Comptes Rendus
Article de synthèse
Fluid dynamics of planetary differentiation
[La différenciation des planètes telluriques vue par la mécanique des fluides]
Comptes Rendus. Physique, Online first (2024), pp. 1-45.

La structure des planètes terrestres — un noyau métallique riche en fer entouré d’un manteau silicaté — a été établie pendant leur accrétion, lorsque la fusion généralisée a permis la séparation des phases métalliques et silicatées. Le transfert d’éléments chimiques et de chaleur entre métal et silicates qui s’est produit pendant cette période est déterminant pour la composition et la température initiale du noyau et du manteau, et a des implications importantes pour l’évolution et la dynamique à long terme des planètes. Après avoir résumé les principales contraintes observationnelles sur la différenciation noyau-manteau, l’article suit la séquence des processus qui ont conduit à la formation des noyaux planétaires, en se concentrant sur les contributions de l’approche de dynamique des fluides expérimentale à notre compréhension de ces processus, et en discutant de la pertinence et des limites de cette approche. Nous nous concentrons d’abord sur la dynamique des impacts planétaires, en utilisant des expériences de laboratoire pour illustrer et quantifier les processus d’impact et de cratérisation, et la dispersion de la phase métallique qui en résulte. Nous examinons ensuite l’écoulement diphasique qui suit un impact, lorsque le noyau d’un impacteur chute dans un océan de magma. Nous introduisons le modèle de thermique turbulent, qui constitue selon nous un bon modèle de référence pour l’écoulement post-impact. Nous discutons ensuite des facteurs additionnels — immiscibilité et fragmentation, inertie héritée de l’impact, force de Coriolis, sédimentation — pouvant affecter les prédictions de ce modèle. Enfin, la dernière partie de l’article est consacrée à la migration de la phase métallique à travers une partie solide du manteau.

The basic structure of the terrestrial planets—an iron-rich metallic core surrounded by a silicate mantle—was established during their accretion, when widespread melting allowed the metal and silicate phases to separate. The transfer of chemical elements and heat between the metal and silicate that occurred during this period is critical for the composition and initial temperature of the core and mantle, and has important implications for the long-term evolution and dynamics of the planets. After having summarised the main observational constraints on core-mantle differentiation, the article follows the sequence of processes that led to the formation of planetary cores, focusing on the contributions of laboratory fluid dynamics experiments to our understanding of these processes, and discussing the relevance and limitations of this approach to this problem. We first focus on the dynamics of planetary impacts, using laboratory experiments to illustrate and quantify the impact and cratering processes and the resulting metal phase dispersion. We then consider the two-phase flow that follows an impact, when a molten impactor core falls by buoyancy in a magma ocean. The model of miscible turbulent thermal, which we argue is a good reference model for the post-impact flow, is presented. We then discuss how additional factors—immiscibility and fragmentation, inertia inherited from the impact, Coriolis force, sedimentation—affect the predictions of this model, and discuss the extent of chemical equilibration. Finally, a last part of the article is devoted to the migration of the metal phase through a solid part of the mantle.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/crphys.227
Keywords: Early earth, Core formation, Fluid dynamics experiments
Mots-clés : Terre primitive, formation du noyau, dynamique des fluides expérimentale

Renaud Deguen 1 ; Ludovic Huguet 1 ; Maylis Landeau 2 ; Victor Lherm 3 ; Augustin Maller 2 ; Jean-Baptiste Wacheul 4

1 ISTerre, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, 38000 Grenoble, France
2 Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, 75005 Paris, France
3 Université Paris-Saclay, CNRS, FAST, 91405, Orsay, France
4 Univ Lyon, ENSL, UCBL, UJM, CNRS, LGL-TPE, F-69007 Lyon, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2024__25_S3_A22_0,
     author = {Renaud Deguen and Ludovic Huguet and Maylis Landeau and Victor Lherm and Augustin Maller and Jean-Baptiste Wacheul},
     title = {Fluid dynamics of planetary differentiation},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2024},
     doi = {10.5802/crphys.227},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Renaud Deguen
AU  - Ludovic Huguet
AU  - Maylis Landeau
AU  - Victor Lherm
AU  - Augustin Maller
AU  - Jean-Baptiste Wacheul
TI  - Fluid dynamics of planetary differentiation
JO  - Comptes Rendus. Physique
PY  - 2024
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.227
LA  - en
ID  - CRPHYS_2024__25_S3_A22_0
ER  - 
%0 Journal Article
%A Renaud Deguen
%A Ludovic Huguet
%A Maylis Landeau
%A Victor Lherm
%A Augustin Maller
%A Jean-Baptiste Wacheul
%T Fluid dynamics of planetary differentiation
%J Comptes Rendus. Physique
%D 2024
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.227
%G en
%F CRPHYS_2024__25_S3_A22_0
Renaud Deguen; Ludovic Huguet; Maylis Landeau; Victor Lherm; Augustin Maller; Jean-Baptiste Wacheul. Fluid dynamics of planetary differentiation. Comptes Rendus. Physique, Online first (2024), pp. 1-45. doi : 10.5802/crphys.227.

[1] D. J. Stevenson Evolution of the Earth: An introduction and overview, Treatise on Geophysics (G. Schubert, ed.), Volume 9, Elsevier, Oxford, 2015, pp. 1-9 (ISBN 978-0-444-53803-1) | DOI

[2] A. Morbidelli; W. F. Bottke; D. Nesvornỳ; H. F. Levison Asteroids were born big, Icarus, Volume 204 (2009) no. 2, pp. 558-573 | DOI

[3] J. I. Lunine; D. P. O’brien; S. N. Raymond; A. Morbidelli; T. Quinn; A. L. Graps Dynamical models of terrestrial planet formation, Adv. Sci. Lett., Volume 4 (2011) no. 2, pp. 325-338 | DOI

[4] D. C. Rubie; F. Nimmo; H. J. Melosh Formation of the Earth’s core, Treatise on Geophysics (G. Schubert, ed.), Volume 9, Elsevier, Oxford, 2015, pp. 43-79 (ISBN 978-0-444-53803-1) | DOI

[5] B. Wood; M. Walter; J. Wade Accretion of the Earth and segregation of its core, Nature, Volume 441 (2006) no. 7095, pp. 825-833 | DOI

[6] Q. Yin; S. B. Jacobsen; K. Yamashita; J. Blichert-Toft; P. Telouk; F. Albarede A short timescale for terrestrial planet formation from Hf/W chronometry of meteorites, Nature, Volume 418 (2002) no. 6901, pp. 949-952 | DOI

[7] T. Kleine; C. Münker; K. Mezger; H. Palme Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry, Nature, Volume 418 (2002), pp. 952-955 | DOI

[8] J. F. Rudge; T. Kleine; B. Bourdon Broad bounds on Earth’s accretion and core formation constrained by geochemical models, Nat. Geosci., Volume 3 (2010), pp. 439-443 | DOI

[9] A. Corgne; S. Keshav; B. J. Wood; W. F. McDonough; Y. Fei Metal silicate partitioning and constraints on core composition and oxygen fugacity during Earth accretion, Geochim. Cosmochim. Acta, Volume 72 (2008), pp. 574-589 | DOI

[10] J. Siebert; A. Corgne; F. J. Ryerson Systematics of metal–silicate partitioning for many siderophile elements applied to Earth’s core formation, Geochim. Cosmochim. Acta, Volume 75 (2011) no. 6, pp. 1451-1489 | DOI

[11] C. K. Gessmann; B. J. Wood Potassium in the Earth’s core?, Earth Planet. Sci. Lett., Volume 200 (2002), pp. 63-78 | DOI

[12] A. Corgne; S. Keshav; Y. Fei; W. F. McDonough How much potassium is in the Earth’s core? New insights from partitioning experiments, Earth Planet. Sci. Lett., Volume 256 (2007), pp. 567-576 | DOI

[13] M. A. Bouhifd; L. Gautron; N. Bolfan-Casanova; V. Malavergne; T. Hammouda; D. Andrault; A. P. Jephcoat Potassium partitioning into molten iron alloys at high-pressure: Implications for Earth’s core, Phys. Earth Planet. Inter., Volume 160 (2007), pp. 22-33 | DOI

[14] J. G. O’Rourke; D. J. Stevenson Powering Earth’s dynamo with magnesium precipitation from the core, Nature, Volume 529 (2016) no. 7586, pp. 387-389 | DOI

[15] J. Badro; J. Siebert; F. Nimmo An early geodynamo driven by exsolution of mantle components from Earth’s core, Nature, Volume 536 (2016) no. 7616, pp. 326-328 | DOI

[16] J. Siebert; J. Badro; D. Antonangeli; F. J. Ryerson Metal–silicate partitioning of Ni and Co in a deep magma ocean, Earth Planet. Sci. Lett., Volume 321 (2012), pp. 189-197 | DOI

[17] J. Badro; J. P. Brodholt; H. Piet; J. Siebert; F. J. Ryerson Core formation and core composition from coupled geochemical and geophysical constraints, Proc. Natl. Acad. Sci., Volume 112 (2015) no. 40, pp. 12310-12314 | DOI

[18] R. A. Fischer; Y. Nakajima; A. J. Campbell et al. High pressure metal-silicate partitioning of Ni, Co, V, Cr, Si, and O, Geochim. Cosmochim. Acta, Volume 167 (2015), pp. 177-194 | DOI

[19] C. King; P. Olson Heat partitioning in metal-silicate plumes during Earth differentiation, Earth Planet. Sci. Lett., Volume 304 (2011) no. 3-4, pp. 577-586 | DOI

[20] V. Clesi; R. Deguen Linking the core heat content to Earth’s accretion history, Geochem. Geophys. Geosyst., Volume 24 (2023) no. 5, e2022GC010661 | DOI

[21] S. Labrosse; C. Jaupart Thermal evolution of the Earth: Secular changes and fluctuations of plate characteristics, Earth Planet. Sci. Lett., Volume 260 (2007), pp. 465-481 | DOI

[22] J.-P. Williams; F. Nimmo Thermal evolution of the Martian core: Implications for an early dynamo, Geology, Volume 32 (2004), pp. 97-100 | DOI

[23] J. Monteux; A. M. Jellinek; C. L. Johnson Why might planets and moons have early dynamos?, Earth Planet. Sci. Lett., Volume 310 (2011) no. 3, pp. 349-359 | DOI

[24] A. Halliday Mixing, volatile loss and compositional change during impact-driven accretion of the Earth, Nature, Volume 427 (2004) no. 6974, pp. 505-509 | DOI

[25] T. Kleine; K. Mezger; H. Palme; C. Münker The W isotope evolution of the bulk silicate Earth: Constraints on the timing and mechanisms of core formation and accretion, Earth Planet. Sci. Lett., Volume 228 (2004), pp. 109-123 | DOI

[26] F. Nimmo; D. P. O’Brien; T. Kleine Tungsten isotopic evolution during late-stage accretion: Constraints on Earth–Moon equilibration, Earth Planet. Sci. Lett., Volume 292 (2010) no. 3-4, pp. 363-370 | DOI

[27] A. N. Halliday; B. J. Wood The composition and major reservoirs of the earth around the time of the moon-forming giant impact, Treatise on Geophysics (G. Schubert, ed.), Volume 9, Elsevier, Oxford, 2015, pp. 11-42 (ISBN 978-0-444-53803-1) | DOI

[28] V. R. Murthy Early differentiation of the earth and the problem of mantle siderophile elements: A new approach, Science, Volume 253 (1991) no. 5017, pp. 303-306 | DOI

[29] A. Ringwood Chemical evolution of the terrestrial planets, Geochim. Cosmochim. Acta, Volume 30 (1966) no. 1, pp. 41-104 | DOI

[30] J. Li; C. Agee Geochemistry of mantle–core differentiation at high pressure, Nature, Volume 381 (1996) no. 6584, pp. 686-689 | DOI

[31] N. Chabot; D. Draper; C. Agee Conditions of core formation in the Earth: Constraints from Nickel and Cobalt partitioning, Geochim. Cosmochim. Acta, Volume 69 (2005) no. 8, pp. 2141-2151 | DOI

[32] J. Siebert; J. Badro; D. Antonangeli; F. J. Ryerson Terrestrial accretion under oxidizing conditions, Science, Volume 339 (2013) no. 6124, pp. 1194-1197 | DOI

[33] J. Wade; B. J. Wood Core formation and the oxidation state of the Earth, Earth Planet. Sci. Lett., Volume 236 (2005), pp. 78-95 | DOI

[34] B. J. Wood Accretion and core formation: Constraints from metal–silicate partitioning, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., Volume 366 (2008) no. 1883, pp. 4339-4355 | DOI

[35] D. C. Rubie; D. J. Frost; U. Mann Heterogeneous accretion, composition and core–mantle differentiation of the Earth, Earth Planet. Sci. Lett., Volume 301 (2011) no. 1, pp. 31-42 | DOI

[36] D. C. Rubie; S. A. Jacobson; D. P. O’Brien; E. D. Young; J. de Vries; F. Nimmo; H. Palme; D. J. Frost Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water, Icarus, Volume 248 (2015), pp. 89-108 | DOI

[37] V. Lherm Dynamique du fractionnement thermique et chimique lors de la différenciation des planètes telluriques, PhD thesis, Université de Lyon (2021) https://theses.hal.science/tel-03377150

[38] D. J. Stevenson Models of the Earth’s core, Science, Volume 214 (1981) no. 4521, pp. 611-619 | DOI

[39] W. B. Tonks; H. J. Melosh Core formation by giant impacts, Icarus, Volume 100 (1992) no. 2, pp. 326-346 | DOI

[40] W. B. Tonks; H. J. Melosh Magma ocean formation due to giant impacts, J. Geophys. Res., Volume 98 (1993), pp. 5319-5333 | DOI

[41] J. T. Gu; R. A. Fischer; M. C. Brennan; M. S. Clement; S. A. Jacobson; N. A. Kaib; D. P. O’Brien; S. N. Raymond Comparisons of the core and mantle compositions of earth analogs from different terrestrial planet formation scenarios, Icarus, Volume 394 (2023), 115425 | DOI

[42] D. J. Stevenson Fluid dynamics of core formation, Origin of the Earth (H. E. Newsom; J. H. Jones, eds.), Oxford University Press, New York, 1990, pp. 231-249 | DOI

[43] S.-ichiro Karato; V. R. Murthy Core formation and chemical equilibrium in the Earth—I. Physical considerations, Phys. Earth Planet. Inter., Volume 100 (1997) no. 1-4, pp. 61-79 | DOI

[44] D. C. Rubie; H. J. Melsoh; J. E. Reid; C. Liebske; K. Righter Mechanisms of metal-silicate equilibration in the terrestrial magma ocean, Earth Planet. Sci. Lett., Volume 205 (2003) no. 3-4, pp. 239-255 | DOI

[45] H. Samuel; P. J. Tackley Dynamics of core formation and equilibration by negative diapirism, Geochem. Geophys. Geosyst., Volume 9 (2008) no. 6, Q06011 | DOI

[46] J. Monteux; Y. Ricard; N. Coltice; F. Dubuffet; M. Ulvrova A model of metal–silicate separation on growing planets, Earth Planet. Sci. Lett., Volume 287 (2009) no. 3-4, pp. 353-362 | DOI

[47] Y. Thibault; M. J. Walter The influence of pressure and temperature on the metal-silicate partition coefficients of nickel and cobalt in a model C1 chondrite and implications for metal segregation in a deep magma ocean, Geochim. Cosmochim. Acta, Volume 59 (1995) no. 5, pp. 991-1002 | DOI

[48] S. R. Taylor; M. D. Norman Accretion of differentiated planetesimals to the Earth, Origin of the Earth (H. E. Newsom; J. H. Jones, eds.), 1990, pp. 29-43 | DOI

[49] R. C. Greenwood; I. A. Franchi; A. Jambon; P. C. Buchanan Widespread magma oceans on asteroidal bodies in the early solar system, Nature, Volume 435 (2005) no. 7044, pp. 916-918 | DOI

[50] E. Villermaux Mixing versus stirring, Annu. Rev. Fluid Mech., Volume 51 (2019), pp. 245-273 | DOI

[51] E. Villermaux Fragmentation versus Cohesion, J. Fluid Mech., Volume 898 (2020), P1 | DOI

[52] S. N. Raymond; D. P. OBrien; A. Morbidelli; N. A. Kaib Building the terrestrial planets: Constrained accretion in the inner solar system, Icarus, Volume 203 (2009) no. 2, pp. 644-662 | DOI

[53] G. Morard; J. Siebert; D. Andrault; N. Guignot; G. Garbarino; F. Guyot; D. Antonangeli The Earth’s core composition from high pressure density measurements of liquid iron alloys, Earth Planet. Sci. Lett., Volume 373 (2013), pp. 169-178 | DOI

[54] F. J. Spera; M. S. Ghiorso; D. Nevins Structure, thermodynamic and transport properties of liquid MgSiO3: Comparison of molecular models and laboratory results, Geochim. Cosmochim. Acta, Volume 75 (2010), pp. 1272-1296 | DOI

[55] J. P. Poirier Transport properties of liquid metals and viscosity of the Earth’s core, Geophys. J. Int., Volume 92 (1988) no. 1, pp. 99-105 | DOI

[56] G. A. De Wijs; G. Kresse; L. Vovcadlo; D. Dobson; D. Alfe; M. J. Gillan; G. D. Price The viscosity of liquid iron at the physical conditions of the Earth’s core, Nature, Volume 392 (1998) no. 6678, pp. 805-807 | DOI

[57] B. B. Karki; L. P. Stixrude Viscosity of MgSiO3 liquid at Earths mantle conditions: Implications for an early magma ocean, Science, Volume 328 (2010) no. 5979, pp. 740-742 | DOI

[58] L. Xie; A. Yoneda; T. Katsura; D. Andrault; Y. Tange; Y. Higo Direct viscosity measurement of peridotite melt to lower-mantle conditions: A further support for a fractional magma-ocean solidification at the top of the lower mantle, Geophys. Res. Lett., Volume 48 (2021) no. 19, e2021GL094507 | DOI

[59] T. Scott; D. L. Kohlstedt The effect of large melt fraction on the deformation behavior of peridotite, Earth Planet. Sci. Lett., Volume 246 (2006) no. 3-4, pp. 177-187 | DOI

[60] L. Hansen; D. L. Kohlstedt 2.18 constitutive equations, rheological behavior, and viscosity of rocks, Treatise Geophys., Volume 2 (2015), pp. 441-472

[61] Q. Williams The thermal conductivity of Earth’s core: A key geophysical parameter’s constraints and uncertainties, Annu. Rev. Earth Planet. Sci., Volume 46 (2018) no. 1, pp. 47-66 | DOI

[62] H. Ni; H. Hui; G. Steinle-Neumann Transport properties of silicate melts, Rev. Geophys., Volume 53 (2015) no. 3, pp. 715-744 | DOI

[63] H. Terasaki; S. Urakawa; D. C. Rubie; K.-ichi Funakoshi; T. Sakamaki; Y. Shibazaki; S. Ozawa; E. Ohtani Interfacial tension of Fe–Si liquid at high pressure: Implications for liquid Fe-alloy droplet size in magma oceans, Phys. Earth Planet. Inter., Volume 202 (2012), pp. 1-6 | DOI

[64] V. Solomatov Magma oceans and primordial mantle differentiation, Treatise on Geophysics (G. Schubert, ed.), Volume 9, Elsevier, Oxford, 2015, pp. 81-104 (ISBN 978-0-444-53803-1) | DOI

[65] T. W. Dahl; D. J. Stevenson Turbulent mixing of metal and silicate during planet accretion — And interpretation of the Hf–W chronometer, Earth Planet. Sci. Lett., Volume 295 (2010), pp. 177-186 | DOI

[66] R. Deguen; P. Olson; P. Cardin Experiments on turbulent metal-silicate mixing in a magma ocean, Earth Planet. Sci. Lett., Volume 310 (2011), pp. 303-313 | DOI

[67] W. Benz; W. L. Slattery; A. G. W. Cameron Collisional stripping of Mercury’s mantle, Icarus, Volume 74 (1988), pp. 516-528 | DOI

[68] R. M. Canup; C. B. Agnor Accretion of the terrestrial planets and the Earth–Moon system, Origin of the Earth and Moon (R. M. Canup; K. Righter, eds.), University of Arizona Press, Tucson, AZ, 2000, pp. 113-129 | DOI

[69] M. Ćuk; S. T. Stewart Making the Moon from a fast-spinning Earth: A giant impact followed by resonant despinning, Science, Volume 338 (2012) no. 6110, pp. 1047-1052 | DOI

[70] M. Nakajima; D. J. Stevenson Melting and mixing states of the Earth’s mantle after the Moon-forming impact, Earth Planet. Sci. Lett., Volume 427 (2015), pp. 286-295 | DOI

[71] J. A. Kegerreis; S. Ruiz-Bonilla; V. R. Eke; R. J. Massey; T. D. Sandnes; L. FA. Teodoro Immediate origin of the moon as a post-impact satellite, Astrophys. J. Lett., Volume 937 (2022) no. 2, L40 | DOI

[72] J. D. Kendall; H. J. Melosh Differentiated planetesimal impacts into a terrestrial magma ocean: fate of the iron core, Earth Planet. Sci. Lett., Volume 448 (2016), pp. 24-33 | DOI

[73] H. Ichikawa; S. Labrosse; K. Kurita Direct numerical simulation of an iron rain in the magma ocean, J. Geophys. Res., Volume 115 (2010), B01404 | DOI

[74] H. Samuel A re-evaluation of metal diapir breakup and equilibration in terrestrial magma oceans, Earth Planet. Sci. Lett., Volume 313 (2012), pp. 105-114 | DOI

[75] R. Deguen; M. Landeau; P. Olson Turbulent metal-silicate mixing, fragmentation, and equilibration in magma oceans, Earth Planet. Sci. Lett., Volume 391 (2014), pp. 274-287 | DOI

[76] M. Landeau; R. Deguen; D. Phillips; J. A. Neufeld; V. Lherm; S. B. Dalziel Metal-silicate mixing by large Earth-forming impacts, Earth Planet. Sci. Lett., Volume 564 (2021), 116888 | DOI

[77] V. Lherm; R. Deguen; T. Alboussière; M. Landeau Rayleigh–Taylor instability in impact cratering experiments, J. Fluid Mech., Volume 937 (2022), A20 | DOI

[78] Q. Kriaa; M. Landeau; M. Le Bars Influence of planetary rotation on metal-silicate mixing and equilibration in a magma ocean, Phys. Earth Planet. Inter., Volume 352 (2024), 107168 | DOI

[79] H. J. Melosh Impact Cratering: A Geologic Process (H. J. Melosh, ed.), Oxford Monographs on Geology and Geophysics, No. 11, Oxford University Press, New York, 1989, p. 253

[80] K. A. Holsapple The scaling of impact processes in planetary sciences, Annu. Rev. Earth Planet. Sci., Volume 21 (1993), pp. 333-373 | DOI

[81] E. Pierazzo; N. Artemieva; E. Asphaug et al. Validation of numerical codes for impact and explosion cratering: Impacts on strengthless and metal targets, Meteorit. Planet. Sci., Volume 43 (2008) no. 12, pp. 1917-1938 | DOI

[82] H. Nagaoka; S. Takasawa; A. M. Nakamura; K. Sangen Degree of impactor fragmentation under collision with a regolith surface–Laboratory impact experiments of rock projectiles, Meteorit. Planet. Sci., Volume 49 (2014) no. 1, pp. 69-79 | DOI

[83] O. G. Engel Crater depth in fluid impacts, J. Appl. Phys., Volume 37 (1966) no. 4, pp. 1798-1808 | DOI

[84] V. Lherm; R. Deguen Velocity field and cavity dynamics in drop impact experiments, J. Fluid Mech., Volume 962 (2023), A21 | DOI

[85] H. Lhuissier; C. Sun; D. Lhose Drop fragmentation at impact onto a bath of an immiscible liquid, Phys. Rev. Lett., Volume 110 (2013) no. 26, 264503 | DOI

[86] A. Maller; M. Landeau; L. Allibert; S. Charnoz Condition for metal fragmentation during Earth-forming collisions, Phys. Earth Planet. Inter., Volume 352 (2024), 107199 | DOI

[87] J. B. Wacheul; M. Le Bars; J. Monteux; J. M. Aurnou Laboratory experiments on the breakup of liquid metal diapirs, Earth Planet. Sci. Lett., Volume 403 (2014), pp. 236-245 | DOI

[88] J.-B. Wacheul; M. Le Bars Experiments on fragmentation and thermo-chemical exchanges during planetary core formation, Phys. Earth Planet. Inter., Volume 276 (2018), pp. 134-144 | DOI

[89] A. M. Worthington On impact with a liquid surface, Proc. R. Soc. Lond., Volume 34 (1883) no. 220-223, pp. 217-230 | DOI

[90] A. M. Worthington; R. S. Cole V. Impact with a liquid surface, studied by the aid of instantaneous photography, Philos. Trans. R. Soc. Lond. Ser. A-Contain. Pap. Math. Phys. Character., Volume 189 (1897), pp. 137-148 | DOI

[91] A. M. Worthington; R. S. Cole IV. Impact with a liquid surface studied by the aid of instantaneous photography. Paper II, Philos. Trans. R. Soc. Lond. Ser. A-Contain. Pap. Math. Phys. Character., Volume 194 (1900) no. 252-261, pp. 175-199 | DOI

[92] O. G. Engel Initial pressure, initial flow velocity, and the time dependence of crater depth in fluid impacts, J. Appl. Phys., Volume 38 (1967) no. 10, pp. 3935-3940 | DOI

[93] A. Prosperetti; H. N. Oguz The impact of drops on liquid surfaces and the underwater noise of rain, Annu. Rev. Fluid Mech., Volume 25 (1993) no. 1, pp. 577-602 | DOI

[94] J.-L. Liow Splash formation by spherical drops, J. Fluid Mech., Volume 427 (2001), pp. 73-105 | DOI

[95] A. I. Fedorchenko; A.-B. Wang On some common features of drop impact on liquid surfaces, Phys. Fluids, Volume 16 (2004) no. 5, pp. 1349-1365 | DOI

[96] A. Bisighini; G. E. Cossali; C. Tropea; I. V. Roisman Crater evolution after the impact of a drop onto a semi-infinite liquid target, Phys. Rev. E, Volume 82 (2010) no. 3, 036319 | DOI

[97] B. Ray; G. Biswas; A. Sharma Regimes during liquid drop impact on a liquid pool, J. Fluid Mech., Volume 768 (2015), pp. 492-523 | DOI

[98] V. Lherm; R. Deguen; T. Alboussière; M. Landeau Rayleigh–Taylor instability in drop impact experiments, Phys. Rev. Fluids, Volume 6 (2021) no. 11, 110501 | DOI

[99] U. Jain; M. Jalaal; D. Lohse; D. van der Meer Deep pool water-impacts of viscous oil droplets, Soft Matter, Volume 15 (2019) no. 23, pp. 4629-4638 | DOI

[100] M. Hadj-Achour; N. Rimbert; M. Gradeck; R. Meignen Fragmentation of a liquid metal droplet falling in a water pool, Phys. Fluids, Volume 33 (2021) no. 10, 103315 | DOI

[101] M. V. Gielen; P. Sleutel; J. Benschop et al. Oblique drop impact onto a deep liquid pool, Phys. Rev. Fluids, Volume 2 (2017) no. 8, 083602 | DOI

[102] L. Allibert; M. Landeau; R. Röhlen; A. Maller; M. Nakajima; K. Wünnemann Planetary impacts: Scaling of crater depth from subsonic to supersonic conditions, J. Geophys. Res.: Planets, Volume 128 (2023) no. 8, e2023JE007823 | DOI

[103] R. E. Breidenthal Sonic eddy-a model for compressible turbulence, AIAA J., Volume 30 (1992) no. 1, pp. 101-104 | DOI

[104] J. B. Freund; S. K. Lele; P. Moin Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate, J. Fluid Mech., Volume 421 (2000), pp. 229-267 | DOI

[105] C. Pantano; S. Sarkar A study of compressibility effects in the high-speed turbulent shear layer using direct simulation, J. Fluid Mech., Volume 451 (2002) no. 1, pp. 329-371 | DOI

[106] G. L. Brown; A. Roshko On density effects and large structure in turbulent mixing layers, J. Fluid Mech., Volume 64 (1974), pp. 775-816 | DOI

[107] E. Pierazzo; H. J. Melosh Understanding oblique impacts from experiments, observations, and modeling, Annu. Rev. Earth Planet. Sci., Volume 28 (2000) no. 1, pp. 141-167 | DOI

[108] D. E. Gault; J. A. Wedekind Experimental studies of oblique impact, Lunar and Planetary Science Conference, 9th, Houston, Tex., March 13–17, 1978, Proceedings. Volume 3. (A79-39253 16-91) New York, Volume 9, Pergamon Press, Inc., 1978, pp. 3843-3875

[109] E. Pierazzo; H. J. Melosh Melt production in oblique impacts, Icarus, Volume 145 (2000) no. 1, pp. 252-261 | DOI

[110] G. Leneweit; R. Koehler; K. G. Roesner; G. Schäfer Regimes of drop morphology in oblique impact on deep fluids, J. Fluid Mech., Volume 543 (2005), pp. 303-331 | DOI

[111] T. Okawa; T. Shiraishi; T. Mori Effect of impingement angle on the outcome of single water drop impact onto a plane water surface, Exp. Fluids, Volume 44 (2008), pp. 331-339 | DOI

[112] J.-B. Wacheul; R. Deguen A laboratory model for oblique planetary impacts (in preparation)

[113] G. K. Batchelor Heat convection and buoyancy effects in fluids, Q. J. R. Met. Soc., Volume 80 (1954), pp. 339-358 | DOI

[114] B. R. Morton; G. Taylor; J. S. Turner Turbulent gravitational convection from maintained and instantaneous sources, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., Volume 234 (1956), pp. 1-23 | DOI

[115] R. S. Scorer Experiments on convection of isolated masses of buoyant fluid, J. Fluid Mech. Dig. Arch., Volume 2 (1957) no. 06, pp. 583-594 | DOI

[116] B. Woodward The motion in and around isolated thermals, Q. J. R. Meteorol. Soc., Volume 85 (1959) no. 364, pp. 144-151 | DOI

[117] J. S. Turner Buoyant plumes and thermals, Annu. Rev. Fluid Mech., Volume 1 (1969) no. 1, pp. 29-44 | DOI

[118] D. Lecoanet; N. Jeevanjee Entrainment in resolved, dry thermals, J. Atmosph. Sci., Volume 76 (2019) no. 12, pp. 3785-3801 | DOI

[119] R. Deguen; M. Lasbleis Fluid dynamics of Earth’s core: geodynamo, inner core dynamics, core formation, Fluid Mechanics of Planets and Stars (M. Le Bars; D. Lecoanet, eds.), Springer, 2020, pp. 129-212 | DOI

[120] D. Lecoanet; N. Jeevanjee Entrainment in resolved, dry thermals, J. Atmosph. Sci., Volume 76 (2019) no. 12, pp. 3785-3801 | DOI

[121] A. CH. Lai; B. Zhao; A. W.-K. Law; E. E. Adams A numerical and analytical study of the effect of aspect ratio on the behavior of a round thermal, Environ. Fluid Mech., Volume 15 (2015), pp. 85-108 | DOI

[122] H. Morrison; N. Jeevanjee; D. Lecoanet; J. M. Peters What controls the entrainment rate of dry buoyant thermals with varying initial aspect ratio?, J. Atmos. Sci., Volume 80 (2023) no. 11, pp. 2711-2728 | DOI

[123] B. Zhao; A. W. K. Law; A. C. H. Lai; E. E. Adams On the internal vorticity and density structures of miscible thermals, J. Fluid Mech., Volume 722 (2013), R5 | DOI

[124] M. Landeau; R. Deguen; P. Olson Experiments on the fragmentation of a buoyant liquid volume in another liquid, J. Fluid Mech., Volume 749 (2014), pp. 478-518 | DOI

[125] L. Huguet; V. Lherm; R. Deguen; T. Le Borgne; J. Heyman On the self-similarity of turbulent thermals, J. Fluid Mech. (in preparation)

[126] B. A. Ayotte; H. JS. Fernando The motion of a turbulent thermal in the presence of background rotation, J. Atmos. Sci., Volume 51 (1994) no. 13, pp. 1989-1994 | DOI

[127] K. R. Helfrich Thermals with background rotation and stratification, J. Fluid Mech., Volume 259 (1994), pp. 265-280 | DOI

[128] Q. Kriaa; E. Subra; B. Favier; M. Le Bars Effects of particle size and background rotation on the settling of particle clouds, Phys. Rev. Fluids, Volume 7 (2022) no. 12, 124302 | DOI

[129] R. Deguen; P. Olson; P. Cardin Experiments on turbulent metal-slicate mixing in a magma ocean, Earth Planet. Sci. Lett., Volume 310 (2011) no. 3-4, pp. 303-313 | DOI

[130] J. W. M. Bush; B. A. Thurber; F. Blanchette Particle clouds in homogeneous and stratified environments, J. Fluid Mech., Volume 489 (2003), pp. 29-54 | DOI

[131] J.-B. Wacheul; M. Le Bars Fall and fragmentation of liquid metal in a viscous fluid, Phys. Rev. Fluids, Volume 2 (2017) no. 9, 090507 | DOI

[132] P. Marmottant; E. Villermaux On spray formation, J. Fluid Mech., Volume 498 (2004), pp. 73-111 | DOI

[133] J. O. Hinze Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes, AIChE. J., Volume 1 (1955) no. 3, pp. 289-295 | DOI

[134] B. Qaddah; J. Monteux; V. Clesi; M. A. Bouhifd; M. Le Bars Dynamics and stability of an iron drop falling in a magma ocean, Phys. Earth Planet. Inter., Volume 289 (2019), pp. 75-89 | DOI

[135] J.-B. Wacheul Étude de la fragmentation de métal liquide en chute libre dans un environnement visqueux: application à la formation des planètes— Theses. fr., PhD thesis, Aix-Marseille (2019)

[136] M. P. Escudier; T. Maxworthy On the motion of turbulent thermals, J. Fluid Mech., Volume 61 (1973) no. 03, pp. 541-552 | DOI

[137] M. Landeau; P. Olson; R. Deguen; B. H. Hirsh Core merging and stratification following giant impact, Nat. Geosci., Volume 9 (2016) no. 10, pp. 786-789 | DOI

[138] D. Martin; R. Nokes Crystal settling in a vigorously convecting magma chamber, Nature, Volume 332 (1988) no. 6164, pp. 534-536 | DOI

[139] D. Martin; R. Nokes A fluid-dynamical study of crystal settling in convecting magmas, J. Petrol., Volume 30 (1989) no. 6, pp. 1471-1500 | DOI

[140] G. Lavorel; M. Le Bars Sedimentation of particles in a vigorously convecting fluid, Phys. Rev. E, Volume 80 (2009) no. 4, 046324 | DOI

[141] V. S. Solomatov; P. Olson; D. J. Stevenson Entrainment from a bed of particles by thermal convection, Earth Planet. Sci. Lett., Volume 120 (1993) no. 3-4, pp. 387-393 | DOI

[142] C. Maas; U. Hansen Dynamics of a terrestrial magma ocean under planetary rotation: A study in spherical geometry, Earth Planet. Sci. Lett., Volume 513 (2019), pp. 81-94 | DOI

[143] C. Maas; L. Manske; K. Wünnemann; U. Hansen On the fate of impact-delivered metal in a terrestrial magma ocean, Earth Planet. Sci. Lett., Volume 554 (2021), 116680 | DOI

[144] W. M. Elsasser Early history of the Earth, Earth Science and Meteorites (J. Geiss; E. D. Goldberg, eds.), North-Holland Pub. Co., Amsterdam, 1963, pp. 113-129

[145] S. Sasaki; K. Nakazawa Metal-silicate fractionation in the growing Earth: Energy source for the terrestrial magma ocean, J. Geophys. Res.: Solid Earth, Volume 91 (1986) no. B9, pp. 9231-9238 | DOI

[146] S. Ida; Y. Nakagawa; K. Nakazawa The Earth’s core formation due to the Rayleigh–Taylor instability, Icarus, Volume 69 (1987) no. 2, pp. 239-248 | DOI

[147] J. A. Whitehead Jr; D. S. Luther Dynamics of laboratory diapir and plume models, J. Geophys. Res., Volume 80 (1975) no. 5, pp. 705-717 | DOI

[148] J. R. Fleck; C. L. Rains; D. S. Weeraratne et al. Iron diapirs entrain silicates to the core and initiate thermochemical plumes, Nat. Commun., Volume 9 (2018) no. 1, 71 | DOI

[149] S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability, Dover Publications, Inc., Mineola, New York, 2013

[150] D. Bercovici; A. Kelly The non-linear initiation of diapirs and plume heads, Phys. Earth Planet. Inter., Volume 101 (1997), pp. 119-130 | DOI

[151] R. Clift; J. R. Grace; M. E. Weber Bubbles, Drops, and Particles, Dover Publications, Inc., Mineola, New York, 2005

[152] M. Ulvrová; N. Coltice; Y. Ricard; S. Labrosse; F. Dubuffet; J. Velímskỳ; O. Šrámek Compositional and thermal equilibration of particles, drops, and diapirs in geophysical flows, Geochem. Geophys. Geosyst., Volume 12 (2011) no. 10, Q10014 | DOI

[153] H. Samuel; P. J. Tackley; M. Evonuk Heat partitioning in terrestrial planets during core formation by negative diapirism, Earth Planet. Sci. Lett., Volume 290 (2010) no. 1-2, pp. 13-19 | DOI

[154] P. Olson; D. Weeraratne Experiments on metal–silicate plumes and core formation, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., Volume 366 (2008) no. 1883, pp. 4253-4271 | DOI

[155] B. D. Marsh On the mechanics of igneous diapirism, stoping, and zone melting, Am. J. Sci., Volume 282 (1982) no. 6, pp. 808-855 | DOI

[156] S. Morris The effects of a strongly temperature-dependent viscosity on slow flow past a hot sphere, J. Fluid Mech., Volume 124 (1982), pp. 1-26 | DOI

[157] A. Ansari; S. Morris The effects of a strongly temperature-dependent viscosity on Stokes’s drag law: Experiments and theory, J. Fluid Mech., Volume 159 (1985), pp. 459-476 | DOI

[158] N. M. Ribe Diapirism in the Earth’s mantle: experiments on the motion of a hot sphere in a fluid with temperature dependent viscosity, J. Volcanol. Geotherm. Res., Volume 16 (1983), pp. 221-245 | DOI

[159] D. J. Stevenson Mission to Earth’s core—a modest proposal, Nature, Volume 423 (2003) no. 6937, pp. 239-240 | DOI

[160] A. M. Rubin Dikes vs. diapirs in viscoelastic rock, Earth Planet. Sci. Lett., Volume 117 (1993) no. 3-4, pp. 653-670 | DOI

[161] I. Sumita; Y. Ota Experiments on buoyancy-driven crack around the brittle–ductile transition, Earth Planet. Sci. Lett., Volume 304 (2011) no. 3-4, pp. 337-346 | DOI

[162] M. Sato; I. Sumita Experiments on gravitational phase separation of binary immiscible fluids, J. Fluid Mech., Volume 591 (2007), pp. 289-319 | DOI

[163] M. C. Shannon; C. B. Agee Percolation of core melts at lower mantle conditions, Science, Volume 280 (1998) no. 5366, pp. 1059-1061 | DOI

[164] T. Yoshino; M. J. Walter; T. Katsura Core formation in planetesimals triggered by permeable flow, Nature, Volume 422 (2003) no. 6928, pp. 154-157 | DOI

[165] H. Terasaki; D. J. Frost; D. C. Rubie; F. Langenhorst Interconnectivity of Fe–O–S liquid in polycrystalline silicate perovskite at lower mantle conditions, Phys. Earth Planet. Inter., Volume 161 (2007) no. 3-4, pp. 170-176 | DOI

[166] H. Terasaki; D. J. Frost; D. C. Rubie; F. Langenhorst Percolative core formation in planetesimals, Earth Planet. Sci. Lett., Volume 273 (2008) no. 1-2, pp. 132-137 | DOI

[167] A. Néri; J. Guignard; M. Monnereau; M. J. Toplis; G. Quitté Metal segregation in planetesimals: Constraints from experimentally determined interfacial energies, Earth Planet. Sci. Lett., Volume 518 (2019), pp. 40-52 | DOI

[168] J. W. Hustoft; D. L. Kohlstedt Metal-silicate segregation in deforming dunitic rocks, Geochem. Geophys. Geosyst., Volume 7 (2006) no. 2, Q02001 | DOI

[169] A. Néri; M. Monnereau; J. Guignard; M. Bystricky; C. Tenailleau; B. Duployer; M. J. Toplis; G. Quitté Textural evolution of metallic phases in a convecting magma ocean: A 3D microtomography study, Phys. Earth Planet. Inter., Volume 319 (2021), 106771 | DOI

[170] M. Monnereau; J. Guignard; A. Néri; M. J. Toplis; G. Quitté Differentiation time scales of small rocky bodies, Icarus, Volume 390 (2023), 115294 | DOI

[171] O. Šrámek; Y. Ricard; F. Dubuffet A multiphase model of core formation, Geophys. J. Int., Volume 181 (2010) no. 1, pp. 198-220 | DOI

[172] O. Šrámek; L. Milelli; Y. Ricard; S. Labrosse Thermal evolution and differentiation of planetesimals and planetary embryos, Icarus, Volume 217 (2012) no. 1, pp. 339-354 | DOI

[173] T. Lichtenberg; T. Keller; R. F. Katz; G. J. Golabek; T. V. Gerya Magma ascent in planetesimals: Control by grain size, Earth Planet. Sci. Lett., Volume 507 (2019), pp. 154-165 | DOI

[174] S. A. Jacobson; D. C. Rubie; J. Hernlund; A. Morbidelli; M. Nakajima Formation, stratification, and mixing of the cores of Earth and Venus, Earth Planet. Sci. Lett., Volume 174 (2017), pp. 375-386 | DOI

[175] E. Schmidt Versuche zum Wärmeübergang bei natürlicher Konvektion, Chemie Ingenieur Technik, Volume 28 (1956) no. 3, pp. 175-180 | DOI

[176] M. Y. Chow; R. G. Akins Pseudosteady-state natural convection inside spheres, J. Heat Transfer, Volume 97 (1975) no. 1, pp. 54-59 | DOI

[177] J. Hutchins; E. Marschall Pseudosteady-state natural convection heat transfer inside spheres, Int. J. Heat Mass Transfer, Volume 32 (1989) no. 11, pp. 2047-2053 | DOI

Cité par Sources :

Commentaires - Politique