Comptes Rendus
Intervention en colloque
Mathematical physics of dilute Bose gases
[Physique mathématique des gaz de bosons dilués]
Comptes Rendus. Physique, Volume 26 (2025), pp. 339-348.

Cet article fait partie du numéro thématique Questions ouvertes dans le problème quantique à N corps coordonné par Yvan Castin et al..

Nous discutons des progrès récents dans l’analyse mathématique des gaz de bosons dilués. Nous passons en revue les résultats obtenus en une, deux et trois dimensions, mais l’accent sera mis sur le cas tridimensionnel. En chaque dimension, nous disposons d’un développement asymptotique à deux termes de la densité d’énergie de l’état fondamental, sous la forme d’expressions ne dépendant que de la longueur de diffusion du potentiel. En dimension trois, il s’agit de la célèbre formule de Lee–Huang–Yang. En dimension deux et en dimension trois, la limite diluée est dans le régime d’interaction faible, alors qu’en dimension un, elle est au contraire en interaction forte. Nous esquissons brièvement les difficultés mathématiques rencontrées et passons en revue quelques problèmes encore ouverts dans ce domaine.

We discuss recent progress in the mathematical analysis of dilute Bose gases. We review results in one to three dimensions, but the focus will be on three dimensions. In all dimensions we have a two term asymptotic expansion of the ground state energy density by an expression that depends only on the scattering length of the potential. In dimension three this is the celebrated Lee–Huang–Yang formula. In dimensions two and three the dilute limit is a weakly interacting regime whereas in dimension one it is rather strongly interacting. We sketch briefly the mathematical difficulties and review some remaining open problems in the field.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.247
Keywords: Ground states of Bose gases, Cold atomic gases, Bose–Einstein condensation, Bogolyubov approximation, Lee–Huang–Yang formula
Mots-clés : États fondamentaux des gaz de bosons, Gaz atomiques froids, Condensation de Bose–Einstein, Approximation de Bogolioubov, Formule de Lee–Huang–Yang

Jan Philip Solovej 1

1 QMATH, Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2025__26_G1_339_0,
     author = {Jan Philip Solovej},
     title = {Mathematical physics of dilute {Bose} gases},
     journal = {Comptes Rendus. Physique},
     pages = {339--348},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {26},
     year = {2025},
     doi = {10.5802/crphys.247},
     language = {en},
}
TY  - JOUR
AU  - Jan Philip Solovej
TI  - Mathematical physics of dilute Bose gases
JO  - Comptes Rendus. Physique
PY  - 2025
SP  - 339
EP  - 348
VL  - 26
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.247
LA  - en
ID  - CRPHYS_2025__26_G1_339_0
ER  - 
%0 Journal Article
%A Jan Philip Solovej
%T Mathematical physics of dilute Bose gases
%J Comptes Rendus. Physique
%D 2025
%P 339-348
%V 26
%I Académie des sciences, Paris
%R 10.5802/crphys.247
%G en
%F CRPHYS_2025__26_G1_339_0
Jan Philip Solovej. Mathematical physics of dilute Bose gases. Comptes Rendus. Physique, Volume 26 (2025), pp. 339-348. doi : 10.5802/crphys.247. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.247/

[1] J. Yin The ground state energy of dilute Bose gas in potentials with positive scattering length, Commun. Math. Phys., Volume 295 (2010) no. 1, pp. 1-27 (English) | DOI

[2] E. H. Lieb; R. Seiringer; J. P. Solovej; J. Yngvason The Mathematics of the Bose Gas and its Condensation, Oberwolfach Seminars, 34, Birkhäuser, Basel, 2005 (English)

[3] W. Lenz Die Wellenfunktion und Geschwindigkeitsverteilung des entarteten gases, Z. Phys., Volume 56 (1929) no. 11–12, pp. 778-789 | DOI

[4] T. D. Lee; K. Huang; C. N. Yang Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties, Phys. Rev., Volume 106 (1957) no. 6, pp. 1135-1145 | DOI

[5] F. J. Dyson Ground-state energy of a hard-sphere gas, Phys. Rev., II. Ser., Volume 106 (1957), pp. 20-26 (English) | DOI

[6] E. H. Lieb; J. Yngvason Ground state energy of the low density Bose gas, Phys. Rev. Lett., Volume 80 (1998) no. 12, pp. 2504-2507 | DOI

[7] H.-T. Yau; J. Yin The second order upper bound for the ground energy of a Bose gas, J. Stat. Phys., Volume 136 (2009) no. 3, pp. 453-503 (English) | DOI

[8] G. Basti; S. Cenatiempo; B. Schlein A new second-order upper bound for the ground state energy of dilute Bose gases, Forum Math. Sigma, Volume 9 (2021), e74 | DOI

[9] S. Fournais; J. P. Solovej The energy of dilute Bose gases, Ann. Math., Volume 192 (2020) no. 3, pp. 893-976 | DOI

[10] S. Fournais; J. P. Solovej The energy of dilute Bose gases. II: the general case, Invent. Math., Volume 232 (2023) no. 2, pp. 863-994 (English) | DOI

[11] G. Basti; S. Cenatiempo; A. Giuliani; A. Olgiati; G. Pasqualetti; B. Schlein Upper bound for the ground state energy of a dilute Bose gas of hard spheres, Arch. Ration. Mech. Anal., Volume 248 (2024) no. 6, 100 (English) | DOI

[12] G. Basti; S. Cenatiempo; A. Olgiati; G. Pasqualetti; B. Schlein A second order upper bound for the ground state energy of a hard-sphere gas in the Gross–Pitaevskii regime, Commun. Math. Phys., Volume 399 (2023) no. 1, pp. 1-55 (English) | DOI

[13] N. Navon; S. Piatecki; K. Günter; B. Rem; T. C. Nguyen; F. Chevy; W. Krauth; C. Salomon Dynamics and thermodynamics of the low-temperature strongly interacting Bose gas, Phys. Rev. Lett., Volume 107 (2011), 135301 | DOI

[14] N. Navon; S. Nascimbene; F. Chevy; C. Salomon The equation of state of a low-temperature Fermi gas with tunable interactions, Science, Volume 328 (2010) no. 5979, pp. 729-732 | DOI

[15] M. Schick Two-dimensional system of hard-core bosons, Phys. Rev. A, Volume 3 (1971) no. 3, pp. 1067-1073 | DOI

[16] E. H. Lieb; J. Yngvason The ground state energy of a dilute two-dimensional Bose gas, J. Stat. Phys., Volume 103 (2001) no. 3–4, pp. 509-526 | DOI

[17] D. Hines; N. Frankel; D. Mitchell Hard-disc Bose gas, Phys. Lett. A, Volume 68 (1978) no. 1, pp. 12-14 | DOI

[18] A. Y. Cherny; A. A. Shanenko Dilute Bose gas in two dimensions: density expansions and the Gross–Pitaevskii equation, Phys. Rev. E, Volume 64 (2001), 027105 | DOI

[19] C. N. Yang Pseudopotential method and dilute hard “sphere” Bose gas in dimensions 2, 4 and 5, Europhys. Lett., Volume 84 (2008) no. 4, 40001 | DOI

[20] C. Mora; Y. Castin Ground state energy of the two-dimensional weakly interacting Bose gas: first correction beyond Bogoliubov theory, Phys. Rev. Lett., Volume 102 (2009), 180404 | DOI

[21] S. Fournais; T. Girardot; L. Junge; L. Morin; M. Olivieri The ground state energy of a two-dimensional Bose gas, Commun. Math. Phys., Volume 405 (2024) no. 3, 59 | DOI

[22] J. Agerskov; R. Reuvers; J. P. Solovej Ground state energy of dilute Bose gases in 1D, Commun. Math. Phys., Volume 406 (2025) no. 2, 27 | DOI

[23] T. T. Wu Ground state of a Bose system of hard spheres, Phys. Rev., Volume 115 (1959) no. 6, pp. 1390-1404 | DOI

[24] S. Tan Three-boson problem at low energy and implications for dilute Bose–Einstein condensates, Phys. Rev. A, Volume 78 (2008), 013636 | DOI

[25] C. Caraci; A. Olgiati; D. S. Aubin; B. Schlein Third order corrections to the ground state energy of a Bose gas in the Gross–Pitaevskii regime (2024) | arXiv

[26] N. N. Bogolyubov On the theory of superfluidity, Proc. Inst. Math. Kiev (1947) no. 9, pp. 89-103 Rus. Trans Izv. Akad. Nauk Ser. Fiz. 11, 77 (1947), Eng. Trans. J. Phys. (USSR), 11, 23 (1947)

[27] M. Napiórkowski; R. Reuvers; J. P. Solovej The Bogoliubov free energy functional. I: existence of minimizers and phase diagram, Arch. Ration. Mech. Anal., Volume 229 (2018) no. 3, pp. 1037-1090 (English) | DOI

[28] M. Napiórkowski; R. Reuvers; J. P. Solovej The Bogoliubov free energy functional. II: the dilute limit, Commun. Math. Phys., Volume 360 (2018) no. 1, pp. 347-403 (English) | DOI

[29] L. Erdös; B. Schlein; H.-T. Yau Ground-state energy of a low-density Bose gas: a second-order upper bound, Phys. Rev. A, Volume 78 (2008), 053627 | DOI

[30] E. H. Lieb; R. Seiringer Proof of Bose–Einstein condensation for dilute trapped gases, Phys. Rev. Lett., Volume 88 (2002), 170409 | DOI

[31] C. Boccato; C. Brennecke; S. Cenatiempo; B. Schlein Complete Bose–Einstein condensation in the Gross–Pitaevskii regime, Commun. Math. Phys., Volume 359 (2018) no. 3, pp. 975-1026 (English) | DOI

[32] C. Boccato; C. Brennecke; S. Cenatiempo; B. Schlein Bogoliubov theory in the Gross–Pitaevskii limit, Acta Math., Volume 222 (2019) no. 2, pp. 219-335 (English) | DOI

[33] C. Boccato; C. Brennecke; S. Cenatiempo; B. Schlein Optimal rate for Bose–Einstein condensation in the Gross–Pitaevskii regime, Commun. Math. Phys., Volume 376 (2020) no. 2, pp. 1311-1395 | DOI

[34] A. Adhikari; C. Brennecke; B. Schlein Bose–Einstein condensation beyond the Gross–Pitaevskii regime, Ann. Henri Poincaré, Volume 22 (2021) no. 4, pp. 1163-1233 (English) | DOI

[35] S. Fournais Length scales for BEC in the dilute Bose gas, EMS Press, Berlin (2021), pp. 115-133 | DOI

[36] T. Kennedy; E. H. Lieb; B. S. Shastry The XY has long-range order for all spins and all dimensions greater than one, Phys. Rev. Lett., Volume 61 (1988) no. 22, pp. 2582-2584 | DOI

[37] M. Aizenman; E. H. Lieb; R. Seiringer; J. P. Solovej; J. Yngvason Bose–Einstein quantum phase transition in an optical lattice model, Phys. Rev. A, Volume 70 (2004), 023612 | DOI

[38] M. H. Anderson; J. R. Ensher; M. R. Matthews; C. E. Wieman; E. A. Cornell Observation of Bose–Einstein condensation in a dilute atomic vapor, Science, Volume 269 (1995) no. 5221, pp. 198-201 | DOI

[39] K. B. Davis; M.-O. Mewes; M. R. Andrews; N. J. van Druten; D. S. Durfee; D. M. Kurn; W. Ketterle Bose–Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett., Volume 75 (1995) no. 22, pp. 3969-3973 | DOI

[40] A. L. Gaunt; T. F. Schmidutz; I. Gotlibovych; R. P. Smith; Z. Hadzibabic Bose–Einstein condensation of atoms in a uniform potential, Phys. Rev. Lett., Volume 110 (2013), 200406 | DOI

[41] J. P. Burke; J. L. Bohn Ultracold scattering properties of the short-lived Rb isotopes, Phys. Rev. A, Volume 59 (1999) no. 2, pp. 1303-1308 | DOI

[42] E. H. Lieb; W. Liniger Exact analysis of an interacting bose gas. I. The general solution and the ground state, Phys. Rev., Volume 130 (1963) no. 4, pp. 1605-1616 | DOI

Cité par Sources :

Commentaires - Politique