[Les suspensions actives et leurs modèles non linéaires]
Les suspensions actives, telles que les suspensions de micro-organismes auto-propulsés ou autres nageurs microscopiques artificiels, sont connues pour leur dynamique complexe et la formation de motifs en raison dʼinteractions hydrodynamiques. Nous résumons dans cet article les dernières avancées dans la modélisation de ces systèmes à lʼaide de théories cinétiques continues. Dans un premier temps, nous développons un modèle cinétique élémentaire pour une suspension de particules auto-propulsées alongées et considérons sa stabilité et sa dynamique non linéaire. Nous présentons ensuite des extensions de ce modèle pour analyser la rhéologie effective des suspensions actives en écoulement externe, lʼeffet des interactions stériques dans les systémes à forte concentration et la dynamique de suspensions chimiotactiques dans des champs chimiques.
Active suspensions, such as suspensions of self-propelled microorganisms and related synthetic microswimmers, are known to undergo complex dynamics and pattern formation as a result of hydrodynamic interactions. In this review, we summarize recent efforts to model these systems using continuum kinetic theories. We first derive a basic kinetic model for a suspension of self-propelled rodlike particles and discuss its stability and nonlinear dynamics. We then present extensions of this model to analyze the effective rheology of active suspensions in external flows, the effect of steric interactions in concentrated systems, and the dynamics of chemotactically responsive suspensions in chemical fields.
Mots-clés : Suspension active, Théorie cinétique, Micro-organismes nageants, Interactions hydrodynamiques, Instabilité
David Saintillan 1 ; Michael J. Shelley 2
@article{CRPHYS_2013__14_6_497_0, author = {David Saintillan and Michael J. Shelley}, title = {Active suspensions and their nonlinear models}, journal = {Comptes Rendus. Physique}, pages = {497--517}, publisher = {Elsevier}, volume = {14}, number = {6}, year = {2013}, doi = {10.1016/j.crhy.2013.04.001}, language = {en}, }
David Saintillan; Michael J. Shelley. Active suspensions and their nonlinear models. Comptes Rendus. Physique, Living fluids / Fluides vivants, Volume 14 (2013) no. 6, pp. 497-517. doi : 10.1016/j.crhy.2013.04.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.04.001/
[1] The hydrodynamics of swimming microorganisms, Rep. Prog. Phys., Volume 72 (2009), p. 096601
[2] Relation between metachronism and the direction of ciliary beat in Metazoa, Q. J. Microsc. Sci., Volume 95 (1954), pp. 503-521
[3] Reconstitution of metachronal waves in ciliated cortical sheets of Paramecium. I. Wave stabilities, J. Exp. Biol., Volume 192 (1994), pp. 61-72
[4] Particle diffusion in a quasi-two-dimensional bacterial bath, Phys. Rev. Lett., Volume 84 (2000), pp. 3017-3020
[5] Self-concentration and large-scale coherence in bacterial dynamics, Phys. Rev. Lett., Volume 93 (2004), p. 098103
[6] Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, Volume 102 (2005), pp. 2277-2282
[7] Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations, Exp. Fluids, Volume 43 (2007), pp. 737-753
[8] Organized cell swimming motions in Bacillus subtilis colonies: patterns of short-lived whirls and jets, J. Bacteriol., Volume 181 (1999), pp. 600-609
[9] Concentration dependence of the collective dynamics of swimming bacteria, Phys. Rev. Lett., Volume 98 (2007), p. 158102
[10] Enhanced mixing and spatial instability in concentrated bacterial suspensions, Phys. Rev. E, Volume 80 (2009), p. 031903
[11] Single particle tracking of correlated bacterial dynamics, Biophys. J., Volume 84 (2003), pp. 2634-2637
[12] Pair velocity correlations among swimming Escherichia coli bacteria are determined by force-quadrupole hydrodynamic interactions, Phys. Fluids, Volume 19 (2007), p. 061701
[13] Enhanced diffusion due to motile bacteria, Phys. Fluids, Volume 16 (2004), pp. 78-81
[14] Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms, Phys. Rev. Lett., Volume 103 (2009), p. 198103
[15] Enhancement of biomixing by swimming algal cells in two dimensions, Phys. Rev. Lett., Volume 108 (2011), pp. 10391-10395
[16] In pursuit of propulsion at the nanoscale, Soft Matter, Volume 6 (2010), pp. 726-738
[17] Catalytic nano motors: autonomous movement of striped nanorods, J. Am. Chem. Soc., Volume 126 (2004), pp. 13424-13431
[18] Motility of catalytic nanoparticles through self-generated forces, Eur. J. Chem., Volume 11 (2005), pp. 6462-6470
[19] Self-motile colloidal particles: from directed propulsion to random walk, Phys. Rev. Lett., Volume 99 (2007), p. 048102
[20] Locomotion of electrocatalytic nanomotors due to reaction induced charge autoelectrophoresis, Phys. Rev. E, Volume 81 (2010), p. 065302
[21] Carbon-nanotube-induced acceleration of catalytic nanomotors, ACS Nano, Volume 2 (2008), pp. 1069-1075
[22] Microscopic artificial swimmers, Nature, Volume 437 (2005), pp. 862-865
[23] Chiral colloidal clusters, Nature, Volume 455 (2008), p. 380
[24] Controlled propulsion of artificial magnetic nanostructured propellers, Nano Lett., Volume 9 (2009) no. 6, pp. 2243-2245
[25] Artificial bacterial flagella: Fabrication and magnetic control, Appl. Phys. Lett., Volume 94 (2009), p. 064107
[26] Physical properties determining self-organization of motors and microtubules, Science, Volume 292 (2001), pp. 1167-1171
[27] Collective dynamics of active cytoskeletal networks, PLoS ONE, Volume 6 (2011), p. 23798
[28] Spontaneous motion in hierarchically assembled active matter, Nature, Volume 491 (2012), pp. 431-435
[29] Polar patterns of driven filaments, Nature, Volume 467 (2010), pp. 73-77
[30] Large-scale vortex lattice emerging from collectively moving microtubules, Nature, Volume 483 (2012), pp. 448-452
[31] Transport and collective dynamics in suspensions of confined swimming particles, Phys. Rev. Lett., Volume 95 (2005), p. 204501
[32] Direct measurement of the flow field around swimming microorganisms, Phys. Rev. Lett., Volume 105 (2010), p. 168101
[33] Oscillatory flows induced by microorganisms swimming in two dimensions, Phys. Rev. Lett., Volume 105 (2010), p. 168102
[34] Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering, Proc. Natl. Acad. Sci. USA, Volume 108 (2011), pp. 10940-10945
[35] Dynamics of confined suspensions of swimming particles, J. Phys. Condens. Matter, Volume 21 (2009), p. 204107
[36] The rheology of a semi-dilute suspension of swimming model micro-organisms, J. Fluid Mech., Volume 588 (2007), pp. 399-435
[37] Fluid particle diffusion in a semidilute suspension of model micro-organisms, Phys. Rev. E, Volume 82 (2010), p. 021408
[38] Coherent structures in monolayers of swimming particles, Phys. Rev. Lett., Volume 100 (2008), p. 088103
[39] Development of coherent structures in concentrated suspensions of swimming model micro-organisms, J. Fluid Mech., Volume 615 (2008), pp. 401-431
[40] Orientational order and instabilities in suspensions of self-locomoting rods, Phys. Rev. Lett., Volume 99 (2007), p. 058102
[41] Emergence of coherent structures and large-scale flows in motile suspensions, J. R. Soc. Interface, Volume 9 (2012), p. 571
[42] Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles, Phys. Rev. Lett., Volume 89 (2002), p. 058101
[43] Instabilities and pattern formation in active particle suspensions: Kinetic theory and continuum simulations, Phys. Rev. Lett., Volume 100 (2008), p. 178103
[44] Instabilities, pattern formation and mixing in active suspensions, Phys. Fluids, Volume 20 (2008), p. 123304
[45] Collective swimming and the dynamics of bacterial turbulence, Biophys. J., Volume 95 (2008), p. 1564
[46] Critical bacterial concentration for the onset of collective swimming, J. Fluid Mech., Volume 632 (2009), pp. 359-400
[47] Statistical mechanics and hydrodynamics of bacterial suspensions, Proc. Natl. Acad. Sci. USA, Volume 106 (2009), pp. 15567-15572
[48] Meso-scale turbulence in living fluids, Proc. Natl. Acad. Sci. USA, Volume 109 (2012), pp. 14308-14313
[49] Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases, J. Polym. Sci., Polym. Phys. Ed., Volume 19 (1981), pp. 229-243
[50] The Theory of Polymer Dynamics, Oxford University Press, Oxford, 1986
[51] Slender-body theory for particles of arbitrary cross-section in Stokes flow, J. Fluid Mech., Volume 44 (1970), pp. 419-440
[52] Slender-body theory for slow viscous flow, J. Fluid Mech., Volume 75 (1976), pp. 705-714
[53] An improved slender-body theory for Stokes flow, J. Fluid Mech., Volume 99 (1980), pp. 411-431
[54] Dynamics of complex bio-fluids (M. Ben-Amar; A. Goriely; M. Muller; L. Cugliandolo, eds.), New Trends in the Physics and Mechanics of Biological Systems, Oxford University Press, 2011
[55] The motion of ellipsoidal particles immersed in a viscous fluid, Proc. R. Soc. Lond. A, Volume 102 (1922), pp. 161-179
[56] The motion of rigid particles in a shear flow at low Reynolds number, J. Fluid Mech., Volume 14 (1962), pp. 284-304
[57] Random walk of a swimmer in a low-Reynolds-number medium, Phys. Rev. E, Volume 83 (2011), p. 035301
[58] Diffusion and spatial correlations in suspensions of swimming particles, Phys. Rev. Lett., Volume 100 (2008), p. 248101
[59] Correlations and fluctuations of stress and velocity in suspensions of swimming microorganisms, Phys. Fluids, Volume 23 (2011), p. 121902
[60] Effective viscosity of dilute bacterial suspensions: A two-dimensional model, Phys. Biol., Volume 5 (2008), p. 046003
[61] Three-dimensional model for the effective viscosity of bacterial suspensions, Phys. Rev. E, Volume 80 (2009), p. 041922
[62] Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations, J. Math. Biol., Volume 62 (2011), pp. 707-740
[63] Viscosity of bacterial suspensions: Hydrodynamic interactions and self-induced noise, Phys. Rev. E, Volume 83 (2011), p. 050904
[64] Microscopic modeling of active bacterial suspensions, Math. Model. Nat. Phenom., Volume 6 (2011), pp. 98-129
[65] On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers, Commun. Pure Appl. Math., Volume 5 (1952), pp. 109-118
[66] A spherical envelope approach to ciliary propulsion, J. Fluid Mech., Volume 46 (1971), pp. 199-208
[67] Nutrient uptake by a self-propelled steady squirmer, Q. J. Mech. Appl. Math., Volume 56 (2003), pp. 65-91
[68] Average nutrient uptake by a self-propelled unsteady squirmer, J. Fluid Mech., Volume 539 (2005), pp. 93-112
[69] Modeling simple locomotors in Stokes flow, J. Comput. Phys., Volume 229 (2010), pp. 958-977
[70] Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media, Springer, 1983
[71] Fluid mechanics of propulsion by cilia and flagella, Annu. Rev. Fluid Mech., Volume 9 (1977), pp. 339-398
[72] Flows driven by agella of multicellular organisms enhance long-range molecular transport, Proc. Natl. Acad. Sci. USA, Volume 103 (2006), pp. 8315-8319
[73] Hydrodynamics, Dover, 1932
[74] Hydrodynamic interaction of two swimming model micro-organisms, J. Fluid Mech., Volume 568 (2006), pp. 119-160
[75] Instabilities and global order in concentrated suspensions of spherical microswimmers, Phys. Fluids, Volume 23 (2011), p. 111702
[76] Hydrodynamics of self-propulsion near a boundary: Predictions and accuracy of far-field approximations, J. Fluid Mech., Volume 700 (2012), pp. 105-147
[77] Locomotion by tangential deformation in a polymeric fluid, Phys. Rev. E, Volume 83 (2011), p. 011901
[78] The stress system in a suspension of force-free particles, J. Fluid Mech., Volume 41 (1970), pp. 545-570
[79] The stress generated in a non-dilute suspension of elongated particles by pure straining motion, J. Fluid Mech., Volume 46 (1971), pp. 813-829
[80] Transport properties of two-phase materials with random structure, Annu. Rev. Fluid Mech., Volume 6 (1974), pp. 227-255
[81] B. Ezhilan, M.J. Shelley, D. Saintillan, Instabilities and nonlinear dynamics of concentrated active suspensions, submitted for publication.
[82] Stability of active suspensions, Phys. Rev. E, Volume 81 (2010), p. 046311
[83] A general theory of Taylor dispersion phenomena, Physicochem. Hydrodyn., Volume 1 (1980), pp. 91-123
[84] Instability regimes in flowing suspensions of swimming micro-organisms, Phys. Fluids, Volume 23 (2011), p. 011901
[85] Chaotic dynamics and oxygen transport in thin films of aerotactic bacteria, Phys. Fluids, Volume 24 (2012), p. 091701
[86] Hydrodynamics of confined active fluids, Phys. Rev. Lett., Volume 110 (2013), p. 038101
[87] Generalized constitutive equation for polymeric liquid crystals. Part 1. Model formulation using the Hamiltonian (Poisson bracket) formulation, J. Non-Newton. Fluid Mech., Volume 35 (1990), pp. 51-72
[88] Thermodynamics of Flowing Systems, Oxford University Press, Oxford, 1994
[89] Lattice Boltzmann simulations of liquid crystalline fluids: Active gels and blue phases, Soft Matter, Volume 5 (2009), pp. 3791-3800
[90] Steady-state hydrodynamic instabilities of active liquid crystals: Hybrid lattice-Boltzmann simulations, Phys. Rev. E, Volume 76 (2007), p. 031921
[91] Hydrodynamics of non-homogeneous active gels, Soft Matter, Volume 6 (2010), pp. 774-778
[92] Nonlinear dynamics and rheology of active fluids: Simulations in two dimensions, Phys. Rev. E, Volume 83 (2011), p. 041910
[93] Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations, J. Fluid Mech., Volume 76 (1976), pp. 187-208
[94] Spontaneous circulation of confined active suspensions, Phys. Rev. Lett., Volume 109 (2012), p. 168105
[95] Random Walks in Biology, Princeton University Press, 1983
[96] Chemotaxis in Escherichia coli analysed by three-dimensional tracking, Nature, Volume 239 (1972), pp. 500-504
[97] Rheology of active-particle suspensions, Phys. Rev. Lett., Volume 92 (2004), p. 118101
[98] The dilute rheology of swimming suspensions: A simple kinetic model, Exp. Mech., Volume 50 (2010), pp. 1275-1281
[99] Extensional rheology of active suspensions, Phys. Rev. E, Volume 81 (2010), p. 056307
[100] Rheology of a dilute suspensions of axisymmetric Brownian particles, Int. J. Multiph. Flow, Volume 1 (1974), pp. 195-341
[101] The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles, J. Fluid Mech., Volume 52 (1972), pp. 683-712
[102] The rheology of fibre suspensions, J. Non-Newton. Fluid Mech., Volume 87 (1999), pp. 369-402
[103] Transport mechanics in systems of orientable particles. 4. Convective transport, J. Colloid Interface Sci., Volume 47 (1974), pp. 199-264
[104] Rheology of dilute suspensions of charged fibers, Phys. Fluids, Volume 8 (1996), pp. 2792-2807
[105] Reduction of viscosity in suspension of swimming bacteria, Phys. Rev. Lett., Volume 103 (2009), p. 148101
[106] Effective viscosity of microswimmer suspensions, Phys. Rev. Lett., Volume 104 (2010), p. 098102
[107] J. Gachelin, G. Miño, H. Berthet, A. Lindner, A. Rousselet, E. Clément, Non-Newtonian viscosity of E. coli suspensions, submitted for publication.
[108] Effective viscosity of bacterial suspensions: A three-dimensional PDE model with stochastic torque, Commun. Pure Appl. Anal., Volume 11 (2012), pp. 19-46
[109] Hydrodynamics and rheology of active liquid crystals: A numerical investigation, Phys. Rev. Lett., Volume 98 (2007), p. 118102
[110] Shearing active gels close to the isotropic-nematic transition, Phys. Rev. Lett., Volume 101 (2008), p. 068102
[111] Weakly sheared active suspensions: Hydrodynamics, stability, and rheology, Phys. Rev. E, Volume 83 (2011), p. 031911
[112] Sheared active fluids: Thickening, thinning, and vanishing viscosity, Phys. Rev. E, Volume 81 (2010), p. 051908
[113] Nonlinear rheology of active particle suspensions: Insights from an analytical approach, Phys. Rev. E, Volume 83 (2011), p. 011907
[114] Dynamics of swimming bacteria: Transition to directional order at high concentration, Phys. Rev. E, Volume 83 (2011), p. 061907
[115] Dynamics of bacterial swarming, Biophys. J., Volume 98 (2010), pp. 2082-2090
[116] Collective motion and density fluctuations in bacterial colonies, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), pp. 13626-13630
[117] Scale-invariant correlations in dynamics bacterial clusters, Phys. Rev. Lett., Volume 108 (2012), p. 148101
[118] The Physics of Liquid Crystals, Clarendon Press, Oxford, 1993
[119] Phenomenology of short-range-order effects in the isotropic phase of nematic materials, Phys. Lett. A, Volume 30 (1969), pp. 454-455
[120] Hydrodynamics and rheology of active polar filaments (P. Lenz, ed.), Cell Motility, Springer, 2008, pp. 177-206
[121] Complex spontaneous flows and concentration banding in active polar films, Phys. Rev. Lett., Volume 101 (2008), p. 198101
[122] Model for dynamical coherence in thin films of self-propelled microorganisms, Phys. Rev. E, Volume 75 (2007), p. 040901
[123] Eine einfache molekulare Theorie des nematischen kristallinflüssigen Zustandes, Z. Naturforsch., Volume 13 (1958), pp. 564-566
[124] The pressure moments for two spheres in a low-Reynolds-number flow, Phys. Fluids A, Volume 5 (1993), pp. 2317-2325
[125] Pressure-driven flow of suspensions: Simulation and theory, J. Fluid Mech., Volume 275 (1994), pp. 157-199
[126] The suspension balance model revisited, Phys. Fluids, Volume 23 (2011), p. 043304
[127] Temporal stimulation of chemotaxis in Escherichia coli, Proc. Natl. Acad. Sci. USA, Volume 71 (1974), pp. 1388-1392
[128] Modelling run-and-tumble chemotaxis in a shear flow, Bull. Math. Biol., Volume 62 (2000), pp. 775-791
[129] The stability of a homogeneous suspension of chemotactic bacteria, Phys. Fluids, Volume 23 (2011), p. 041901
[130] Chemotaxis driven instability of a confined bacterial suspension, Phys. Rev. Lett., Volume 108 (2012), p. 038101
[131] Collective chemotactic dynamics in the presence of self-generated fluid flows, Phys. Rev. E, Volume 86 (2012), p. 040902
[132] Complex patterns formed by motile cells of Escherichia coli, Nature, Volume 349 (1991), pp. 630-633
[133] Small talk: Cell-to-cell communication in bacteria, Cell, Volume 109 (2002), pp. 421-424
[134] Motion to form a quorum, Science, Volume 301 (2003), p. 188
[135] Model for chemotaxis, J. Theor. Biol., Volume 30 (1971), pp. 225-234
[136] Physical mechanisms for chemotactic pattern formation by bacteria, Biophys. J., Volume 74 (1998), pp. 1677-1693
[137] Biased random walk models for chemotaxis and related diffusion approximations, J. Math. Biol., Volume 9 (1980), pp. 147-177
[138] Cell balance equation for chemotactic bacteria with a biphasic tumbling frequency, J. Math. Biol., Volume 47 (2003), pp. 518-546
[139] E. Lushi, R.E. Goldstein, M.J. Shelley, Auto-chemotactic active suspensions: Modeling, analysis and simulations, submitted for publication.
[140] Geometrically designing the kinematic behavior of catalytic nanomotors, Nano Lett., Volume 11 (2011), pp. 2543-2550
[141] Dispersion of self-propelled rods undergoing fluctuation-driven flips, Phys. Rev. Lett., Volume 110 (2013), p. 038301
[142] An active biopolymer network controlled by bimolecular motors, Proc. Natl. Acad. Sci. USA, Volume 106 (2009), pp. 15192-15197
[143] The mechanics and statistics of active matter, Annu. Rev. Condens. Matter Phys., Volume 1 (2010), pp. 323-345
[144] Soft active matter, Rev. Mod. Phys. (2011) (submitted for publication)
[145] Moving fluid with bacterial carpets, Biophys. J., Volume 86 (2004), pp. 1863-1870
[146] Swimming bacteria power microscopic gears, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), pp. 969-974
[147] Bacterial ratchet motors, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), pp. 9541-9545
[148] Electrokinetic and optical control of bacterial microrobots, J. Micromech. Microeng., Volume 21 (2011), p. 035001
- Feedback Control of Active Matter, Annual Review of Condensed Matter Physics, Volume 16 (2025) no. 1, p. 319 | DOI:10.1146/annurev-conmatphys-042424-043926
- Nanoparticle and scalar mixing of magnetic colloids in microchannels—Prevalence of Kelvin body force over spin-up flow, Chemical Engineering Science, Volume 310 (2025), p. 121547 | DOI:10.1016/j.ces.2025.121547
- Biomimetic swarm of active particles with coupled passive-active interactions, Soft Matter (2025) | DOI:10.1039/d4sm01298d
- Metareview: a survey of active matter reviews, The European Physical Journal E, Volume 48 (2025) no. 2 | DOI:10.1140/epje/s10189-024-00466-z
- Achieving designed texture and flows in bulk active nematics using optimal control theory, The Journal of Chemical Physics, Volume 162 (2025) no. 13 | DOI:10.1063/5.0244046
- Hydrodynamics of Active Colloids, Active Colloids (2024), p. 412 | DOI:10.1039/9781837674589-00412
- Semi-Dilute Rheology of Particle Suspensions: Derivation of Doi-Type Models, Archive for Rational Mechanics and Analysis, Volume 248 (2024) no. 6 | DOI:10.1007/s00205-024-02047-y
- Collective motion in a sheet of microswimmers, Communications Physics, Volume 7 (2024) no. 1 | DOI:10.1038/s42005-024-01587-9
- Introduction, Controlling Mesoscale Turbulence (2024), p. 1 | DOI:10.1007/978-3-031-67636-9_1
- Derivation of a Continuum Theory for Polar Active Fluids, Controlling Mesoscale Turbulence (2024), p. 61 | DOI:10.1007/978-3-031-67636-9_3
- Analysis of a model describing bacterial colony expansion in radial geometry driven by chemotaxis, European Journal of Applied Mathematics (2024), p. 1 | DOI:10.1017/s0956792524000809
- Dynamics and steady state of squirmer motion in liquid crystal, European Journal of Applied Mathematics, Volume 35 (2024) no. 2, p. 225 | DOI:10.1017/s0956792523000177
- Learning fast, accurate, and stable closures of a kinetic theory of an active fluid, Journal of Computational Physics, Volume 504 (2024), p. 112869 | DOI:10.1016/j.jcp.2024.112869
- Generalised Jeffery's equations for rapidly spinning particles. Part 1. Spheroids, Journal of Fluid Mechanics, Volume 979 (2024) | DOI:10.1017/jfm.2023.923
- Hydrodynamic instabilities in a two-dimensional sheet of microswimmers embedded in a three-dimensional fluid, Journal of Fluid Mechanics, Volume 980 (2024) | DOI:10.1017/jfm.2023.985
- Migration of confined micro-swimmers subject to anisotropic diffusion, Journal of Fluid Mechanics, Volume 985 (2024) | DOI:10.1017/jfm.2024.349
- Variational bounds and nonlinear stability of an active nematic suspension, Journal of Fluid Mechanics, Volume 988 (2024) | DOI:10.1017/jfm.2024.401
- Self-organization of autophoretic suspensions in confined shear flows, Physical Review Fluids, Volume 9 (2024) no. 1 | DOI:10.1103/physrevfluids.9.014202
- Flows, self-organization, and transport in living cells, Physical Review Fluids, Volume 9 (2024) no. 12 | DOI:10.1103/physrevfluids.9.120501
- Active Darcy’s Law, Physical Review Letters, Volume 132 (2024) no. 18 | DOI:10.1103/physrevlett.132.188301
- Geometry-Sensitive Protrusion Growth Directs Confined Cell Migration, Physical Review Letters, Volume 132 (2024) no. 9 | DOI:10.1103/physrevlett.132.098401
- Supramolecular Assemblies in Active Motor-Filament Systems: Micelles, Bilayers, and Foams, Physical Review X, Volume 14 (2024) no. 3 | DOI:10.1103/physrevx.14.031031
- Cytoplasmic stirring by active carpets, Proceedings of the National Academy of Sciences, Volume 121 (2024) no. 30 | DOI:10.1073/pnas.2405114121
- Learning locally dominant force balances in active particle systems, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 480 (2024) no. 2304 | DOI:10.1098/rspa.2023.0532
- Hydrodynamically induced aggregation of two dimensional oriented active particles, Soft Matter, Volume 20 (2024) no. 19, p. 3901 | DOI:10.1039/d3sm01670f
- Flow states of two dimensional active gels driven by external shear, Soft Matter, Volume 20 (2024) no. 4, p. 738 | DOI:10.1039/d3sm00919j
- Model predictive control of non-interacting active Brownian particles, Soft Matter, Volume 20 (2024) no. 43, p. 8581 | DOI:10.1039/d4sm00902a
- Multi-population dissolution in confined active fluids, Soft Matter, Volume 20 (2024) no. 7, p. 1392 | DOI:10.1039/d3sm01196h
- A novel robust adaptive control for nonlinear uncertain quarter-vehicle suspension system in presence of unknown time delay actuation, Systems Science Control Engineering, Volume 12 (2024) no. 1 | DOI:10.1080/21642583.2023.2293907
- Swimming in Complex Fluids, Annual Review of Condensed Matter Physics, Volume 14 (2023) no. 1, p. 381 | DOI:10.1146/annurev-conmatphys-040821-112149
- A Multiscale Numerical Simulation of Quasi-Two-Dimensional Bacterial Turbulence Using a Regularized Stokeslet Representation, Gas Dynamics with Applications in Industry and Life Sciences, Volume 429 (2023), p. 215 | DOI:10.1007/978-3-031-35871-5_11
- Approval of Artificial Intelligence and Machine Learning Models to Solve Problems in Nonlinear Active Suspension Systems, Handbook of Research on AI and Machine Learning Applications in Customer Support and Analytics (2023), p. 128 | DOI:10.4018/978-1-6684-7105-0.ch008
- Existence of global weak solutions to an inhomogeneous Doi model for active liquid crystals, Journal of Differential Equations, Volume 354 (2023), p. 1 | DOI:10.1016/j.jde.2023.01.006
- Instability of a thin film of chemotactic active suspension, Journal of Fluid Mechanics, Volume 955 (2023) | DOI:10.1017/jfm.2022.1063
- Pre-asymptotic dispersion of active particles through a vertical pipe: the origin of hydrodynamic focusing, Journal of Fluid Mechanics, Volume 962 (2023) | DOI:10.1017/jfm.2023.273
- The interplay between bulk flow and boundary conditions on the distribution of microswimmers in channel flow, Journal of Fluid Mechanics, Volume 976 (2023) | DOI:10.1017/jfm.2023.897
- Jeffery’s Orbits and Microswimmers in Flows: A Theoretical Review, Journal of the Physical Society of Japan, Volume 92 (2023) no. 6 | DOI:10.7566/jpsj.92.062001
- Shape-induced pairing of spheroidal squirmers, Physical Review Fluids, Volume 8 (2023) no. 11 | DOI:10.1103/physrevfluids.8.113103
- Modeling and numerical simulations of Brownian rodlike particles with anisotropic translational diffusion, Physical Review Fluids, Volume 8 (2023) no. 3 | DOI:10.1103/physrevfluids.8.033302
- Collective Motion and Pattern Formation in Phase-Synchronizing Active Fluids, Physical Review Letters, Volume 130 (2023) no. 12 | DOI:10.1103/physrevlett.130.128202
- Self-Oscillation and Synchronization Transitions in Elastoactive Structures, Physical Review Letters, Volume 130 (2023) no. 17 | DOI:10.1103/physrevlett.130.178202
- Hamiltonian Dynamics and Structural States of Two-Dimensional Active Particles, Physical Review Letters, Volume 131 (2023) no. 17 | DOI:10.1103/physrevlett.131.178301
- On the Stabilizing Effect of Swimming in an Active Suspension, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 6, p. 6093 | DOI:10.1137/22m1496037
- Confined active matter in external fields, Soft Matter, Volume 19 (2023) no. 7, p. 1384 | DOI:10.1039/d2sm01135b
- How Cross-Link Numbers Shape the Large-Scale Physics of Cytoskeletal Materials, Annual Review of Condensed Matter Physics, Volume 13 (2022) no. 1, p. 365 | DOI:10.1146/annurev-conmatphys-052521-093943
- Fluid-driven bacterial accumulation in proximity of laser-textured surfaces, Colloids and Surfaces B: Biointerfaces, Volume 217 (2022), p. 112654 | DOI:10.1016/j.colsurfb.2022.112654
- Single and multi-vertices solitons in lattices of active Morse - van der Pol units, Communications in Nonlinear Science and Numerical Simulation, Volume 114 (2022), p. 106678 | DOI:10.1016/j.cnsns.2022.106678
- A fast Chebyshev method for the Bingham closure with application to active nematic suspensions, Journal of Computational Physics, Volume 457 (2022), p. 110937 | DOI:10.1016/j.jcp.2021.110937
- Instability of an autochemotactic active suspension, Journal of Fluid Mechanics, Volume 934 (2022) | DOI:10.1017/jfm.2021.1155
- Weakly nonlinear analysis of pattern formation in active suspensions, Journal of Fluid Mechanics, Volume 942 (2022) | DOI:10.1017/jfm.2022.392
- Collective dynamics and rheology of confined phoretic suspensions, Journal of Fluid Mechanics, Volume 943 (2022) | DOI:10.1017/jfm.2022.366
- Interactions in active colloids, Journal of Physics: Condensed Matter, Volume 34 (2022) no. 8, p. 083002 | DOI:10.1088/1361-648x/ac3a86
- Self-induced hydrodynamic coil-stretch transition of active polymers, Physical Review E, Volume 105 (2022) no. 1 | DOI:10.1103/physreve.105.014608
- Anisotropic diffusion of ellipsoidal tracers in microswimmer suspensions, Physical Review Fluids, Volume 7 (2022) no. 1 | DOI:10.1103/physrevfluids.7.013103
- Activity induced turbulence in driven active matter, Physical Review Fluids, Volume 7 (2022) no. 3 | DOI:10.1103/physrevfluids.7.034602
- Thermodynamically consistent coarse-graining of polar active fluids, Physical Review Fluids, Volume 7 (2022) no. 6 | DOI:10.1103/physrevfluids.7.063301
- Hydrodynamic interactions in anomalous rheology of active suspensions, Physical Review Research, Volume 4 (2022) no. 4 | DOI:10.1103/physrevresearch.4.043091
- Euchromatin Activity Enhances Segregation and Compaction of Heterochromatin in the Cell Nucleus, Physical Review X, Volume 12 (2022) no. 4 | DOI:10.1103/physrevx.12.041033
- Bacterial active matter, Reports on Progress in Physics, Volume 85 (2022) no. 7, p. 076601 | DOI:10.1088/1361-6633/ac723d
- Arrested-motility states in populations of shape-anisotropic active Janus particles, Science Advances, Volume 8 (2022) no. 26 | DOI:10.1126/sciadv.abo3604
- Motile microorganisms in complex fluids, Science Talks, Volume 3 (2022), p. 100048 | DOI:10.1016/j.sctalk.2022.100048
- Generalized Onsager Principle and It Applications, Frontiers and Progress of Current Soft Matter Research (2021), p. 101 | DOI:10.1007/978-981-15-9297-3_3
- Researching particulate matter characteristics for mitigating health risks generated by road vehicles, IOP Conference Series: Materials Science and Engineering, Volume 1169 (2021) no. 1, p. 012031 | DOI:10.1088/1757-899x/1169/1/012031
- Shape matters: a Brownian microswimmer in a channel, Journal of Fluid Mechanics, Volume 916 (2021) | DOI:10.1017/jfm.2021.144
- Hydrochemical interactions of phoretic particles: a regularized multipole framework, Journal of Fluid Mechanics, Volume 919 (2021) | DOI:10.1017/jfm.2021.387
- Transient dispersion process of active particles, Journal of Fluid Mechanics, Volume 927 (2021) | DOI:10.1017/jfm.2021.747
- High-order simulation scheme for active particles driven by stress boundary conditions, Journal of Physics: Condensed Matter, Volume 33 (2021) no. 24, p. 244004 | DOI:10.1088/1361-648x/abf8cf
- Active carpets drive non-equilibrium diffusion and enhanced molecular fluxes, Nature Communications, Volume 12 (2021) no. 1 | DOI:10.1038/s41467-021-22029-y
- Spontaneous directional flow of active magnetic particles, Physical Review E, Volume 103 (2021) no. 4 | DOI:10.1103/physreve.103.l040601
- Layered Chiral Active Matter: Beyond Odd Elasticity, Physical Review Letters, Volume 126 (2021) no. 24 | DOI:10.1103/physrevlett.126.248001
- Lévy Walks and Path Chaos in the Dispersal of Elongated Structures Moving across Cellular Vortical Flows, Physical Review Letters, Volume 127 (2021) no. 7 | DOI:10.1103/physrevlett.127.074503
- Probability theory of active suspensions, Physics of Fluids, Volume 33 (2021) no. 6 | DOI:10.1063/5.0047227
- Effective medium model for a suspension of active swimmers, Physics of Fluids, Volume 33 (2021) no. 9 | DOI:10.1063/5.0062290
- Self-Propelled Rods: Insights and Perspectives for Active Matter, Annual Review of Condensed Matter Physics, Volume 11 (2020) no. 1, p. 441 | DOI:10.1146/annurev-conmatphys-031119-050611
- A scalable computational platform for particulate Stokes suspensions, Journal of Computational Physics, Volume 416 (2020), p. 109524 | DOI:10.1016/j.jcp.2020.109524
- Axisymmetric spheroidal squirmers and self-diffusiophoretic particles, Journal of Physics: Condensed Matter, Volume 32 (2020) no. 16, p. 164001 | DOI:10.1088/1361-648x/ab5edd
- Motile Bacteria at Oil–Water Interfaces: Pseudomonas aeruginosa, Langmuir, Volume 36 (2020) no. 25, p. 6888 | DOI:10.1021/acs.langmuir.9b03578
- Interface-mediated spontaneous symmetry breaking and mutual communication between drops containing chemically active particles, Nature Communications, Volume 11 (2020) no. 1 | DOI:10.1038/s41467-020-15713-y
- Collective dynamics of sperm cells, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 375 (2020) no. 1807, p. 20190384 | DOI:10.1098/rstb.2019.0384
- Transition to turbulence in driven active matter, Physical Review E, Volume 101 (2020) no. 2 | DOI:10.1103/physreve.101.023103
- Steady-state distributions and nonsteady dynamics in nonequilibrium systems, Physical Review E, Volume 101 (2020) no. 4 | DOI:10.1103/physreve.101.042107
- Universality in incompressible active fluid: Effect of nonlocal shear stress, Physical Review E, Volume 102 (2020) no. 3 | DOI:10.1103/physreve.102.032616
- Hydrochemical interactions in dilute phoretic suspensions: From individual particle properties to collective organization, Physical Review Fluids, Volume 5 (2020) no. 10 | DOI:10.1103/physrevfluids.5.104203
- Upstream swimming and Taylor dispersion of active Brownian particles, Physical Review Fluids, Volume 5 (2020) no. 7 | DOI:10.1103/physrevfluids.5.073102
- Symmetric Mixtures of Pusher and Puller Microswimmers Behave as Noninteracting Suspensions, Physical Review Letters, Volume 125 (2020) no. 1 | DOI:10.1103/physrevlett.125.018003
- 3D Spatial Exploration by E. coli Echoes Motor Temporal Variability, Physical Review X, Volume 10 (2020) no. 2 | DOI:10.1103/physrevx.10.021004
- Swimming Suppresses Correlations in Dilute Suspensions of Pusher Microorganisms, Physical Review X, Volume 10 (2020) no. 3 | DOI:10.1103/physrevx.10.031059
- Physical mechanisms of platelet formation, Proceedings of the National Academy of Sciences, Volume 117 (2020) no. 36, p. 21841 | DOI:10.1073/pnas.2014390117
- Pattern-induced local symmetry breaking in active-matter systems, Proceedings of the National Academy of Sciences, Volume 117 (2020) no. 50, p. 31623 | DOI:10.1073/pnas.2010302117
- Collective vibrations of a hydrodynamic active lattice, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 476 (2020) no. 2239, p. 20200155 | DOI:10.1098/rspa.2020.0155
- Shear stress response of active liquid crystal suspensions, Radiation Effects and Defects in Solids, Volume 175 (2020) no. 1-2, p. 190 | DOI:10.1080/10420150.2020.1718143
- Collective Dynamics of Model Pili-Based Twitcher-Mode Bacilliforms, Scientific Reports, Volume 10 (2020) no. 1 | DOI:10.1038/s41598-020-67212-1
- How many ways a cell can move: the modes of self-propulsion of an active drop, Soft Matter, Volume 16 (2020) no. 12, p. 3106 | DOI:10.1039/d0sm00070a
- Nonlinear microrheology of active Brownian suspensions, Soft Matter, Volume 16 (2020) no. 4, p. 1034 | DOI:10.1039/c9sm01713e
- The Fluid Dynamics of Cell Motility, 2020 | DOI:10.1017/9781316796047
- Active dipolar spheroids in shear flow and transverse field: Population splitting, cross-stream migration, and orientational pinning, The Journal of Chemical Physics, Volume 152 (2020) no. 20 | DOI:10.1063/5.0002757
- Swimming bacteria in Poiseuille flow: The quest for active Bretherton-Jeffery trajectories, EPL (Europhysics Letters), Volume 126 (2019) no. 4, p. 44003 | DOI:10.1209/0295-5075/126/44003
- Linear Rayleigh–Bénard stability of a transversely isotropic fluid, European Journal of Applied Mathematics, Volume 30 (2019) no. 04, p. 659 | DOI:10.1017/s0956792518000359
- Computational mean-field modeling of confined active fluids, Journal of Computational Physics, Volume 397 (2019), p. 108841 | DOI:10.1016/j.jcp.2019.07.040
- Dispersion of active particles in confined unidirectional flows, Journal of Fluid Mechanics, Volume 877 (2019), p. 1 | DOI:10.1017/jfm.2019.562
- Interfacial instabilities in active viscous films, Journal of Non-Newtonian Fluid Mechanics, Volume 269 (2019), p. 57 | DOI:10.1016/j.jnnfm.2019.06.004
- A model of strongly biased chemotaxis reveals the trade-offs of different bacterial migration strategies, Mathematical Medicine and Biology: A Journal of the IMA (2019) | DOI:10.1093/imammb/dqz007
- Self-straining of actively crosslinked microtubule networks, Nature Physics, Volume 15 (2019) no. 12, p. 1295 | DOI:10.1038/s41567-019-0642-1
- Anisotropic mesoscale turbulence and pattern formation in microswimmer suspensions induced by orienting external fields, New Journal of Physics, Volume 21 (2019) no. 1, p. 013037 | DOI:10.1088/1367-2630/aaff09
- Direct-forcing fictitious domain method for simulating non-Brownian active particles, Physical Review E, Volume 100 (2019) no. 1 | DOI:10.1103/physreve.100.013304
- Driven active matter: Fluctuations and a hydrodynamic instability, Physical Review Fluids, Volume 4 (2019) no. 2 | DOI:10.1103/physrevfluids.4.024306
- Shear-Induced First-Order Transition in Polar Liquid Crystals, Physical Review Letters, Volume 122 (2019) no. 8 | DOI:10.1103/physrevlett.122.088004
- Relating Rheotaxis and Hydrodynamic Actuation using Asymmetric Gold-Platinum Phoretic Rods, Physical Review Letters, Volume 123 (2019) no. 17 | DOI:10.1103/physrevlett.123.178004
- Tractionless Self-Propulsion of Active Drops, Physical Review Letters, Volume 123 (2019) no. 24 | DOI:10.1103/physrevlett.123.248006
- Lattices of Hydrodynamically Interacting Flapping Swimmers, Physical Review X, Volume 9 (2019) no. 4 | DOI:10.1103/physrevx.9.041024
- Topological defects in active liquid crystals, Physics-Uspekhi, Volume 62 (2019) no. 9, p. 892 | DOI:10.3367/ufne.2018.10.038433
- Instability of active suspensions of liquid crystals, Radiation Effects and Defects in Solids, Volume 174 (2019) no. 1-2, p. 125 | DOI:10.1080/10420150.2019.1577852
- Stress fluctuations in transient active networks, Soft Matter, Volume 15 (2019) no. 17, p. 3520 | DOI:10.1039/c9sm00205g
- Collective dynamics in a monolayer of squirmers confined to a boundary by gravity, Soft Matter, Volume 15 (2019) no. 28, p. 5685 | DOI:10.1039/c9sm00889f
- Particle-resolved lattice Boltzmann simulations of 3-dimensional active turbulence, Soft Matter, Volume 15 (2019) no. 39, p. 7747 | DOI:10.1039/c9sm00774a
- Exact results for sheared polar active suspensions with variable liquid crystalline order, The Journal of Chemical Physics, Volume 150 (2019) no. 10 | DOI:10.1063/1.5080343
- Fluctuation-dissipation in active matter, The Journal of Chemical Physics, Volume 150 (2019) no. 18 | DOI:10.1063/1.5081725
- Effect of Cytoskeleton Elasticity on Amoeboid Swimming, Biophysical Journal, Volume 115 (2018) no. 7, p. 1316 | DOI:10.1016/j.bpj.2018.08.005
- Microfluidic flow actuation using magnetoactive suspensions, EPL (Europhysics Letters), Volume 121 (2018) no. 2, p. 24002 | DOI:10.1209/0295-5075/121/24002
- Equations for Polymeric Materials, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 973 | DOI:10.1007/978-3-319-13344-7_23
- Dynamics and structure of an apolar active suspension in an annulus, Journal of Fluid Mechanics, Volume 835 (2018), p. 393 | DOI:10.1017/jfm.2017.759
- Five ways to model active processes in elastic solids: Active forces, active stresses, active strains, active fibers, and active metrics, Mechanics Research Communications, Volume 93 (2018), p. 75 | DOI:10.1016/j.mechrescom.2017.09.003
- Insensitivity of active nematic liquid crystal dynamics to topological constraints, Physical Review E, Volume 97 (2018) no. 1 | DOI:10.1103/physreve.97.012702
- Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions, Physical Review E, Volume 97 (2018) no. 2 | DOI:10.1103/physreve.97.022613
- Three-bead steering microswimmers, Physical Review E, Volume 97 (2018) no. 2 | DOI:10.1103/physreve.97.023102
- Collective dynamics of two-dimensional swimming bacteria: Experiments and models, Physical Review E, Volume 98 (2018) no. 3 | DOI:10.1103/physreve.98.032415
- Nonlinear concentration patterns and bands in autochemotactic suspensions, Physical Review E, Volume 98 (2018) no. 5 | DOI:10.1103/physreve.98.052411
- Higher-order force moments of active particles, Physical Review Fluids, Volume 3 (2018) no. 4 | DOI:10.1103/physrevfluids.3.044101
- Active Suspensions have Nonmonotonic Flow Curves and Multiple Mechanical Equilibria, Physical Review Letters, Volume 121 (2018) no. 1 | DOI:10.1103/physrevlett.121.018001
- Spatial averaging of a dissipative particle dynamics model for active suspensions, Physics of Fluids, Volume 30 (2018) no. 3, p. 033301 | DOI:10.1063/1.5024746
- Extensile motor activity drives coherent motions in a model of interphase chromatin, Proceedings of the National Academy of Sciences, Volume 115 (2018) no. 45, p. 11442 | DOI:10.1073/pnas.1807073115
- Influences of transversely isotropic rheology and translational diffusion on the stability of active suspensions, Royal Society Open Science, Volume 5 (2018) no. 8, p. 180456 | DOI:10.1098/rsos.180456
- Re-entrant bimodality in spheroidal chiral swimmers in shear flow, Scientific Reports, Volume 8 (2018) no. 1 | DOI:10.1038/s41598-018-26771-0
- Do hydrodynamic interactions affect the swim pressure?, Soft Matter, Volume 14 (2018) no. 18, p. 3581 | DOI:10.1039/c8sm00197a
- Activity-induced instability of phonons in 1D microfluidic crystals, Soft Matter, Volume 14 (2018) no. 6, p. 945 | DOI:10.1039/c7sm01335c
- PHOTOFOCUSING OF MICROORGANISMS SWIMMING IN A FLOW WITH SHEAR, The ANZIAM Journal, Volume 59 (2018) no. 4, p. 455 | DOI:10.1017/s1446181118000123
- A 2D suspension of active agents: the role of fluid mediated interactions, Journal of Physics: Condensed Matter, Volume 29 (2017) no. 11, p. 115102 | DOI:10.1088/1361-648x/aa5a64
- Active matter, Journal of Statistical Mechanics: Theory and Experiment, Volume 2017 (2017) no. 5, p. 054002 | DOI:10.1088/1742-5468/aa6bc5
- Microorganisms and Their Response to Stimuli, Modeling of Microscale Transport in Biological Processes (2017), p. 171 | DOI:10.1016/b978-0-12-804595-4.00007-9
- Cytoplasmic flows as signatures for the mechanics of mitotic positioning, Molecular Biology of the Cell, Volume 28 (2017) no. 23, p. 3261 | DOI:10.1091/mbc.e16-02-0108
- Active matter at the interface between materials science and cell biology, Nature Reviews Materials, Volume 2 (2017) no. 9 | DOI:10.1038/natrevmats.2017.48
- Filament actuation by an active colloid at low Reynolds number, New Journal of Physics, Volume 19 (2017) no. 3, p. 033021 | DOI:10.1088/1367-2630/aa5f80
- Minimal model for a hydrodynamic fingering instability in microroller suspensions, Physical Review Fluids, Volume 2 (2017) no. 11 | DOI:10.1103/physrevfluids.2.114301
- Hydrodynamic shocks in microroller suspensions, Physical Review Fluids, Volume 2 (2017) no. 9 | DOI:10.1103/physrevfluids.2.092301
- Analytical structure, dynamics, and coarse graining of a kinetic model of an active fluid, Physical Review Fluids, Volume 2 (2017) no. 9 | DOI:10.1103/physrevfluids.2.093302
- Self-Driven Droplet Powered By Active Nematics, Physical Review Letters, Volume 119 (2017) no. 10 | DOI:10.1103/physrevlett.119.108002
- Role of Correlations in the Collective Behavior of Microswimmer Suspensions, Physical Review Letters, Volume 119 (2017) no. 2 | DOI:10.1103/physrevlett.119.028005
- Transition from turbulent to coherent flows in confined three-dimensional active fluids, Science, Volume 355 (2017) no. 6331 | DOI:10.1126/science.aal1979
- Phototaxis as a Collective Phenomenon in Cyanobacterial Colonies, Scientific Reports, Volume 7 (2017) no. 1 | DOI:10.1038/s41598-017-18160-w
- Geometric control of active collective motion, Soft Matter, Volume 13 (2017) no. 2, p. 363 | DOI:10.1039/c6sm01955b
- Population splitting of rodlike swimmers in Couette flow, Soft Matter, Volume 13 (2017) no. 25, p. 4494 | DOI:10.1039/c7sm00293a
- Modeling of active swimmer suspensions and their interactions with the environment, Soft Matter, Volume 13 (2017) no. 36, p. 6033 | DOI:10.1039/c7sm00766c
- Collective sedimentation of squirmers under gravity, Soft Matter, Volume 13 (2017) no. 41, p. 7548 | DOI:10.1039/c7sm01180f
- The Dynamics of Microtubule/Motor-Protein Assemblies in Biology and Physics, Annual Review of Fluid Mechanics, Volume 48 (2016) no. 1, p. 487 | DOI:10.1146/annurev-fluid-010814-013639
- Microfluidic rheology of active particle suspensions: Kinetic theory, Biomicrofluidics, Volume 10 (2016) no. 4 | DOI:10.1063/1.4954193
- Anomalous Fluctuations in the Orientation and Velocity of Swarming Bacteria, Biophysical Journal, Volume 111 (2016) no. 1, p. 247 | DOI:10.1016/j.bpj.2016.05.043
- Clustering instability of focused swimmers, EPL (Europhysics Letters), Volume 116 (2016) no. 6, p. 64004 | DOI:10.1209/0295-5075/116/64004
- Equations for Polymeric Materials, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_23-1
- A model for collective dynamics in ant raids, Journal of Mathematical Biology, Volume 72 (2016) no. 6, p. 1579 | DOI:10.1007/s00285-015-0929-5
- Emergent behavior in active colloids, Journal of Physics: Condensed Matter, Volume 28 (2016) no. 25, p. 253001 | DOI:10.1088/0953-8984/28/25/253001
- Getting drowned in a swirl: Deformable bead-spring model microswimmers in external flow fields, Physical Review E, Volume 93 (2016) no. 2 | DOI:10.1103/physreve.93.022610
- Hydrodynamic length-scale selection in microswimmer suspensions, Physical Review E, Volume 94 (2016) no. 2 | DOI:10.1103/physreve.94.020601
- Density Shock Waves in Confined Microswimmers, Physical Review Letters, Volume 116 (2016) no. 4 | DOI:10.1103/physrevlett.116.048101
- Stresslets Induced by Active Swimmers, Physical Review Letters, Volume 117 (2016) no. 14 | DOI:10.1103/physrevlett.117.148001
- Transport of helical gyrotactic swimmers in channels, Physics of Fluids, Volume 28 (2016) no. 7 | DOI:10.1063/1.4958733
- Complexity Reduction in Many Particle Systems with Random Initial Data, SIAM/ASA Journal on Uncertainty Quantification, Volume 4 (2016) no. 1, p. 446 | DOI:10.1137/140969786
- Collective chemotaxis and segregation of active bacterial colonies, Scientific Reports, Volume 6 (2016) no. 1 | DOI:10.1038/srep21269
- Dynamic self-assembly of microscale rotors and swimmers, Soft Matter, Volume 12 (2016) no. 20, p. 4584 | DOI:10.1039/c5sm03127c
- Flow-induced nonequilibrium self-assembly in suspensions of stiff, apolar, active filaments, Soft Matter, Volume 12 (2016) no. 44, p. 9068 | DOI:10.1039/c6sm02104b
- Phase separation and coexistence of hydrodynamically interacting microswimmers, Soft Matter, Volume 12 (2016) no. 48, p. 9821 | DOI:10.1039/c6sm02042a
- Bacterial suspensions under flow, The European Physical Journal Special Topics, Volume 225 (2016) no. 11-12, p. 2389 | DOI:10.1140/epjst/e2016-60068-6
- Theory of Locomotion Through Complex Fluids, Complex Fluids in Biological Systems (2015), p. 283 | DOI:10.1007/978-1-4939-2065-5_8
- Theory of Active Suspensions, Complex Fluids in Biological Systems (2015), p. 319 | DOI:10.1007/978-1-4939-2065-5_9
- Large-scale simulation of steady and time-dependent active suspensions with the force-coupling method, Journal of Computational Physics, Volume 302 (2015), p. 524 | DOI:10.1016/j.jcp.2015.09.020
- The trapping in high-shear regions of slender bacteria undergoing chemotaxis in a channel, Journal of Fluid Mechanics, Volume 771 (2015) | DOI:10.1017/jfm.2015.198
- On the distribution and swim pressure of run-and-tumble particles in confinement, Journal of Fluid Mechanics, Volume 781 (2015) | DOI:10.1017/jfm.2015.520
- Multi-objective optimization of the vehicle ride comfort based on Kriging approximate model and NSGA-II, Journal of Mechanical Science and Technology, Volume 29 (2015) no. 3, p. 1007 | DOI:10.1007/s12206-015-0215-x
- Spontaneous Flows in Suspensions of Active Cyclic Swimmers, Journal of Nonlinear Science, Volume 25 (2015) no. 5, p. 1125 | DOI:10.1007/s00332-015-9261-x
- Live from under the lens: exploring microbial motility with dynamic imaging and microfluidics, Nature Reviews Microbiology, Volume 13 (2015) no. 12, p. 761 | DOI:10.1038/nrmicro3567
- Stokesian spherical swimmers and active particles, Physical Review E, Volume 91 (2015) no. 4 | DOI:10.1103/physreve.91.043018
- Flagellar swimmers oscillate between pusher- and puller-type swimming, Physical Review E, Volume 92 (2015) no. 6 | DOI:10.1103/physreve.92.063019
- Multiscale Polar Theory of Microtubule and Motor-Protein Assemblies, Physical Review Letters, Volume 114 (2015) no. 4 | DOI:10.1103/physrevlett.114.048101
- Tuned, driven, and active soft matter, Physics Reports, Volume 554 (2015), p. 1 | DOI:10.1016/j.physrep.2014.10.001
- Physics of microswimmers—single particle motion and collective behavior: a review, Reports on Progress in Physics, Volume 78 (2015) no. 5, p. 056601 | DOI:10.1088/0034-4885/78/5/056601
- Motility induced changes in viscosity of suspensions of swimming microbes in extensional flows, Soft Matter, Volume 11 (2015) no. 23, p. 4658 | DOI:10.1039/c4sm02742f
- Kinetic attractor phase diagrams of active nematic suspensions: the dilute regime, Soft Matter, Volume 11 (2015) no. 32, p. 6393 | DOI:10.1039/c5sm00852b
- Brownian microhydrodynamics of active filaments, Soft Matter, Volume 11 (2015) no. 47, p. 9073 | DOI:10.1039/c5sm02021b
- Self-phoretic active particles interacting by diffusiophoresis: A numerical study of the collapsed state and dynamic clustering, The European Physical Journal E, Volume 38 (2015) no. 8 | DOI:10.1140/epje/i2015-15093-4
- Self-Assembly of Nanorod Motors into Geometrically Regular Multimers and Their Propulsion by Ultrasound, ACS Nano, Volume 8 (2014) no. 11, p. 11053 | DOI:10.1021/nn5039614
- Swimming in shear, Journal of Fluid Mechanics, Volume 744 (2014), p. 1 | DOI:10.1017/jfm.2014.16
- Rheological signatures in limit cycle behaviour of dilute, active, polar liquid crystalline polymers in steady shear, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 372 (2014) no. 2029, p. 20130362 | DOI:10.1098/rsta.2013.0362
- Globally aligned states and hydrodynamic traffic jams in confined suspensions of active asymmetric particles, Physical Review E, Volume 89 (2014) no. 2 | DOI:10.1103/physreve.89.021002
- Activity-induced clustering in model dumbbell swimmers: The role of hydrodynamic interactions, Physical Review E, Volume 90 (2014) no. 2 | DOI:10.1103/physreve.90.022303
- Dispersion of model microorganisms swimming in a nonuniform suspension, Physical Review E, Volume 90 (2014) no. 3 | DOI:10.1103/physreve.90.033008
- Stability of liquid films covered by a carpet of self-propelled surfactant particles, Physical Review E, Volume 90 (2014) no. 3 | DOI:10.1103/physreve.90.030401
- Hydrodynamics Determines Collective Motion and Phase Behavior of Active Colloids in Quasi-Two-Dimensional Confinement, Physical Review Letters, Volume 112 (2014) no. 11 | DOI:10.1103/physrevlett.112.118101
- Collective Surfing of Chemically Active Particles, Physical Review Letters, Volume 112 (2014) no. 12 | DOI:10.1103/physrevlett.112.128304
- Flow of complex suspensions, Physics of Fluids, Volume 26 (2014) no. 10 | DOI:10.1063/1.4899260
- Tailoring the interactions between self-propelled bodies, The European Physical Journal E, Volume 37 (2014) no. 6 | DOI:10.1140/epje/i2014-14055-8
- Amoeboid Swimming: A Generic Self-Propulsion of Cells in Fluids by Means of Membrane Deformations, Physical Review Letters, Volume 111 (2013) no. 22 | DOI:10.1103/physrevlett.111.228102
- Instabilities and nonlinear dynamics of concentrated active suspensions, Physics of Fluids, Volume 25 (2013) no. 7 | DOI:10.1063/1.4812822
Cité par 201 documents. Sources : Crossref
Commentaires - Politique