[Transport quantique dans des gaz de fermions fortement corrélés]
Le transport dans les fermions fortement corrélés ne peut être compris par les seules quasiparticules fermioniques. Nous présentons un cadre théorique pour le transport quantique qui incorpore les fortes corrélations locales des paires de fermions. Ces corrélations de contact ajoutent des contributions essentielles aux coefficients de transport visqueux, thermique et sonore. La viscosité de volume, en particulier, reçoit sa contribution dominante des excitations de paires. En outre, elle peut être mesurée de manière élégante en observant la réponse à une longueur de diffusion dépendant du temps, même lorsque le fluide n’est pas en mouvement. Des changements rapides de la longueur de diffusion éloignent le système de l’équilibre local, et nous montrons comment il retourne à l’équilibre en suivant un attracteur hydrodynamique avant qu’une description de Navier–Stokes ne devienne correcte. Cet article résume un exposé donné au symposium « Open questions in the quantum many-body problem » à l’Institut Henri Poincaré, Paris, en juillet 2024.
Transport in strongly correlated fermions cannot be understood by fermionic quasiparticles alone. We present a theoretical framework for quantum transport that incorporates strong local correlations of fermion pairs. These contact correlations add essential contributions to viscous, thermal and sound transport coefficients. The bulk viscosity, in particular, receives its dominant contribution from pair excitations. Moreover, it can be measured elegantly by observing the response to a time-dependent scattering length even when the fluid is not moving. Rapid changes of the scattering length drive the system far out of local equilibrium, and we show how it relaxes back to equilibrium following a hydrodynamic attractor before a Navier–Stokes description becomes valid. This paper summarizes a talk given at the Symposium “Open questions in the quantum many-body problem” at the Institut Henry Poincaré, Paris, in July 2024.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Fermions fortement corrélés, Transport quantique, Viscosité de volume, Hydrodynamique, Attracteur
Tilman Enss 1

@article{CRPHYS_2025__26_G1_217_0, author = {Tilman Enss}, title = {Quantum transport in strongly correlated {Fermi} gases}, journal = {Comptes Rendus. Physique}, pages = {217--224}, publisher = {Acad\'emie des sciences, Paris}, volume = {26}, year = {2025}, doi = {10.5802/crphys.237}, language = {en}, }
Tilman Enss. Quantum transport in strongly correlated Fermi gases. Comptes Rendus. Physique, Volume 26 (2025), pp. 217-224. doi : 10.5802/crphys.237. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.237/
[1] Universal spin transport in a strongly interacting Fermi gas, Nature (London), Volume 472 (2011), pp. 201-204 | DOI
[2] Nearly perfect fluidity: from cold atomic gases to hot quark gluon plasmas, Rep. Prog. Phys., Volume 72 (2009), 126001 | DOI
[3] Observation of universal temperature scaling in the quantum viscosity of a unitary Fermi gas, Science, Volume 331 (2011), pp. 58-61 | DOI
[4] Viscosity and scale invariance in the unitary Fermi gas, Ann. Phys. (NY), Volume 326 (2011), pp. 770-796 | DOI
[5] Quantum mechanical limitations to spin transport in the unitary Fermi gas, Phys. Rev. Lett., Volume 109 (2012), 195303 | DOI
[6] et al. Transverse demagnetization dynamics of a unitary Fermi gas, Science, Volume 344 (2014), pp. 722-724 | DOI
[7] et al. Observation of the Leggett–Rice effect in a unitary Fermi gas, Phys. Rev. Lett., Volume 114 (2015), 015301 | DOI
[8] Observation of quantum-limited spin transport in strongly interacting two-dimensional Fermi gases, Phys. Rev. Lett., Volume 118 (2017), 130405 | DOI
[9] Universal spin transport and quantum bounds for unitary fermions, Annu. Rev. Condens. Matter Phys., Volume 10 (2019), pp. 85-106 | DOI
[10] Thermal conductivity and sound attenuation in dilute atomic Fermi gases, Phys. Rev. A, Volume 82 (2010), 033619 | DOI
[11] Universal sound diffusion in a strongly interacting Fermi gas, Science, Volume 370 (2020) no. 6521, pp. 1222-1226 | DOI
[12] Sound propagation and quantum-limited damping in a two-dimensional Fermi gas, Phys. Rev. Lett., Volume 124 (2020) no. 24, 240403 | DOI
[13] Quantum critical thermal transport in the unitary Fermi gas, Phys. Rev. Res., Volume 2 (2020) no. 2, 023301 | DOI
[14] et al. Second sound attenuation near quantum criticality, Science, Volume 375 (2022) no. 6580, pp. 528-533 | DOI
[15] Hydrodynamic relaxation in a strongly interacting Fermi gas, Phys. Rev. Lett., Volume 128 (2022) no. 9, 090402 | DOI
[16] Thermography of the superfluid transition in a strongly interacting Fermi gas, Science, Volume 383 (2024) no. 6683, pp. 629-633 | DOI
[17] Universal density shift coefficients for the thermal conductivity and shear viscosity of a unitary Fermi gas, Phys. Rev. Res., Volume 6 (2024) no. 4, L042021 | DOI
[18] Renormalization-group fixed points, universal phase diagram, and 1/N expansion for quantum liquids with interactions near the unitarity limit, Phys. Rev. A, Volume 75 (2007), 033608 | DOI
[19] Quantum critical transport in the unitary Fermi gas, Phys. Rev. A, Volume 86 (2012), 013616 | DOI
[20] Hydrodynamic attractor in ultracold atoms, Phys. Rev. Lett., Volume 133 (2024) no. 17, 173402 | DOI
[21] et al. Hydrodynamic attractor in periodically driven ultracold quantum gases, preprint, 2025 | arXiv
[22] The BCS–BEC Crossover and the Unitary Fermi Gas (W. Zwerger, ed.), Lecture Notes in Physics 836, Springer, Berlin, 2012 | DOI
[23] Transport Phenomena, Oxford University Press, Oxford, 1989
[24] Viscosity and thermal relaxation for a resonantly interacting Fermi gas, Phys. Rev. A, Volume 72 (2005), 043605 | DOI
[25] Feshbach resonances and medium effects in ultracold atomic gases, Few-Body Systems, Volume 45 (2009), pp. 227-232 | DOI
[26] Transport properties in non-Fermi liquid phases of nodal-point semimetals, J. Phys.: Condens. Matter, Volume 36 (2024), 443002 | DOI
[27] Transport in p-wave-interacting Fermi gases, Phys. Rev. A, Volume 107 (2023), 023317 | DOI
[28] Viscosity of strongly interacting quantum fluids: spectral functions and sum rules, Phys. Rev. A, Volume 81 (2010), 053610 | DOI
[29] Theory of many-particle systems. I, Phys. Rev., Volume 115 (1959), pp. 1342-1373 | DOI
[30] Unitary gas in an isotropic harmonic trap: Symmetry properties and applications, Phys. Rev. A, Volume 74 (2006), 053604 | DOI
[31] Vanishing bulk viscosities and conformal invariance of the unitary Fermi gas, Phys. Rev. Lett., Volume 98 (2007), 020604 | DOI
[32] Bulk viscosity of resonating fermions revisited: Kubo formula, sum rule, and the dimer and high-temperature limits, Phys. Rev. A, Volume 102 (2020), 023310 | DOI
[33] General relations for quantum gases in two and three dimensions. Two-component fermions, Phys. Rev. A, Volume 86 (2012), 013626 | DOI
[34] Viscosity spectral functions of resonating fermions in the quantum virial expansion, Ann. Phys. (NY), Volume 410 (2019), 167949 | DOI
[35] Bulk viscosity and contact correlations in attractive Fermi gases, Phys. Rev. Lett., Volume 123 (2019), 205301 | DOI
[36] High-temperature expansion of the viscosity in interacting quantum gases, Phys. Rev. A, Volume 101 (2020), 013620 | DOI
[37] Bulk viscosity and conformal symmetry breaking in the dilute Fermi gas near unitarity, Phys. Rev. Lett., Volume 111 (2013), 120603 | DOI
[38] Thermodynamics of the BCS-BEC crossover, Phys. Rev. A, Volume 75 (2007), 023610 | DOI
[39] Spin-independent transport parameters for superfluid 3 He-B, J. Low Temp. Phys., Volume 54 (1984), pp. 427-474 | DOI
[40] Pair-breaking collective branch in BCS superconductors and superfluid Fermi gases, Phys. Rev. Lett., Volume 122 (2019) no. 9, 093403 | DOI
[41] Bulk viscosity of resonantly interacting fermions in the quantum virial expansion, Ann. Phys., Volume 453 (2023), 169296 | DOI
[42] et al. Emergence of sound in a tunable Fermi fluid, preprint, 2024 | arXiv
[43] Hydrodynamics with spacetime-dependent scattering length, Phys. Rev. A, Volume 98 (2018), 063634 | DOI
[44] Hydrodynamics beyond the gradient expansion: resurgence and resummation, Phys. Rev. Lett., Volume 115 (2015) no. 7, 072501 | DOI
[45] Spectral functions of the strongly interacting three-dimensional Fermi gas, Phys. Rev. A, Volume 109 (2024), 023324 | DOI
[46] Particle and pair spectra for strongly correlated Fermi gases: A real-frequency solver, Phys. Rev. A, Volume 109 (2024) no. 2, 023325 | DOI
[47] Spectral properties and observables in ultracold Fermi gases, Phys. Rev. A, Volume 109 (2024) no. 6, 063311 | DOI
[48] et al. Observation and quantification of pseudogap in unitary Fermi gases, Nature, Volume 626 (2024), pp. 288-293 | DOI
[49] Dynamics of strongly interacting Fermi gases with time-dependent interactions: Consequence of conformal symmetry, Phys. Rev. Lett., Volume 128 (2022) no. 4, 040401 | DOI
[50] Quantum Kinetic Theory, Springer, Cham, 2016 | DOI
Cité par Sources :
Commentaires - Politique