This Note describes various analytical and computational results concerning the calculation of Dirac eigenvalues, or more generally, of operators with gaps. An algorithm based on an abstract theorem characterizing the eigenvalues in gaps was found years ago, but it is only recently that a delicate analysis to identify and study the domains of those operators has allowed to put that algorithm on a firm basis concerning the choice of approximation basis sets, and this both for light and for heavy atoms. The works described here concern joint papers with several collaborators: J. Dolbeault, M. Lewin, M. Loss, E. Séré and M. Vanbreugel.
Cette Note présente divers résultats analytiques et numériques concernant le calcul des valeurs propres de l’opérateur de Dirac, ou plus généralement, des opérateurs avec des “gaps” spectraux. Un algorithme basé sur un théorème abstrait caractérisant les valeurs propres dans les écarts a été trouvé il y a des années, mais ce n’est que récemment qu’une analyse délicate pour identifier et étudier les domaines de ces opérateurs a permis de mettre cet algorithme sur une base ferme concernant le choix des approximations, et ceci aussi bien pour les atomes légers que pour les atomes lourds. Les travaux décrits ici concernent des travaux réalisés avec plusieurs collaborateurs : J. Dolbeault, M. Lewin, M. Loss, E. Séré et M. Vanbreugel.
Mots-clés : Opérateur de Dirac, Valeur propre, Domaine de l’opérateur, Calcul des valeurs propres, Opérateur auto-adjoint
Maria J. Esteban 1
@article{CRPHYS_2020__21_2_177_0, author = {Maria J. Esteban}, title = {Mathematical questions about the computation of eigenvalues of {Dirac} operators with critical potentials in atomic and molecular physics}, journal = {Comptes Rendus. Physique}, pages = {177--183}, publisher = {Acad\'emie des sciences, Paris}, volume = {21}, number = {2}, year = {2020}, doi = {10.5802/crphys.16}, language = {en}, }
TY - JOUR AU - Maria J. Esteban TI - Mathematical questions about the computation of eigenvalues of Dirac operators with critical potentials in atomic and molecular physics JO - Comptes Rendus. Physique PY - 2020 SP - 177 EP - 183 VL - 21 IS - 2 PB - Académie des sciences, Paris DO - 10.5802/crphys.16 LA - en ID - CRPHYS_2020__21_2_177_0 ER -
%0 Journal Article %A Maria J. Esteban %T Mathematical questions about the computation of eigenvalues of Dirac operators with critical potentials in atomic and molecular physics %J Comptes Rendus. Physique %D 2020 %P 177-183 %V 21 %N 2 %I Académie des sciences, Paris %R 10.5802/crphys.16 %G en %F CRPHYS_2020__21_2_177_0
Maria J. Esteban. Mathematical questions about the computation of eigenvalues of Dirac operators with critical potentials in atomic and molecular physics. Comptes Rendus. Physique, Prizes of the French Academy of Sciences 2019, Volume 21 (2020) no. 2, pp. 177-183. doi : 10.5802/crphys.16. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.16/
[1] Application of discrete-basis-set methods to the Dirac equation, Phys. Rev. A, Volume 23 (1981), pp. 2093-2098 | DOI
[2] Conditions for convergence of variational solutions of Dirac’s equation in a finite basis, Phys. Rev. A, Volume 25 (1982), pp. 1230-1232 | DOI
[3] Basis set expansion of the Dirac operator without variational collapse, Int. J. Quantum Chem., Volume 25 (1984), pp. 107-129 | DOI
[4] Kinetic balance: A partial solution to the problem of variational safety in Dirac calculations, J. Chem. Phys., Volume 81 (1984), pp. 1910-1918 | DOI
[5] Kinetic balance and variational bounds failure in the solution of the Dirac equation in a finite Gaussian basis set, Chem. Phys. Lett., Volume 174 (1990), pp. 25-32 | DOI
[6] Spurious roots in the algebraic Dirac equation, Chem. Phys. Lett., Volume 376 (2003), pp. 659-661 | DOI
[7] Dual kinetic balance approach to basis-set expansions for the Dirac equation, Phys. Rev. Lett., Volume 93 (2004), 130405
[8] Spectral pollution and how to avoid it, Proc. Lond. Math. Soc., Volume 100 (2009), pp. 864-900 | DOI | Zbl
[9] Spectral pollution and second-order relative spectra for self-adjoint operators, IMA J. Numer. Anal., Volume 24 (2004), pp. 393-416 | DOI | MR | Zbl
[10] Spectral pollution, IMA J. Numer. Anal., Volume 24 (2004), pp. 417-438 | DOI | MR | Zbl
[11] On approximation of the eigenvalues of perturbed periodic Schrödinger operators, J. Phys. A, Volume 40 (2007), pp. 9319-9329 | DOI | Zbl
[12] On the approximation of spectra of linear operators on Hilbert spaces, J. Funct. Anal., Volume 254 (2008), pp. 2092-2126 | DOI | MR
[13] Essential numerical range of an operator with respect to a coercive form and the approximation of its spectrum by the Galerkin method, SIAM J. Numer. Anal., Volume 18 (1981), pp. 1128-1133 | DOI | MR | Zbl
[14] Method of orthogonal projections and approximation of the spectrum of a bounded operator, Studia Math., Volume 65 (1979), pp. 21-29 | DOI | MR | Zbl
[15] Method of orthogonal projections and approximation of the spectrum of a bounded operator. II, Studia Math., Volume 70 (1981), pp. 1-9 | DOI | MR | Zbl
[16] Minimax principle for the Dirac equation, Phys. Rev. Lett., Volume 57 (1986), pp. 1091-1094 | DOI | MR
[17] The quantum theory of the electron, Proc. R. Soc. Lond. A, Volume 117 (1928), pp. 610-624
[18] The Dirac Equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992 | DOI
[19] Existence and multiplicity of solutions for linear and nonlinear Dirac problems, Partial Differential Equations and their Applications (Toronto, ON, 1995) (CRM Proc. Lecture Notes), Volume 12, Amer. Math. Soc., Providence, RI, 1997, pp. 107-118 | DOI | MR | Zbl
[20] A minimax principle for the eigenvalues in spectral gaps, J. Lond. Math. Soc., Volume 60 (1999), pp. 490-500 | DOI | MR | Zbl
[21] Variational characterization for eigenvalues of Dirac operators, Calc. Var. Partial Differential Equations, Volume 10 (2000), pp. 321-347 | DOI | MR | Zbl
[22] On the eigenvalues of operators with gaps. Application to Dirac operators, J. Funct. Anal., Volume 174 (2000), pp. 208-226 | DOI | MR | Zbl
[23] On the minimax principle for Coulomb–Dirac operators, Math. Z., Volume 280 (2015), pp. 733-747 | DOI | MR | Zbl
[24] Minimax principles, Hardy–Dirac inequalities, and operator cores for two and three dimensional Coulomb–Dirac operators, Doc. Math., Volume 21 (2016), pp. 1151-1169 | MR | Zbl
[25] Friedrichs extension and min–max principle for operators with a gap, Ann. Henri Poincaré, Volume 21 (2020), pp. 327-357 | DOI | MR | Zbl
[26] Relativistic hydrogenic atoms in strong magnetic fields, Ann. Henri Poincaré, Volume 8 (2007), pp. 749-779 | DOI | MR | Zbl
[27] Characterization of the critical magnetic field in the Dirac–Coulomb equation, J. Phys. A, Volume 41 (2008), 185303 | DOI | MR | Zbl
[28] Self-adjointness for Dirac operators via Hardy–Dirac inequalities, J. Math. Phys., Volume 48 (2007), 112107 | MR | Zbl
[29] Minimax principle for the Dirac equation, Phys. Rev. Lett., Volume 57 (1986), pp. 1091-1094 | DOI | MR
[30] A variational method for relativistic computations in atomic and molecular physics, Int. J. Quantum Chem., Volume 93 (2003), pp. 149-155 | DOI
[31] Domains for Dirac–Coulomb min-max levels, Rev. Mat. Iberoam., Volume 35 (2019), pp. 877-924 | DOI | MR | Zbl
[32] Dirac-Coulomb operators with general charge distribution. I. Distinguished extension and min-max formulas, 2020 (Working paper or preprint)
[33] Dirac-Coulomb operators with general charge distribution. II. The lowest eigenvalue, 2020 (Working paper or preprint)
[34] Distinguished selfadjoint extensions of Dirac operators, Math. Z., Volume 129 (1972), pp. 335-349 | DOI | MR | Zbl
[35] A convergence theorem for selfadjoint operators applicable to Dirac operators with cutoff potentials, Math. Z., Volume 131 (1973), pp. 339-349 | DOI | MR | Zbl
[36] Distinguished self-adjoint extensions of Dirac operators constructed by means of cut-off potentials, Math. Z., Volume 141 (1975), pp. 93-98 | DOI | MR | Zbl
[37] Dirac operations with strongly singular potentials, Math. Z., Volume 152 (1977), pp. 259-271 | DOI | Zbl
[38] Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms, Comm. Math. Phys., Volume 48 (1976), pp. 235-247 | DOI | MR | Zbl
[39] Characterization and uniqueness of distinguished selfadjoint extensions of Dirac operators, Comm. Math. Phys., Volume 64 (1978), pp. 171-176 | DOI | MR | Zbl
[40] An application of the maximum principle to the study of essential self-adjointness of Dirac operators. i, J. Math. Phys., Volume 20 (1979), pp. 2204-2211 | DOI | Zbl
[41] An application of the maximum principle to the study of essential self-adjointness of Dirac operators. ii, J. Math. Phys., Volume 21 (1980), pp. 1210-1217 | DOI | Zbl
[42] Holomorphic families of Dirac operators, Math. Z., Volume 183 (1983), pp. 399-406 | DOI | MR | Zbl
[43] Distinguished self-adjoint extensions of Dirac operators via Hardy–Dirac inequalities, J. Math. Phys., Volume 52 (2011), 092301 | DOI | MR | Zbl
[44] Self-adjoint extensions of Dirac operators with Coulomb type singularity, J. Math. Phys., Volume 54 (2013), 041504 | DOI | MR | Zbl
[45] Finite basis set approach to the two-centre Dirac problem in Cassini coordinates, J. Phys. B, Volume 43 (2010), 235207
Cited by Sources:
Comments - Policy