[Réflexions sur les fluides quantiques dipolaires]
Nous donnons une description thermodynamique des gaz froids en interaction dipolaire qui tient compte de la longue portée de ces interactions et de leur absence d’invariance par rotation. Elle fait intervenir un champ thermodynamique supplémentaire conjugué à l’extension linéaire du gaz selon la direction des dipôles. La pression uniaxiale associée se manifeste par un écart à la relation de Gibbs–Duhem dans le profil de densité du gaz piégé. Elle doit s’annuler dans les gouttelettes (des états liés du système), une condition qui détermine la dépendance observée du rapport d’aspect avec le nombre de particules. Une généralisation tensorielle du théorème du viriel et un certain nombre d’autres relations thermodynamiques exactes sont obtenues. Enfin, en étendant un modèle dû à Nozières, on aboutit à un critère simple pour la transition de solidification vers une onde de densité de masse superfluide.
We present a thermodynamic description of ultracold gases with dipolar interactions which properly accounts for the long-range nature and broken rotation invariance of the interactions. It involves an additional thermodynamic field conjugate to the linear extension of the gas along the direction of the dipoles. The associated uniaxial pressure shows up as a deviation from the Gibbs–Duhem relation in the density profile of a trapped gas. It has to vanish in self-bound droplets, a condition which determines the observed dependence of the aspect ratio on particle number. A tensorial generalization of the virial theorem and a number of further exact thermodynamic relations are derived. Finally, extending a model due to Nozières, a simple criterion for the freezing transition to a superfluid mass density wave is given.
Accepté le :
Publié le :
Mots-clés : Atomes froids, Fluides dipolaires, Supersolides, Limite thermodynamique, Interactions à longue portée
Wilhelm Zwerger 1
@article{CRPHYS_2024__25_G1_389_0, author = {Wilhelm Zwerger}, title = {Reflections on dipolar quantum fluids}, journal = {Comptes Rendus. Physique}, pages = {389--413}, publisher = {Acad\'emie des sciences, Paris}, volume = {25}, year = {2024}, doi = {10.5802/crphys.222}, language = {en}, }
Wilhelm Zwerger. Reflections on dipolar quantum fluids. Comptes Rendus. Physique, Volume 25 (2024), pp. 389-413. doi : 10.5802/crphys.222. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.222/
[1] Bose–Einstein condensation of chromium, Phys. Rev. Lett., Volume 94 (2005), 160401 | DOI
[2] Observation of quantum droplets in a strongly dipolar Bose gas, Phys. Rev. Lett., Volume 116 (2016), 215301 | DOI
[3] Transient supersolid properties in an array of dipolar quantum droplets, Phys. Rev. X, Volume 9 (2019), 011051
[4] et al. Observation of a dipolar quantum gas with metastable supersolid properties, Phys. Rev. Lett., Volume 122 (2019), 130405 | DOI
[5] et al. Long-lived and transient supersolid behaviors in dipolar quantum gases, Phys. Rev. X, Volume 9 (2019), 021012
[6] Dipolar physics: a review of experiments with magnetic quantum gases, Rep. Prog. Phys., Volume 86 (2023), 026401 | DOI
[7] Basic concepts and some current directions in ultracold gases, Lectures at the Collège de France, 2021 https://pro.college-de-france.fr/jean.dalibard/CdF/2021
[8] Magnetic interactions between cold atoms: Quantum droplets and supersolid states, Lectures at the Collège de France, 2024 https://pro.college-de-france.fr/jean.dalibard/CdF/2024
[9] Theory of Simple Liquids, Elsevier, Academic Press, Amsterdam, 2006
[10] Principles of Condensed Matter Physics, Cambridge University Press, Cambridge, 1995 | DOI
[11] Is the roton in superfluid helium 4 the ghost of a Bragg spot?, J. Low Temp. Phys., Volume 137 (2004), pp. 45-67 | DOI
[12] Differential scattering and rethermalization in ultracold dipolar gases, Phys. Rev. A, Volume 89 (2014), 022702
[13] Quasi-universal dipolar scattering in cold and ultracold gases, New J. Phys., Volume 11 (2009), 055039
[14] Existence of minimizers in generalized Gross–Pitaevskii theory with the Lee–Huang–Yang correction, preprint, 2019 | arXiv
[15] Energetics of a strongly correlated Fermi gas, Ann. Phys., Volume 323 (2008), pp. 2952-2970 | DOI
[16] Universal relations for identical Bosons from three-body physics, Phys. Rev. Lett., Volume 106 (2011), 153005 | DOI
[17] Classical statistical mechanics of a system af particles, Helvetica Phys. Acta, Volume 36 (1963), pp. 183-197 | Zbl
[18] The free energy of a macroscopic system, Arch. Rat. Mech. Anal., Volume 17 (1964), pp. 377-410 | DOI
[19] Free energy of interacting magnetic dipoles, Phys. Rev., Volume 176 (1968), pp. 655-659 | DOI
[20] Correlation inequalities and the thermodynamic limit for classical and quantum continuous systems, Comm. Math. Phys., Volume 59 (1978), pp. 235-266 | DOI
[21] Thermodynamic limit for dipolar media, J. Stat. Phys., Volume 93 (1998), pp. 109-141 | DOI | Zbl
[22] Classical Electrodynamics, John Wiley, New York, 1999
[23] Electrodynamics of Continuous Media, Pergamon Press, New York, 1984
[24] Hyperfine splitting in the ground state of hydrogen, Am. J. Phys., Volume 50 (1982), pp. 698-703 | DOI
[25] Trapped condensates of atoms with dipole interactions, Phys. Rev. A, Volume 63 (2001), 053607
[26] Ballistic expansion of a dipolar condensate, J. Opt. B: Quantum Semiclass. Opt., Volume 5 (2003), p. S208-S211
[27] Exact solution of the Thomas–Fermi equation for a trapped Bose–Einstein condensate with dipole–dipole interactions, Phys. Rev. A, Volume 71 (2005), 033618 | DOI
[28] Exact solution of the mean spherical model for fluids of hard spheres with permanent electric dipole moments, J. Chem. Phys., Volume 55 (1971), pp. 4291-4298 | DOI
[29] Anisotropic excitation spectrum of a dipolar quantum Bose gas, Phys. Rev. Lett., Volume 109 (2012), 155302 | DOI
[30] Theory of many-particle systems. I, Phys. Rev., Volume 115 (1959), pp. 1342-1373 | DOI | Zbl
[31] General relations for quantum gases in two and three dimensions. II. Bosons and mixtures, Phys. Rev. A, Volume 86 (2012), 053633
[32] Obtaining the phase diagram and thermodynamic quantities of bulk systems from the densities of trapped gases, Nat. Phys., Volume 6 (2010), pp. 131-134
[33] Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids, Phys. Rev. A, Volume 6 (1972), pp. 2401-2420 | DOI
[34] Quantum theory of defects in crystals, Sov. Phys. JETP, Volume 29 (1969), pp. 1107-1113
[35] Hydrodynamics of a superfluid smectic, J. Statist. Mech.: Theory Exp. (2021) no. 3, 033104
[36] Observation of supersolid sound modes in a driven quantum gas, preprint, 2024 (University of Heidelberg)
[37] Virial theorems for trapped cold atoms, Phys. Rev. A, Volume 78 (2008), 025601 | DOI
[38] Tensor virial equations, Phys. Rev., Volume 96 (1954), pp. 1686-1689 | DOI | Zbl
[39] Nonrelativistic conformal field theories, Phys. Rev. D, Volume 76 (2007), 086004
[40] Stabilization of a purely dipolar quantum gas against collapse, Nat. Phys., Volume 4 (2008), pp. 218-222 | DOI
[41] Universal relations for dipolar quantum gases, Phys. Rev. Res., Volume 3 (2021), 013088 | DOI
[42] Collective excitations of self-bound droplets of a dipolar quantum fluid, Phys. Rev. Lett., Volume 119 (2017), 255302 | DOI
[43] Stars and statistical physics: A teaching experience, Am. J. Phys., Volume 67 (1999), pp. 1189-1206 | DOI
[44] Quantum Many-Particle Systems, Advanced Book Classics, Westview Press, Boulder, CO, 1998
[45] Statistical Field Theory, Academic Press, Springer, New York, 1991
[46] Quantum Field Theory in a Nutshell, Princeton University Press, Princeton, NJ, 2010
[47] Quantum-unbinding near a zero temperature liquid–gas transition, J. Statist. Mech.: Theory Exp. (2019) no. 10, 103104 | Zbl
[48] Three-boson problem at low energy and implications for dilute Bose–Einstein condensates, Phys. Rev. A, Volume 78 (2008), 013636
[49] Scattering hypervolume for ultracold bosons from weak to strong interactions, Phys. Rev. A, Volume 100 (2019), 050702
[50] van der Waals Universality near a quantum tricritical point, Phys. Rev. Lett., Volume 124 (2020), 143401
[51] Three-body scattering hypervolumes of particles with short-range interactions, preprint, 2017 | arXiv
[52] Self-bound dipolar droplet: A localized matter wave in free space, Phys. Rev. A, Volume 94 (2016), 021602 | DOI
[53] The phase diagram of ultra quantum liquids, J. Statist. Mech.: Theory Exp. (2021) no. 1, 013105 | Zbl
[54] Quantum droplet of one-dimensional bosons with a three-body attraction, Phys. Rev. A, Volume 97 (2018), 011602 | DOI
[55] Fate of multiparticle resonances: From Q-balls to He droplets, Phys. Rev. A, Volume 106 (2022), L050801
[56] Problems of gravitational stability in the presence of a magnetic field, Astrophys. J., Volume 118 (1953), pp. 116-141 | DOI
[57] Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties, Phys. Rev., Volume 106 (1957), pp. 1135-1145 | DOI | Zbl
[58] Quantum fluctuations in dipolar Bose gases, Phys. Rev. A, Volume 84 (2011), 041604
[59] Quantum Field Theory and the Standard Model, Cambridge University Press, Cambridge, 2014
[60] Volume dependence of the energy spectrum in massive quantum field theories, Commun. Math. Phys., Volume 105 (1986), pp. 153-188 | DOI
[61] Quantum-Monte-Carlo–based functional for dysprosium dipolar systems, Phys. Rev. A, Volume 109 (2024), 033312 | DOI
[62] Roton-maxon spectrum and stability of trapped dipolar Bose–Einstein condensates, Phys. Rev. Lett., Volume 90 (2003), 250403 | DOI
[63] Rotons in gaseous Bose–Einstein condensates irradiated by a laser, Phys. Rev. Lett., Volume 90 (2003), 110402
[64] Stability of quasi-two-dimensional Bose–Einstein condensates with dominant dipole-dipole interactions, Phys. Rev. A, Volume 73 (2006), 031602 | DOI
[65] Probing the roton excitation spectrum of a stable dipolar Bose gas, Phys. Rev. Lett., Volume 122 (2019), 183401 | DOI
[66] Roton spectroscopy in a harmonically trapped dipolar Bose–Einstein condensate, Phys. Rev. A, Volume 86 (2012), 021604 | DOI
[67] et al. Density fluctuations across the superfluid-supersolid phase transition in a dipolar quantum gas, Phys. Rev. X, Volume 11 (2021), 011037
[68] Can a Solid Be “Superfluid”?, Phys. Rev. Lett., Volume 25 (1970), pp. 1543-1546 | DOI
[69] Ring exchanges and the supersolid phase of He, Phys. Rev. Lett., Volume 93 (2004), 155303 | DOI
[70] Fate of vacancy-induced supersolidity in He, Phys. Rev. Lett., Volume 97 (2006), 080401 | DOI
[71] Colloquium: Supersolids: What and where are they?, Rev. Mod. Phys., Volume 84 (2012), pp. 759-776 | DOI
[72] et al. Superfluid fraction in an interacting spatially modulated Bose–Einstein condensate, Phys. Rev. Lett., Volume 130 (2023), 226003 | DOI
[73] Supersolid state of matter, Phys. Rev. Lett., Volume 94 (2005), 155302 | DOI
[74] Zur Theorie der Phasenumwandlungen II, Phys. Z. Sowjetunion, Volume 11 (1937), pp. 26-35
[75] Should all crystals be bcc? Landau theory of solidification and crystal nucleation, Phys. Rev. Lett., Volume 41 (1978) no. 10, pp. 702-705 | DOI
[76] Phase transitions of the Lennard-Jones system, Phys. Rev., Volume 184 (1969), pp. 151-161 | DOI
[77] Classical theory of boson wave fields, Ann. Phys., Volume 4 (1958), pp. 57-74 | DOI | Zbl
[78] Dynamics of a model of a supersolid, Phys. Rev. Lett., Volume 72 (1994) no. 15, pp. 2426-2429 | DOI
[79] Coexistence of ordinary elasticity and superfluidity in a model of a defect-free supersolid, Phys. Rev. Lett., Volume 98 (2007), 195301 | DOI
[80] Bose–Einstein Condensation and Superfluidity, Oxford University Press, Oxford, 2016 | DOI
[81] Phase transition of an isotropic system to a nonuniform state, Sov. Phys. JETP, Volume 41 (1975), pp. 85-89
[82] Theory of weak crystallization, Sov. Phys. JETP, Volume 66 (1987), pp. 625-633
[83] Deep inelastic scattering on ultracold gases, Phys. Rev. X, Volume 7 (2017), 011022
[84] General coordinate invariance and conformal invariance in nonrelativistic physics: Unitary Fermi gas, Ann. Phys. (NY), Volume 321 (2006), pp. 197-224 | DOI | Zbl
Cité par Sources :
Commentaires - Politique