Comptes Rendus
Intervention en colloque
Reflections on dipolar quantum fluids
[Réflexions sur les fluides quantiques dipolaires]
Comptes Rendus. Physique, Volume 25 (2024), pp. 389-413.

Cet article fait partie du numéro thématique Questions ouvertes dans le problème quantique à N corps coordonné par Yvan Castin et al..

Nous donnons une description thermodynamique des gaz froids en interaction dipolaire qui tient compte de la longue portée de ces interactions et de leur absence d’invariance par rotation. Elle fait intervenir un champ thermodynamique supplémentaire conjugué à l’extension linéaire du gaz selon la direction des dipôles. La pression uniaxiale associée se manifeste par un écart à la relation de Gibbs–Duhem dans le profil de densité du gaz piégé. Elle doit s’annuler dans les gouttelettes (des états liés du système), une condition qui détermine la dépendance observée du rapport d’aspect avec le nombre de particules. Une généralisation tensorielle du théorème du viriel et un certain nombre d’autres relations thermodynamiques exactes sont obtenues. Enfin, en étendant un modèle dû à Nozières, on aboutit à un critère simple pour la transition de solidification vers une onde de densité de masse superfluide.

We present a thermodynamic description of ultracold gases with dipolar interactions which properly accounts for the long-range nature and broken rotation invariance of the interactions. It involves an additional thermodynamic field conjugate to the linear extension of the gas along the direction of the dipoles. The associated uniaxial pressure shows up as a deviation from the Gibbs–Duhem relation in the density profile of a trapped gas. It has to vanish in self-bound droplets, a condition which determines the observed dependence of the aspect ratio on particle number. A tensorial generalization of the virial theorem and a number of further exact thermodynamic relations are derived. Finally, extending a model due to Nozières, a simple criterion for the freezing transition to a superfluid mass density wave is given.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.222
Keywords: Ultracold atoms, Dipolar fluids, Supersolids, Thermodynamic limit, Long-range interactions
Mots-clés : Atomes froids, Fluides dipolaires, Supersolides, Limite thermodynamique, Interactions à longue portée

Wilhelm Zwerger 1

1 Physik Department TU München, James Franck Strasse, 85748 Garching, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2024__25_G1_389_0,
     author = {Wilhelm Zwerger},
     title = {Reflections on dipolar quantum fluids},
     journal = {Comptes Rendus. Physique},
     pages = {389--413},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {25},
     year = {2024},
     doi = {10.5802/crphys.222},
     language = {en},
}
TY  - JOUR
AU  - Wilhelm Zwerger
TI  - Reflections on dipolar quantum fluids
JO  - Comptes Rendus. Physique
PY  - 2024
SP  - 389
EP  - 413
VL  - 25
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.222
LA  - en
ID  - CRPHYS_2024__25_G1_389_0
ER  - 
%0 Journal Article
%A Wilhelm Zwerger
%T Reflections on dipolar quantum fluids
%J Comptes Rendus. Physique
%D 2024
%P 389-413
%V 25
%I Académie des sciences, Paris
%R 10.5802/crphys.222
%G en
%F CRPHYS_2024__25_G1_389_0
Wilhelm Zwerger. Reflections on dipolar quantum fluids. Comptes Rendus. Physique, Volume 25 (2024), pp. 389-413. doi : 10.5802/crphys.222. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.222/

[1] A. Griesmaier; J. Werner; S. Hensler; J. Stuhler; T. Pfau Bose–Einstein condensation of chromium, Phys. Rev. Lett., Volume 94 (2005), 160401 | DOI

[2] I. Ferrier-Barbut; H. Kadau; M. Schmitt; M. Wenzel; T. Pfau Observation of quantum droplets in a strongly dipolar Bose gas, Phys. Rev. Lett., Volume 116 (2016), 215301 | DOI

[3] F. Böttcher; J.-N. Schmidt; M. Wenzel; J. Hertkorn; M. Guo; T. Langen; T. Pfau Transient supersolid properties in an array of dipolar quantum droplets, Phys. Rev. X, Volume 9 (2019), 011051

[4] L. Tanzi; E. Lucioni; F. Famà et al. Observation of a dipolar quantum gas with metastable supersolid properties, Phys. Rev. Lett., Volume 122 (2019), 130405 | DOI

[5] L. Chomaz; D. Petter; P. Ilzhöfer et al. Long-lived and transient supersolid behaviors in dipolar quantum gases, Phys. Rev. X, Volume 9 (2019), 021012

[6] L. Chomaz; I. Ferrier-Barbut; F. Ferlaino; B. Laburthe-Tolra; B. L. Lev; T. Pfau Dipolar physics: a review of experiments with magnetic quantum gases, Rep. Prog. Phys., Volume 86 (2023), 026401 | DOI

[7] W. Zwerger Basic concepts and some current directions in ultracold gases, Lectures at the Collège de France, 2021 https://pro.college-de-france.fr/jean.dalibard/CdF/2021

[8] J. Dalibard Magnetic interactions between cold atoms: Quantum droplets and supersolid states, Lectures at the Collège de France, 2024 https://pro.college-de-france.fr/jean.dalibard/CdF/2024

[9] J.-P. Hansen; I. McDonald Theory of Simple Liquids, Elsevier, Academic Press, Amsterdam, 2006

[10] P. M. Chaikin; T. C. Lubensky Principles of Condensed Matter Physics, Cambridge University Press, Cambridge, 1995 | DOI

[11] P. Nozières Is the roton in superfluid helium 4 the ghost of a Bragg spot?, J. Low Temp. Phys., Volume 137 (2004), pp. 45-67 | DOI

[12] J. L. Bohn; D. S. Jin Differential scattering and rethermalization in ultracold dipolar gases, Phys. Rev. A, Volume 89 (2014), 022702

[13] J. L. Bohn; M. Cavagnero; D. Ticknor Quasi-universal dipolar scattering in cold and ultracold gases, New J. Phys., Volume 11 (2009), 055039

[14] A. Triay Existence of minimizers in generalized Gross–Pitaevskii theory with the Lee–Huang–Yang correction, preprint, 2019 | arXiv

[15] S. Tan Energetics of a strongly correlated Fermi gas, Ann. Phys., Volume 323 (2008), pp. 2952-2970 | DOI

[16] E. Braaten; D. Kang; L. Platter Universal relations for identical Bosons from three-body physics, Phys. Rev. Lett., Volume 106 (2011), 153005 | DOI

[17] D. Ruelle Classical statistical mechanics of a system af particles, Helvetica Phys. Acta, Volume 36 (1963), pp. 183-197 | Zbl

[18] M. E. Fisher The free energy of a macroscopic system, Arch. Rat. Mech. Anal., Volume 17 (1964), pp. 377-410 | DOI

[19] R. B. Griffiths Free energy of interacting magnetic dipoles, Phys. Rev., Volume 176 (1968), pp. 655-659 | DOI

[20] J. Fröhlich; Y.-M. Park Correlation inequalities and the thermodynamic limit for classical and quantum continuous systems, Comm. Math. Phys., Volume 59 (1978), pp. 235-266 | DOI

[21] S. Banerjee; R. B. Griffiths; M. Widom Thermodynamic limit for dipolar media, J. Stat. Phys., Volume 93 (1998), pp. 109-141 | DOI | Zbl

[22] J. D. Jackson Classical Electrodynamics, John Wiley, New York, 1999

[23] L. Landau; E. Lifshitz Electrodynamics of Continuous Media, Pergamon Press, New York, 1984

[24] D. J. Griffiths Hyperfine splitting in the ground state of hydrogen, Am. J. Phys., Volume 50 (1982), pp. 698-703 | DOI

[25] S. Yi; L. You Trapped condensates of atoms with dipole interactions, Phys. Rev. A, Volume 63 (2001), 053607

[26] S. Giovanazzi; A. Görlitz; T. Pfau Ballistic expansion of a dipolar condensate, J. Opt. B: Quantum Semiclass. Opt., Volume 5 (2003), p. S208-S211

[27] C. Eberlein; S. Giovanazzi; D. H. J. O’Dell Exact solution of the Thomas–Fermi equation for a trapped Bose–Einstein condensate with dipole–dipole interactions, Phys. Rev. A, Volume 71 (2005), 033618 | DOI

[28] M. S. Wertheim Exact solution of the mean spherical model for fluids of hard spheres with permanent electric dipole moments, J. Chem. Phys., Volume 55 (1971), pp. 4291-4298 | DOI

[29] G. Bismut; B. Laburthe-Tolra; E. Maréchal; P. Pedri; O. Gorceix; L. Vernac Anisotropic excitation spectrum of a dipolar quantum Bose gas, Phys. Rev. Lett., Volume 109 (2012), 155302 | DOI

[30] P. C. Martin; J. Schwinger Theory of many-particle systems. I, Phys. Rev., Volume 115 (1959), pp. 1342-1373 | DOI | Zbl

[31] F. Werner; Y. Castin General relations for quantum gases in two and three dimensions. II. Bosons and mixtures, Phys. Rev. A, Volume 86 (2012), 053633

[32] T.-L. Ho; Q. Zhou Obtaining the phase diagram and thermodynamic quantities of bulk systems from the densities of trapped gases, Nat. Phys., Volume 6 (2010), pp. 131-134

[33] P. C. Martin; O. Parodi; P. S. Pershan Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids, Phys. Rev. A, Volume 6 (1972), pp. 2401-2420 | DOI

[34] A. Andreev; I. Lifshitz Quantum theory of defects in crystals, Sov. Phys. JETP, Volume 29 (1969), pp. 1107-1113

[35] J. Hofmann; W. Zwerger Hydrodynamics of a superfluid smectic, J. Statist. Mech.: Theory Exp. (2021) no. 3, 033104

[36] N. Liebster; M. Sparn; E. Kath; J. Duchene; H. Strobel; M. K. Oberthaler Observation of supersolid sound modes in a driven quantum gas, preprint, 2024 (University of Heidelberg)

[37] F. Werner Virial theorems for trapped cold atoms, Phys. Rev. A, Volume 78 (2008), 025601 | DOI

[38] E. N. Parker Tensor virial equations, Phys. Rev., Volume 96 (1954), pp. 1686-1689 | DOI | Zbl

[39] Y. Nishida; D. T. Son Nonrelativistic conformal field theories, Phys. Rev. D, Volume 76 (2007), 086004

[40] T. Koch; T. Lahaye; J. Metz; B. Fröhlich; A. Griesmaier; T. Pfau Stabilization of a purely dipolar quantum gas against collapse, Nat. Phys., Volume 4 (2008), pp. 218-222 | DOI

[41] J. Hofmann; W. Zwerger Universal relations for dipolar quantum gases, Phys. Rev. Res., Volume 3 (2021), 013088 | DOI

[42] D. Baillie; R. M. Wilson; P. B. Blakie Collective excitations of self-bound droplets of a dipolar quantum fluid, Phys. Rev. Lett., Volume 119 (2017), 255302 | DOI

[43] R. Balian; J. Blaizot Stars and statistical physics: A teaching experience, Am. J. Phys., Volume 67 (1999), pp. 1189-1206 | DOI

[44] J. W. Negele; H. Orland Quantum Many-Particle Systems, Advanced Book Classics, Westview Press, Boulder, CO, 1998

[45] C. Itzykson; J.-M. Drouffe Statistical Field Theory, Academic Press, Springer, New York, 1991

[46] A. Zee Quantum Field Theory in a Nutshell, Princeton University Press, Princeton, NJ, 2010

[47] W. Zwerger Quantum-unbinding near a zero temperature liquid–gas transition, J. Statist. Mech.: Theory Exp. (2019) no. 10, 103104 | Zbl

[48] S. Tan Three-boson problem at low energy and implications for dilute Bose–Einstein condensates, Phys. Rev. A, Volume 78 (2008), 013636

[49] P. M. A. Mestrom; V. E. Colussi; T. Secker; S. J. J. M. F. Kokkelmans Scattering hypervolume for ultracold bosons from weak to strong interactions, Phys. Rev. A, Volume 100 (2019), 050702

[50] P. M. A. Mestrom; V. E. Colussi; T. Secker; G. P. Groeneveld; S. J. J. M. F. Kokkelmans van der Waals Universality near a quantum tricritical point, Phys. Rev. Lett., Volume 124 (2020), 143401

[51] S. Zhu; S. Tan Three-body scattering hypervolumes of particles with short-range interactions, preprint, 2017 | arXiv

[52] D. Baillie; R. M. Wilson; R. N. Bisset; P. B. Blakie Self-bound dipolar droplet: A localized matter wave in free space, Phys. Rev. A, Volume 94 (2016), 021602 | DOI

[53] D. T. Son; M. Stephanov; H.-U. Yee The phase diagram of ultra quantum liquids, J. Statist. Mech.: Theory Exp. (2021) no. 1, 013105 | Zbl

[54] Y. Sekino; Y. Nishida Quantum droplet of one-dimensional bosons with a three-body attraction, Phys. Rev. A, Volume 97 (2018), 011602 | DOI

[55] D. T. Son; M. Stephanov; H.-U. Yee Fate of multiparticle resonances: From Q-balls to 3 He droplets, Phys. Rev. A, Volume 106 (2022), L050801

[56] S. Chandrasekhar; E. Fermi Problems of gravitational stability in the presence of a magnetic field, Astrophys. J., Volume 118 (1953), pp. 116-141 | DOI

[57] T. D. Lee; K. Huang; C. N. Yang Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties, Phys. Rev., Volume 106 (1957), pp. 1135-1145 | DOI | Zbl

[58] A. R. P. Lima; A. Pelster Quantum fluctuations in dipolar Bose gases, Phys. Rev. A, Volume 84 (2011), 041604

[59] M. D. Schwartz Quantum Field Theory and the Standard Model, Cambridge University Press, Cambridge, 2014

[60] M. Lüscher Volume dependence of the energy spectrum in massive quantum field theories, Commun. Math. Phys., Volume 105 (1986), pp. 153-188 | DOI

[61] R. Bombín; V. Cikojević; F. Mazzanti; J. Boronat Quantum-Monte-Carlo–based functional for dysprosium dipolar systems, Phys. Rev. A, Volume 109 (2024), 033312 | DOI

[62] L. Santos; G. V. Shlyapnikov; M. Lewenstein Roton-maxon spectrum and stability of trapped dipolar Bose–Einstein condensates, Phys. Rev. Lett., Volume 90 (2003), 250403 | DOI

[63] D. H. J. O’Dell; S. Giovanazzi; G. Kurizki Rotons in gaseous Bose–Einstein condensates irradiated by a laser, Phys. Rev. Lett., Volume 90 (2003), 110402

[64] U. R. Fischer Stability of quasi-two-dimensional Bose–Einstein condensates with dominant dipole-dipole interactions, Phys. Rev. A, Volume 73 (2006), 031602 | DOI

[65] D. Petter; G. Natale; R. M. W. van Bijnen; A. Patscheider; M. J. Mark; L. Chomaz; F. Ferlaino Probing the roton excitation spectrum of a stable dipolar Bose gas, Phys. Rev. Lett., Volume 122 (2019), 183401 | DOI

[66] P. B. Blakie; D. Baillie; R. N. Bisset Roton spectroscopy in a harmonically trapped dipolar Bose–Einstein condensate, Phys. Rev. A, Volume 86 (2012), 021604 | DOI

[67] J. Hertkorn; J.-N. Schmidt; F. Böttcher et al. Density fluctuations across the superfluid-supersolid phase transition in a dipolar quantum gas, Phys. Rev. X, Volume 11 (2021), 011037

[68] A. J. Leggett Can a Solid Be “Superfluid”?, Phys. Rev. Lett., Volume 25 (1970), pp. 1543-1546 | DOI

[69] D. M. Ceperley; B. Bernu Ring exchanges and the supersolid phase of 4 He, Phys. Rev. Lett., Volume 93 (2004), 155303 | DOI

[70] M. Boninsegni; A. B. Kuklov; L. Pollet; N. V. Prokof’ev; B. V. Svistunov; M. Troyer Fate of vacancy-induced supersolidity in 4 He, Phys. Rev. Lett., Volume 97 (2006), 080401 | DOI

[71] M. Boninsegni; N. V. Prokof’ev Colloquium: Supersolids: What and where are they?, Rev. Mod. Phys., Volume 84 (2012), pp. 759-776 | DOI

[72] G. Chauveau; C. Maury; F. Rabec et al. Superfluid fraction in an interacting spatially modulated Bose–Einstein condensate, Phys. Rev. Lett., Volume 130 (2023), 226003 | DOI

[73] N. Prokof’ev; B. Svistunov Supersolid state of matter, Phys. Rev. Lett., Volume 94 (2005), 155302 | DOI

[74] L. Landau Zur Theorie der Phasenumwandlungen II, Phys. Z. Sowjetunion, Volume 11 (1937), pp. 26-35

[75] S. Alexander; J. McTague Should all crystals be bcc? Landau theory of solidification and crystal nucleation, Phys. Rev. Lett., Volume 41 (1978) no. 10, pp. 702-705 | DOI

[76] J.-P. Hansen; L. Verlet Phase transitions of the Lennard-Jones system, Phys. Rev., Volume 184 (1969), pp. 151-161 | DOI

[77] E. P. Gross Classical theory of boson wave fields, Ann. Phys., Volume 4 (1958), pp. 57-74 | DOI | Zbl

[78] Y. Pomeau; S. Rica Dynamics of a model of a supersolid, Phys. Rev. Lett., Volume 72 (1994) no. 15, pp. 2426-2429 | DOI

[79] C. Josserand; Y. Pomeau; S. Rica Coexistence of ordinary elasticity and superfluidity in a model of a defect-free supersolid, Phys. Rev. Lett., Volume 98 (2007), 195301 | DOI

[80] L. Pitaevskii; S. Stringari Bose–Einstein Condensation and Superfluidity, Oxford University Press, Oxford, 2016 | DOI

[81] S. Brazovskii Phase transition of an isotropic system to a nonuniform state, Sov. Phys. JETP, Volume 41 (1975), pp. 85-89

[82] S. Brazovskii; I. Dzyaloshinskii; A. Muratov Theory of weak crystallization, Sov. Phys. JETP, Volume 66 (1987), pp. 625-633

[83] J. Hofmann; W. Zwerger Deep inelastic scattering on ultracold gases, Phys. Rev. X, Volume 7 (2017), 011022

[84] D. T. Son; M. Wingate General coordinate invariance and conformal invariance in nonrelativistic physics: Unitary Fermi gas, Ann. Phys. (NY), Volume 321 (2006), pp. 197-224 | DOI | Zbl

Cité par Sources :

Commentaires - Politique