Comptes Rendus
Article de recherche
Roll formation in a bio-active fluid
[Structures cohérentes dans un bio-fluide]
Comptes Rendus. Physique, Volume 27 (2026), pp. 7-16

Collective motion of micro-swimmers leads to the emergence of coherent macroscopic structures. In the case of diluted cultures of micro-organisms, a typical dotted pattern can spontaneously appear within a few minutes, even in the absence of external stimulus, a signature of bioconvection. However, we know little about the resilience of bioconvective plumes facing an environmental alteration. Here, we take advantage of the phototactic behaviour of the green micro-algae Chlamydomonas reinhardtii to perturb bioconvection with an asymmetric lightning. Our experiments demonstrate that plumes first disappear, leaving place for a new anisotropic structure at the illuminated wall. We characterise the dynamics of this rising pattern at various scales and propose a mechanism based on the physical properties of the micro-swimmers.

Le mouvement collectif de micro-nageurs peut générer des structures macroscopiques. Les plumes de bioconvection en sont un exemple : elles apparaissent spontanément dans les cultures diluées de micro-organismes. Cependant, l’impact de signaux extérieurs sur ces structures reste peu exploré. Dans cette étude, nous exploitons le comportement phototactique de micro-algues vertes, Chlamydomonas reinhardtii. Elles nagent préférentiellement vers l’une des parois, éclairée, ce qui introduit une asymétrie dans la dynamique. Nos expériences montrent tout d’abord que les plumes de bioconvection disparaissent. Puis, de nouvelles structures anisotropes émergent le long de la paroi. Nous analysons la dynamique de ces motifs à différentes échelles et proposons un mécanisme basé sur les propriétés physiques des micro-nageurs.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.268
Keywords: Hydrodynamics, instability, micro-swimmer, active matter
Mots-clés : Hydrodynamique, instabilités, micro-nageur, matière active

Anaëlle Givaudan  1   ; Francesco Picella  1   ; Hélène de Maleprade  1

1 Sorbonne Université, CNRS, Institut Jean Le Rond d’Alembert, Paris 75005, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2026__27_G1_7_0,
     author = {Ana\"elle Givaudan and Francesco Picella and H\'el\`ene de Maleprade},
     title = {Roll formation in a bio-active fluid},
     journal = {Comptes Rendus. Physique},
     pages = {7--16},
     year = {2026},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {27},
     doi = {10.5802/crphys.268},
     language = {en},
}
TY  - JOUR
AU  - Anaëlle Givaudan
AU  - Francesco Picella
AU  - Hélène de Maleprade
TI  - Roll formation in a bio-active fluid
JO  - Comptes Rendus. Physique
PY  - 2026
SP  - 7
EP  - 16
VL  - 27
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.268
LA  - en
ID  - CRPHYS_2026__27_G1_7_0
ER  - 
%0 Journal Article
%A Anaëlle Givaudan
%A Francesco Picella
%A Hélène de Maleprade
%T Roll formation in a bio-active fluid
%J Comptes Rendus. Physique
%D 2026
%P 7-16
%V 27
%I Académie des sciences, Paris
%R 10.5802/crphys.268
%G en
%F CRPHYS_2026__27_G1_7_0
Anaëlle Givaudan; Francesco Picella; Hélène de Maleprade. Roll formation in a bio-active fluid. Comptes Rendus. Physique, Volume 27 (2026), pp. 7-16. doi: 10.5802/crphys.268

[1] Christopher Dombrowski; Luis Cisneros; Sunita Chatkaew; Raymond E Goldstein; John O Kessler Self-concentration and large-scale coherence in bacterial dynamics, Phys. Rev. Lett., Volume 93 (2004), 098103, 4 pages | DOI

[2] John O Kessler Co-operative and concentrative phenomena of swimming micro-organisms, Contemp. Phys., Volume 26 (1985) no. 2, pp. 147-166 | DOI

[3] Martin Alan Bees; N. A. Hill Wavelengths of bioconvection patterns, J. Exp. Biol., Volume 200 (1997), pp. 1515-1526 | DOI

[4] Erika Shoji; Hiraku Nishimori; Akinori Awazu; Shunsuke Izumi; Makoto Iima Localized bioconvection patterns and their initial state dependency in Euglena gracilis suspensions in an annular container, J. Phys. Soc. Japan, Volume 83 (2014) no. 4, 043001 | DOI

[5] John B Loefer; Roy B. Mefferd Concerning pattern formation by free-swimming microorganisms, Am. Natur., Volume 86 (1952), pp. 325-329 | DOI

[6] John R Platt “Bioconvection patterns” in cultures of free-swimming organisms, Science, Volume 133 (1961), pp. 1766-1767 | DOI

[7] Harold William Taylor Wager VII. On the effect of gravity upon the movements and aggregation of Euglena viridis, Ehrb., and other micro-organisms, Philos. Trans. R. Soc. Lond., Ser. B, Volume 201 (1911), pp. 333-390

[8] Oscar Gallardo-Navarro; Rinat Arbel-Goren; Elias August; Gabriela Olmedo-Alvarez; Joel Stavans Dynamically induced spatial segregation in multispecies bacterial bioconvection, Nat. Commun., Volume 16 (2025), 950, 13 pages | DOI

[9] Albane Théry; Lucas Le Nagard; Jean-Christophe Ono-dit-Biot; Cécile Fradin; Kari Dalnoki-Veress; Eric Lauga Self-organisation and convection of confined magnetotactic bacteria, Sci. Rep., Volume 10 (2020), 13578, 9 pages | DOI

[10] Howard Winet; Theodore L Jahn Geotaxis in protozoa I. A propulsion-gravity model for tetrahymena (Ciliata), J. Theor. Biol., Volume 46 (1974), pp. 449-465 | DOI

[11] Ruth Hemmersbach; Richard Bräucker Gravity-related behaviour in ciliates and flagellates, Cell biology and biotechnology in space (Augusto Cogoli, ed.) (Advances in Space Biology and Medicine), Elsevier, 2002 no. 8, pp. 59-75 | DOI

[12] John O Kessler Individual and collective fluid dynamics of swimming cells, J. Fluid Mech., Volume 173 (1986), pp. 191-205 | DOI

[13] Chiharu Hosoya; Asuka Akiyama; Azusa Kage; Shoji A Baba; Yoshihiro Mogami Reverse bioconvection of Chlamydomonas in the hyper-density medium, Biol. Sci. Space, Volume 24 (2010), pp. 145-152 | DOI

[14] Azusa Kage; Toshihiro Omori; Kenji Kikuchi; Takuji Ishikawa The shape effect of flagella is more important than bottom-heaviness on passive gravitactic orientation in Chlamydomonas reinhardtii, J. Exp. Biol., Volume 223 (2020) no. 5, jeb205989, 9 pages | DOI

[15] Martin A. Bees Advances in bioconvection, Ann. Rev. Fluid Mech., Volume 52 (2020) no. 1, pp. 449-476 | DOI

[16] S Childress; M Levandowsky; E. A. Spiegel Pattern formation in a suspension of swimming microorganisms: equations and stability theory, J. Fluid Mech., Volume 69 (1975), pp. 591-613 | DOI

[17] M Levandowsky; W. S. Childress; E. A. Spiegel; S. H. Hutner A mathematical model of pattern formation by swimming microorganisms, J. Protozool., Volume 22 (1975), pp. 296-306 | DOI

[18] C Rosie Williams; Martin Alan Bees A tale of three taxes: photo-gyro-gravitactic bioconvection, J. Exp. Biol., Volume 214 (2011), pp. 2398-2408 | DOI

[19] Alexandros A Fragkopoulos; Florian Böhme; Nicole Drewes; Oliver Bäumchen Metabolic activity controls the emergence of coherent flows in microbial suspensions, Proc. Natl. Acad. Sci. USA, Volume 122 (2025) no. 4, e2413340122, 8 pages | DOI

[20] Azusa Kage; Chiharu Hosoya; Shoji A Baba; Yoshihiro Mogami Drastic reorganization of the bioconvection pattern of Chlamydomonas: quantitative analysis of the pattern transition response, J. Exp. Biol., Volume 216 (2013), pp. 4557-4566

[21] N. A. Hill; T. J. Pedley Bioconvection, Fluid Dyn. Res., Volume 37 (2005) no. 1, pp. 1-20 | DOI | MR

[22] Akira Harashima; Masataka Watanabe; Issei Fujishiro Evolution of bioconvection patterns in a culture of motile flagellates, Phys. Fluids, Volume 31 (1988) no. 4, pp. 764-775 | DOI

[23] S Ghorai; R Singh; N. A. Hill Wavelength selection in gyrotactic bioconvection, Bull. Math. Biol., Volume 77 (2015), pp. 1166-1184 | DOI | MR

[24] Kyriacos C Leptos; Maurizio Chioccioli; Silvano Furlan; Adriana I Pesci; Raymond E Goldstein Phototaxis of Chlamydomonas arises from a tuned adaptive photoresponse shared with multicellular Volvocine green algae, Phys. Rev. E, Volume 107 (2023), 014404, 25 pages | DOI

[25] Alan C. H. Tsang; Amy T Lam; Ingmar H Riedel-Kruse Polygonal motion and adaptable phototaxis via flagellar beat switching in the microswimmer Euglena gracilis, Nat. Phys., Volume 14 (2018), pp. 1216-1222 | DOI

[26] Armand Javadi; Jorge Arrieta; Idan Tuval; Marco Polin Photo-bioconvection: towards light control of flows in active suspensions, Philos. Trans. R. Soc. Lond., Ser. A, Volume 378 (2020) no. 2179, 20190523 | DOI | MR

[27] Jorge Arrieta; Marco Polin; Ramón Saleta-Piersanti; Idan Tuval Light control of localized photobioconvection, Phys. Rev. Lett., Volume 123 (2019), 158101, 6 pages | DOI

[28] Julien Dervaux; Marina Capellazzi Resta; Philippe Brunet Light-controlled flows in active fluids, Nat. Phys., Volume 13 (2017), pp. 306-312 | DOI

[29] Aina Ramamonjy; Julien Dervaux; Philippe Brunet Nonlinear phototaxis and instabilities in suspensions of light-seeking algae, Phys. Rev. Lett., Volume 128 (2022), 258101, 5 pages | DOI

[30] Chlamydomonas in the Laboratory, The Chlamydomonas Sourcebook, Academic Press Inc. (2009), pp. 241-302 | DOI

[31] Taha Laroussi; Mojtaba Jarrahi; Gabriel Amselem Short-term memory effects in the phototactic behavior of microalgae, Soft Matter, Volume 20 (2024), pp. 3996-4006 | DOI

[32] Anaëlle Givaudan; Francesco Picella; Hélène de Maleprade Supplementary material to “Roll formation in a bio-active fluid”, 2026 | DOI

[33] Multiphase flow handbook (Clayton T Crowe, ed.), CRC Press, 2005 | DOI

Cité par Sources :

Commentaires - Politique