plasmas. Comptes Rendus. Physique, Volume 26 (2025), pp. 7-23. doi : 10.5802/crphys.218. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.218/
[1] Theory of current drive in plasmas, Rev. Mod. Phys., Volume 59 (1987) no. 1, pp. 175-234 | DOI
[2] Linear Polarization in Pulsating Radio Sources, Nature, Volume 218 (1968) no. 5137, pp. 124-126 | DOI
[3] Pulsar Rotation Measures and Large-scale Magnetic Field Reversals in the Galactic Disk, Astrophys. J., Suppl. Ser., Volume 234 (2018) no. 1, 11 | DOI
[4] Nonresonant Diffusion in Alpha Channeling, Phys. Rev. Lett., Volume 127 (2021) no. 2, 025003 | DOI
[5] Wave-driven torques to drive current and rotation, Phys. Plasmas, Volume 28 (2021) no. 10, 102506 | DOI
[6] Momentum conservation in current drive and alpha-channeling-mediated rotation drive, Phys. Plasmas, Volume 29 (2022) no. 6, 062106 | DOI
[7] DC electric field generation and distribution in magnetized plasmas, Phys. Plasmas, Volume 30 (2023) no. 7, 072509 | DOI
[8] When do waves drive plasma flows?, Phys. Plasmas, Volume 31 (2024) no. 4, 042116 | DOI
[9] Lettre d’Augustin Fresnel à François Arago sur l’influence du mouvement terrestre dans quelques phénomènes d’optique, Ann. Chim. Phys., Volume 9 (1818), pp. 57-66
[10] Sur les hypothèses relatives à l’éther lumineux et sur une expérience qui paraît démontrer que le mouvement des corps change la vitesse avec laquelle la lumière se propage dans leur intérieur, C. R. Acad. Sci. Paris, Volume 33 (1851), pp. 349-355
[11] ‘Aether drag’ in a transversely moving medium, Proc. R. Soc. Lond., Ser. A, Volume 345 (1975), pp. 351-364 | DOI
[12] Turbulence, Magnetism, and Shear in Stellar Interiors, Annu. Rev. Fluid Mech., Volume 41 (2009) no. 1, pp. 317-345 | DOI
[13] et al. Wall Stabilization of High Beta Tokamak Discharges in DIII-D, Phys. Rev. Lett., Volume 74 (1995) no. 13, pp. 2483-2486 | DOI
[14] Wave propagation in rotating magnetised plasmas, Plasma Phys. Control. Fusion, Volume 65 (2023) no. 3, 034006 | DOI
[15] Faraday–Fresnel rotation and splitting of orbital angular momentum carrying waves in a rotating plasma, J. Plasma Phys., Volume 87 (2021) no. 5, 905870507 | DOI
[16] Rotating Alfvén waves in rotating plasmas, J. Plasma Phys., Volume 89 (2023) no. 6, 905890613 | DOI
[17] Determining the rotation direction in pulsars, Nat. Commun., Volume 10 (2019) no. 1, 3232 | DOI
[18] Enhanced tuneable rotatory power in a rotating plasma, Phys. Rev. E, Volume 102 (2020) no. 5, 051202 | DOI
[19] Quasilinear theory of Brillouin resonances in rotating magnetized plasmas, J. Plasma Phys., Volume 89 (2023) no. 4, 905890408 | DOI
[20] Ray Tracing and Beyond: Phase space methods in plasma wave theory, Cambridge University Press: Cambridge, 2014 | DOI
[21] Geometric phases in the asymptotic theory of coupled wave equations, Phys. Rev. A, Volume 44 (1991) no. 8, pp. 5239-5256 | DOI
[22] Geometrical optics of moving media, Opt. Spectrosc., Volume 98 (2005) no. 3, pp. 441-446 | DOI
[23] Manifestation of the Berry curvature in geophysical ray tracing, Proc. R. Soc. Lond., Ser. A, Volume 477 (2021) no. 2248, 20200844 | DOI
[24] First-principles variational formulation of polarization effects in geometrical optics, Phys. Rev. A, Volume 92 (2015) no. 4, 043805 | DOI
[25] Ray tracing of lower hybrid and ion cyclotron waves, Comput. Phys. Rep., Volume 4 (1986) no. 3, pp. 71-93 | DOI
[26] The Propagation of Radio Waves: The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere, Cambridge University Press, 1988
[27] An assessment of full wave effects on the propagation and absorption of lower hybrid wavesa), Phys. Plasmas, Volume 16 (2009) no. 7, 072502 | DOI
[28] et al. Advances in modeling of lower hybrid current drive, Plasma Phys. Control. Fusion, Volume 58 (2016) no. 4, 044008 | DOI
[29] Ray-tracing modelling of the ICRF heating of large tokamaks, Nucl. Fusion, Volume 24 (1984) no. 8, pp. 955-976 | DOI
[30] A general ray tracing code GENRAY, Bull. Am. Phys. Soc., Volume 39 (1994), p. 1626
[31] The GENRAY ray tracing code (2003) no. CompX-2000-01 (Technical report)
[32] Damping of electron cyclotron waves in dense plasmas of a compact ignition tokamak, Phys. Fluids, Volume 30 (1987) no. 12, pp. 3745-3751 | DOI
[33] Ray tracing study of the electron cyclotron current drive in DIII-D using 60 GHz, IEEE Trans. Plasma Science, Volume 17 (1989) no. 1, pp. 6-11 | DOI
[34] A versatile ray-tracing code for studying rf wave propagation in toroidal magnetized plasmas, Plasma Phys. Control. Fusion, Volume 54 (2012) no. 4, 045003 | DOI
[35] BORAY: A ray tracing code for various magnetized plasma configurations, Comput. Phys. Commun., Volume 276 (2022), 108363 | DOI
[36] Path-integrated growth of electrostatic waves: The generation of terrestrial myriametric radiation, J. Geophys. Res. Sp. Phys., Volume 94 (1989) no. A7, pp. 8895-8909 | DOI
[37] Progress in radio ray tracing in the ionosphere, URSI Radio Sci. Bull., Volume 2004 (2004) no. 310, pp. 81-91 | DOI
[38] Ray Tracing of Magnetohydrodynamic Waves in Geospace, URSI Radio Sci. Bull. (2008) no. 325, pp. 24-35 | DOI
[39] Energy exchange and wave action conservation for magnetohydrodynamic (MHD) waves in a general, slowly varying medium, Ann. Geophys., Volume 32 (2014) no. 12, pp. 1495-1510 | DOI
[40] Electromagnetic Radiation in the Presence of Moving Simple Media, J. Math. Phys., Volume 5 (1964) no. 12, pp. 1668-1672 | DOI
[41] Radiation in a Moving Anisotropic Medium, Radio Sci., Volume 1 (1966) no. 3, pp. 313-324 | DOI
[42] Relativity and mathematical tools: Waves in moving media, Am. J. Phys., Volume 75 (2007) no. 12, pp. 1134-1140 | DOI
[43] Dispersion equations in moving media, Proc. IEEE, Volume 68 (1980) no. 4, pp. 528-529 | DOI
[44] Dispersion process of electromagnetic waves in a moving medium, Radiophys. Quantum Electron., Volume 39 (1996) no. 1, pp. 84-89 | DOI
[45] Dispersion relations in relativistic astrophysical outflows, J. Plasma Phys., Volume 70 (2004) no. 1, pp. 53-67 | DOI
[46] Relativistic invariance of dispersion‐relations and their associated wave‐operators and Green‐functions, Z. Angew. Math. Mech., Volume 90 (2010) no. 3, pp. 194-202 | DOI
[47] Covariant descriptions of bianisotropic media, Proc. IEEE, Volume 56 (1968) no. 3, pp. 248-251 | DOI
[48] Wave dispersion in pulsar plasma. Part 2. Pulsar frame, J. Plasma Phys., Volume 85 (2019) no. 3, 905850311 | DOI
[49] Geometrical hydromagnetics, J. Geophys. Res., Volume 68 (1963) no. 1, pp. 147-174 | DOI
[50] A study of electrodynamics of moving media, Proc. IEEE, Volume 52 (1964) no. 6, pp. 685-689 | DOI
[51] Electrodynamics of moving anisotropic media: The First-order theory, J. Res. Natl. Bur. Std., Volume 69D (1965) no. 3, pp. 401-405 | DOI
[52] Calculation of Covariant Dispersion Equations for Moving Plasmas, Z. Naturforsch. A., Volume 34 (1979) no. 2, pp. 155-162 | DOI
[53] On the dragging of light by a rotating medium, Proc. R. Soc. Lond., Ser. A, Volume 463 (2007) no. 2085, pp. 2185-2194 | DOI
[54] Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern, Math. Ann., Volume 68 (1910) no. 4, pp. 472-525 | DOI
[55] Relativistic Magnetoionic Theory for Drifting Plasma, Radio Sci., Volume 3 (1968) no. 3, pp. 295-298 | DOI
[56] Relativistic Magneto-Ionic Theory for Drifting Plasma in Longitudinal Direction, Phys. Rev., Volume 146 (1966) no. 1, pp. 92-95 | DOI
[57] High-frequency transverse fresnel drag in a moving magneto-active plasma, Astrophys. Space Sci., Volume 73 (1980) no. 1, pp. 207-212 | DOI
[58] Optics of nonuniformly moving media, Phys. Rev. A, Volume 60 (1999) no. 6, pp. 4301-4312 | DOI
[59] Analytical ray-tracing in planetary atmospheres, Astron. Astrophys., Volume 624 (2019), A41 | DOI
[60] Relativistic modeling of atmospheric occultations with time transfer functions, Astron. Astrophys., Volume 648 (2021), A46 | DOI
[61] Ray tracing in weakly nonlinear moving media, J. Plasma Phys., Volume 16 (1976) no. 3, pp. 415-426 | DOI
[62] From ray tracing to waves of topological origin in continuous media, SciPost Phys., Volume 14 (2023) no. 4, 062 | DOI
[63] Resonant Frequencies of an Electromagnetic Cavity in an Accelerated System of Reference, Phys. Rev., Volume 134 (1964) no. 4A, p. A799-A804 | DOI
[64] Electromagnetic Radiation in Accelerated Systems, Phys. Rev., Volume 181 (1969) no. 5, pp. 1765-1775 | DOI
[65] Phenomenological and electron-theoretical study of the electrodynamics of rotating systems, Proc. IEEE, Volume 61 (1973) no. 12, pp. 1694-1702 | DOI
[66] Contribution of fictitious forces to polarization drag in rotating media, Phys. Rev. E, Volume 108 (2023) no. 4, 045201 | DOI
[67] Zur Lichtfortpflanzung nach der Relativitätstheorie, Ann. Phys. (Berlin), Volume 377 (1923) no. 22, pp. 421-456 | DOI
[68] General expansion of time transfer functions in optical spacetime, Phys. Rev. D, Volume 101 (2020) no. 6, 064035 | DOI
[69] General Relativity: An Introduction for Physicists, Cambridge Univ. Press, 2006 | DOI
[70] First-order relativistic effects in the electrodynamics of media moving with a nonuniform velocity, Usp. Fiz. Nauk, Volume 176 (2006) no. 4, pp. 421-439 | DOI
[71] Dispersion and the transverse aether drag, Proc. R. Soc. Lond., Ser. A, Volume 345 (1975), pp. 343-344 | DOI
[72] ‘Fresnel Aether Drag’ in a Transversely Moving Medium, Proc. R. Soc. Lond., Ser. A, Volume 328 (1972), pp. 337-352 | DOI
[73] The magneto-ionic theory for drifting plasma, IRE Trans. Antennas Propag., Volume 10 (1962) no. 4, pp. 459-464 | DOI
[74] Electromagnetic linear dispersion relation for plasma with a drift across magnetic field revisited, Phys. Plasmas, Volume 25 (2018) no. 10, 102109 | DOI
[75] Physique des plasmas: cours et applications, Dunod, 2005 (OCLC: 1340667087)
[76] On the passage of radiation through moving astrophysical plasmas, Astrophys. J. (1978) no. 222, pp. 1012-1019 | DOI
[77] Electromagnetic wave propagation in a moving magnetoplasma medium in the presence of a boundary, J. Appl. Phys., Volume 46 (1975) no. 5, pp. 2295-2297 | DOI
[78] Spin Hall effect of radiofrequency waves in magnetized plasmas, Phys. Rev. E, Volume 107 (2023) no. 5, 055210 | DOI
[79] Wireless studies of the ionosphere, Proc. Inst. Electr. Eng., Volume 7 (1932) no. 21, pp. 257-265 | DOI
[80] Fresnel drag in a moving magnetized plasma (2024) (preprint, arXiv:2407.03744)
[81] On the dragging of the plane of polarization of light propagating in a rotating medium, Proc. R. Soc. Lond., Ser. A, Volume 349 (1976) no. 1659, pp. 441-445 | DOI
[82] Rotary ‘Aether drag’, Proc. R. Soc. Lond., Ser. A, Volume 349 (1976), pp. 423-439 | DOI
[83] Extending geometrical optics: A Lagrangian theory for vector waves, Phys. Plasmas, Volume 24 (2017) no. 5, 055704 | DOI
[84] Quasioptical modeling of wave beams with and without mode conversion. I. Basic theory, Phys. Plasmas, Volume 26 (2019) no. 7, 072110 | DOI
Cité par Sources :
Commentaires - Politique