logo CRAS
Comptes Rendus. Physique
3D Ising model: a view from the conformal bootstrap island
Comptes Rendus. Physique, Volume 21 (2020) no. 2, pp. 185-198.

Part of the special issue: Prizes of the French Academy of Sciences 2019

We explain how the axioms of Conformal Field Theory are used to make predictions about critical exponents of continuous phase transitions in three dimensions, via a procedure called the conformal bootstrap. The method assumes conformal invariance of correlation functions, and imposes some relations between correlation functions of different orders. Numerical analysis shows that these conditions are incompatible unless the critical exponents take particular values, or more precisely that they must belong to a small island in the parameter space.

Nous expliquerons comment utiliser les axiomes de la théorie conforme des champs pour faire des prédictions sur les exposants critiques des transitions de phase continues en trois dimensions, par une procédure dite “auto-amorçage conforme”. La méthode consiste à faire l’hypothèse que les fonctions de corrélation ont l’invariance conforme, puis à imposer certaines relations entre les fonctions de corrélation d’ordre différent. L’analyse numérique montre alors que ces conditions ne sont compatibles que si les exposants critiques ont des valeurs particulières, plus précisément s’ils se trouvent dans un îlot étroit de l’espace des paramètres.

Published online:
DOI: 10.5802/crphys.23
Keywords: Phase transitions, Critical exponents, Conformal symmetry, Ising model, Emergence
Slava Rychkov 1, 2

1 Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France
2 Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2020__21_2_185_0,
     author = {Slava Rychkov},
     title = {3D {Ising} model: a view from the conformal bootstrap island},
     journal = {Comptes Rendus. Physique},
     pages = {185--198},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {21},
     number = {2},
     year = {2020},
     doi = {10.5802/crphys.23},
     language = {en},
}
TY  - JOUR
AU  - Slava Rychkov
TI  - 3D Ising model: a view from the conformal bootstrap island
JO  - Comptes Rendus. Physique
PY  - 2020
DA  - 2020///
SP  - 185
EP  - 198
VL  - 21
IS  - 2
PB  - Académie des sciences, Paris
UR  - https://doi.org/10.5802/crphys.23
DO  - 10.5802/crphys.23
LA  - en
ID  - CRPHYS_2020__21_2_185_0
ER  - 
%0 Journal Article
%A Slava Rychkov
%T 3D Ising model: a view from the conformal bootstrap island
%J Comptes Rendus. Physique
%D 2020
%P 185-198
%V 21
%N 2
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crphys.23
%R 10.5802/crphys.23
%G en
%F CRPHYS_2020__21_2_185_0
Slava Rychkov. 3D Ising model: a view from the conformal bootstrap island. Comptes Rendus. Physique, Volume 21 (2020) no. 2, pp. 185-198. doi : 10.5802/crphys.23. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.23/

[1] D. Poland; S. Rychkov; A. Vichi The conformal bootstrap: theory, numerical techniques, and applications, Rev. Mod. Phys., Volume 91 (2019), 015002 | DOI | MR

[2] S. Rychkov EPFL Lectures on Conformal Field Theory in D3 Dimensions, SpringerBriefs in Physics, Springer, 2016

[3] D. Simmons-Duffin The conformal bootstrap, Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015): Boulder, CO, USA, June 1–26, 2015 (2017), pp. 1-74 | Zbl

[4] S. M. Chester Weizmann Lectures on the Numerical Conformal Bootstrap, arXiv: High Energy Physics - Theory (2019), p. 93 (http://arxiv.org/abs/1907.05147)

[5] P. Kravchuk (“Introduction to Conformal Blocks and Linear Programming. Lectures 1-4”. PhD School “Bootstrap 2020”, https://projects.iq.harvard.edu/bootstrap2020/videos)

[6] P. Di Francesco; P. Mathieu; D. Senechal Conformal Field Theory, Springer-Verlag, New York, 1997 | DOI | Zbl

[7] A. Schwarz Axiomatic conformal theory in dimensions 2 and AdS/CT correspondence, Lett. Math. Phys., Volume 106 (2016) no. 9, pp. 1181-1197 | DOI | MR | Zbl

[8] Y. Moriwaki (“Full vertex algebra and bootstrap – consistency of four point functions in 2d CFT”. 2020, https://arxiv.org/abs/2006.15859)

[9] K. G. Wilson; J. B. Kogut The Renormalization group and the epsilon expansion, Phys. Rep., Volume 12 (1974), pp. 75-199 | DOI

[10] A. M. Polyakov Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz., Volume 66 (1974), pp. 23-42

[11] S. Ferrara; A. F. Grillo; R. Gatto Tensor representations of conformal algebra and conformally covariant operator product expansion, Ann. Phys., Volume 76 (1973), pp. 161-188 | DOI | MR

[12] R. Rattazzi; V. S. Rychkov; E. Tonni; A. Vichi Bounding scalar operator dimensions in 4D CFT, JHEP, Volume 12 (2008), p. 031 | DOI | Zbl

[13] S. El-Showk; M. F. Paulos; D. Poland; S. Rychkov; D. Simmons-Duffin; A. Vichi Solving the 3D ising model with the conformal bootstrap, Phys. Rev., Volume D86 (2012), 025022

[14] S. El-Showk; M. F. Paulos; D. Poland; S. Rychkov; D. Simmons-Duffin; A. Vichi Solving the 3d ising model with the conformal bootstrap II. c-Minimization and precise critical exponents, J. Stat. Phys., Volume 157 (2014), p. 869 | DOI | MR | Zbl

[15] F. Kos; D. Poland; D. Simmons-Duffin Bootstrapping mixed correlators in the 3D ising model, JHEP, Volume 11 (2014), p. 109 | DOI

[16] D. Simmons-Duffin A semidefinite program solver for the conformal bootstrap, JHEP, Volume 06 (2015), p. 174 | DOI

[17] F. Kos; D. Poland; D. Simmons-Duffin; A. Vichi Precision islands in the ising and O(N) models, JHEP, Volume 08 (2016), p. 036 | DOI | Zbl

[18] M. Hasenbusch Finite size scaling study of lattice models in the three-dimensional ising universality class, Phys. Rev. B, Volume 82 (2010), 174433 | DOI

[19] D. Simmons-Duffin The lightcone bootstrap and the spectrum of the 3d ising CFT, JHEP, Volume 03 (2017), p. 93 | MR | Zbl

[20] A. Pelissetto; E. Vicari Critical phenomena and renormalization-group theory, Phys. Rep., Volume 368 (2002), pp. 549-727 | DOI | MR | Zbl

[21] R. Guida; J. Zinn-Justin Critical exponents of the N vector model, J. Phys., Volume A31 (1998), pp. 8103-8121 | MR | Zbl

[22] P. Damay; F. Leclercq; P. Chieux Critical scattering function in a binary fluid mixture: a study of sodium-deuteroammonia solution at the critical concentration by small-angle neutron scattering, Phys. Rev. B, Volume 40 (1989), pp. 4696-4708 | DOI

[23] J. V. Sengers; J. G. Shanks Experimental critical-exponent values for fluids, J. Stat. Phys., Volume 137 (2009) no. 5–6, pp. 857-877 | DOI | MR | Zbl

[24] J. Schmitz; L. Belkoura; D. Woermann Light scattering and small angle neutron scattering experiments with an aggregating binary liquid mixture of critical composition, Ann. Phys., Volume 506 (1994) no. 1, pp. 1-12 | DOI

[25] D. M. Sullivan; G. W. Neilson; H. E. Fischer; A. R. Rennie Small angle neutron scattering from D 2 O in the critical region, J. Phys.: Condens. Matter, Volume 12 (2000) no. 15, pp. 3531-3542

[26] P. Damay; F. Leclercq; R. Magli; F. Formisano; P. Lindner Universal critical-scattering function: an experimental approach, Phys. Rev. B, Volume 58 (1998), pp. 12038-12043 | DOI

[27] D. P. Belanger; H. Yoshizawa Neutron scattering and the critical behavior of the three-dimensional ising antiferromagnet FEF 2 , Phys. Rev. B, Volume 35 (1987), pp. 4823-4830 | DOI

[28] R. Feynman Statistical Mechanics, Frontiers in Physics, W. A. Benjamin, 1981

[29] S. Smirnov Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits, C. R. Math., Volume 333 (2001) no. 3, pp. 239-244 | MR | Zbl

Cited by Sources: