Comptes Rendus
Living Fluids/Fluides vivants
Active suspensions and their nonlinear models
[Les suspensions actives et leurs modèles non linéaires]
Comptes Rendus. Physique, Living fluids / Fluides vivants, Volume 14 (2013) no. 6, pp. 497-517.

Les suspensions actives, telles que les suspensions de micro-organismes auto-propulsés ou autres nageurs microscopiques artificiels, sont connues pour leur dynamique complexe et la formation de motifs en raison dʼinteractions hydrodynamiques. Nous résumons dans cet article les dernières avancées dans la modélisation de ces systèmes à lʼaide de théories cinétiques continues. Dans un premier temps, nous développons un modèle cinétique élémentaire pour une suspension de particules auto-propulsées alongées et considérons sa stabilité et sa dynamique non linéaire. Nous présentons ensuite des extensions de ce modèle pour analyser la rhéologie effective des suspensions actives en écoulement externe, lʼeffet des interactions stériques dans les systémes à forte concentration et la dynamique de suspensions chimiotactiques dans des champs chimiques.

Active suspensions, such as suspensions of self-propelled microorganisms and related synthetic microswimmers, are known to undergo complex dynamics and pattern formation as a result of hydrodynamic interactions. In this review, we summarize recent efforts to model these systems using continuum kinetic theories. We first derive a basic kinetic model for a suspension of self-propelled rodlike particles and discuss its stability and nonlinear dynamics. We then present extensions of this model to analyze the effective rheology of active suspensions in external flows, the effect of steric interactions in concentrated systems, and the dynamics of chemotactically responsive suspensions in chemical fields.

Publié le :
DOI : 10.1016/j.crhy.2013.04.001
Keywords: Active suspension, Kinetic theory, Swimming microorganisms, Hydrodynamic interactions, Instability
Mots-clés : Suspension active, Théorie cinétique, Micro-organismes nageants, Interactions hydrodynamiques, Instabilité

David Saintillan 1 ; Michael J. Shelley 2

1 Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
2 Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
@article{CRPHYS_2013__14_6_497_0,
     author = {David Saintillan and Michael J. Shelley},
     title = {Active suspensions and their nonlinear models},
     journal = {Comptes Rendus. Physique},
     pages = {497--517},
     publisher = {Elsevier},
     volume = {14},
     number = {6},
     year = {2013},
     doi = {10.1016/j.crhy.2013.04.001},
     language = {en},
}
TY  - JOUR
AU  - David Saintillan
AU  - Michael J. Shelley
TI  - Active suspensions and their nonlinear models
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 497
EP  - 517
VL  - 14
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.04.001
LA  - en
ID  - CRPHYS_2013__14_6_497_0
ER  - 
%0 Journal Article
%A David Saintillan
%A Michael J. Shelley
%T Active suspensions and their nonlinear models
%J Comptes Rendus. Physique
%D 2013
%P 497-517
%V 14
%N 6
%I Elsevier
%R 10.1016/j.crhy.2013.04.001
%G en
%F CRPHYS_2013__14_6_497_0
David Saintillan; Michael J. Shelley. Active suspensions and their nonlinear models. Comptes Rendus. Physique, Living fluids / Fluides vivants, Volume 14 (2013) no. 6, pp. 497-517. doi : 10.1016/j.crhy.2013.04.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.04.001/

[1] E. Lauga; T.R. Powers The hydrodynamics of swimming microorganisms, Rep. Prog. Phys., Volume 72 (2009), p. 096601

[2] E.W. Knight-Jones Relation between metachronism and the direction of ciliary beat in Metazoa, Q. J. Microsc. Sci., Volume 95 (1954), pp. 503-521

[3] K.-I. Okamoto; Y. Nakaoka Reconstitution of metachronal waves in ciliated cortical sheets of Paramecium. I. Wave stabilities, J. Exp. Biol., Volume 192 (1994), pp. 61-72

[4] X.-L. Wu; A. Libchaber Particle diffusion in a quasi-two-dimensional bacterial bath, Phys. Rev. Lett., Volume 84 (2000), pp. 3017-3020

[5] C. Dombrowski; L. Cisneros; S. Chatkaew; R.E. Goldstein; J.O. Kessler Self-concentration and large-scale coherence in bacterial dynamics, Phys. Rev. Lett., Volume 93 (2004), p. 098103

[6] I. Tuval; L. Cisneros; C. Dombrowski; C.W. Wolgemuth; J.O. Kessler; R.E. Goldstein Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, Volume 102 (2005), pp. 2277-2282

[7] L.H. Cisneros; R. Cortez; C. Dombrowski; R.E. Goldstein; J.O. Kessler Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations, Exp. Fluids, Volume 43 (2007), pp. 737-753

[8] N.H. Mendelson; A. Bourque; K. Wilkening; K.R. Anderson; J.C. Watkins Organized cell swimming motions in Bacillus subtilis colonies: patterns of short-lived whirls and jets, J. Bacteriol., Volume 181 (1999), pp. 600-609

[9] A. Sokolov; I.S. Aranson; J.O. Kessler; R.E. Goldstein Concentration dependence of the collective dynamics of swimming bacteria, Phys. Rev. Lett., Volume 98 (2007), p. 158102

[10] A. Sokolov; R.E. Goldstein; F.I. Feldchtein; I.S. Aranson Enhanced mixing and spatial instability in concentrated bacterial suspensions, Phys. Rev. E, Volume 80 (2009), p. 031903

[11] G.V. Soni; B.M. Jaffar Ali; T. Hatwalne; G.V. Shivashankar Single particle tracking of correlated bacterial dynamics, Biophys. J., Volume 84 (2003), pp. 2634-2637

[12] Q. Liao; G. Subramanian; M.P. DeLisa; D.L. Koch; M. Wu Pair velocity correlations among swimming Escherichia coli bacteria are determined by force-quadrupole hydrodynamic interactions, Phys. Fluids, Volume 19 (2007), p. 061701

[13] M.J. Kim; K.S. Breuer Enhanced diffusion due to motile bacteria, Phys. Fluids, Volume 16 (2004), pp. 78-81

[14] K.C. Leptos; J.S. Guasto; J.P. Gollub; A.I. Pesci; R.E. Goldstein Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms, Phys. Rev. Lett., Volume 103 (2009), p. 198103

[15] H. Kurtuldu; J.S. Guasto; K.A. Jonhson; J.P. Gollub Enhancement of biomixing by swimming algal cells in two dimensions, Phys. Rev. Lett., Volume 108 (2011), pp. 10391-10395

[16] S.J. Ebbens; J.R. Howse In pursuit of propulsion at the nanoscale, Soft Matter, Volume 6 (2010), pp. 726-738

[17] W.F. Paxton; K.C. Kistler; C.C. Olmeda; A. Sen; S.K. St. Angelo; Y. Cao; T.E. Mallouk; P.E. Lammert Catalytic nano motors: autonomous movement of striped nanorods, J. Am. Chem. Soc., Volume 126 (2004), pp. 13424-13431

[18] W.F. Paxton; A. Sen; T.E. Mallouk Motility of catalytic nanoparticles through self-generated forces, Eur. J. Chem., Volume 11 (2005), pp. 6462-6470

[19] J.R. Howse; R.A.L. Jones; A.J. Ryan; T. Gough; R. Vafabakhsh; R. Golestanian Self-motile colloidal particles: from directed propulsion to random walk, Phys. Rev. Lett., Volume 99 (2007), p. 048102

[20] J.L. Moran; P.M. Wheat; J.D. Posner Locomotion of electrocatalytic nanomotors due to reaction induced charge autoelectrophoresis, Phys. Rev. E, Volume 81 (2010), p. 065302

[21] R. Laocharoensuk; J. Burdick; J. Wang Carbon-nanotube-induced acceleration of catalytic nanomotors, ACS Nano, Volume 2 (2008), pp. 1069-1075

[22] R. Dreyfus; J. Baudry; M.L. Roper; H.A. Stone; M. Fermigier; J. Bibette Microscopic artificial swimmers, Nature, Volume 437 (2005), pp. 862-865

[23] D. Zerrouki; J. Baudry; D. Pine; P. Chaiken; J. Bibette Chiral colloidal clusters, Nature, Volume 455 (2008), p. 380

[24] A. Ghosh; P. Fischer Controlled propulsion of artificial magnetic nanostructured propellers, Nano Lett., Volume 9 (2009) no. 6, pp. 2243-2245

[25] L. Zhang; J.J. Abbott; L. Dong; B.E. Kratochvil; D. Bell; B.J. Nelson Artificial bacterial flagella: Fabrication and magnetic control, Appl. Phys. Lett., Volume 94 (2009), p. 064107

[26] T. Surrey; F. Nédélec; S. Leibler; E. Karsenti Physical properties determining self-organization of motors and microtubules, Science, Volume 292 (2001), pp. 1167-1171

[27] S. Köhler; V. Schaller; A.R. Bausch Collective dynamics of active cytoskeletal networks, PLoS ONE, Volume 6 (2011), p. 23798

[28] T. Sanchez; D. Chen; S. DeCamp; M. Heymann; Z. Dogic Spontaneous motion in hierarchically assembled active matter, Nature, Volume 491 (2012), pp. 431-435

[29] V. Schaller; C. Weber; C. Semmrich; E. Frey; A.R. Bausch Polar patterns of driven filaments, Nature, Volume 467 (2010), pp. 73-77

[30] Y. Sumino; K. Nagai; Y. Shitaka; D. Tanaka; K. Yoshikawa; H. Chate; K. Oiwa Large-scale vortex lattice emerging from collectively moving microtubules, Nature, Volume 483 (2012), pp. 448-452

[31] J.P. Hernandez-Ortiz; C.G. Stoltz; M.D. Graham Transport and collective dynamics in suspensions of confined swimming particles, Phys. Rev. Lett., Volume 95 (2005), p. 204501

[32] K. Drescher; R.E. Goldstein; N. Michel; M. Polin; I. Tuval Direct measurement of the flow field around swimming microorganisms, Phys. Rev. Lett., Volume 105 (2010), p. 168101

[33] J.S. Guasto; K.A. Johnson; J.P. Gollub Oscillatory flows induced by microorganisms swimming in two dimensions, Phys. Rev. Lett., Volume 105 (2010), p. 168102

[34] K. Drescher; J. Dunkel; L.H. Cisneros; S. Ganguly; R.E. Goldstein Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering, Proc. Natl. Acad. Sci. USA, Volume 108 (2011), pp. 10940-10945

[35] J.P. Hernández-Ortiz; P.T. Underhill; M.D. Graham Dynamics of confined suspensions of swimming particles, J. Phys. Condens. Matter, Volume 21 (2009), p. 204107

[36] T. Ishikawa; T.J. Pedley The rheology of a semi-dilute suspension of swimming model micro-organisms, J. Fluid Mech., Volume 588 (2007), pp. 399-435

[37] T. Ishikawa; J.T. Locsei; T.J. Pedley Fluid particle diffusion in a semidilute suspension of model micro-organisms, Phys. Rev. E, Volume 82 (2010), p. 021408

[38] T. Ishikawa; T.J. Pedley Coherent structures in monolayers of swimming particles, Phys. Rev. Lett., Volume 100 (2008), p. 088103

[39] T. Ishikawa; J.T. Locsei; T.J. Pedley Development of coherent structures in concentrated suspensions of swimming model micro-organisms, J. Fluid Mech., Volume 615 (2008), pp. 401-431

[40] D. Saintillan; M. Shelley Orientational order and instabilities in suspensions of self-locomoting rods, Phys. Rev. Lett., Volume 99 (2007), p. 058102

[41] D. Saintillan; M. Shelley Emergence of coherent structures and large-scale flows in motile suspensions, J. R. Soc. Interface, Volume 9 (2012), p. 571

[42] R.A. Simha; S. Ramaswamy Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles, Phys. Rev. Lett., Volume 89 (2002), p. 058101

[43] D. Saintillan; M. Shelley Instabilities and pattern formation in active particle suspensions: Kinetic theory and continuum simulations, Phys. Rev. Lett., Volume 100 (2008), p. 178103

[44] D. Saintillan; M. Shelley Instabilities, pattern formation and mixing in active suspensions, Phys. Fluids, Volume 20 (2008), p. 123304

[45] C. Wolgemuth Collective swimming and the dynamics of bacterial turbulence, Biophys. J., Volume 95 (2008), p. 1564

[46] G. Subramanian; D.L. Koch Critical bacterial concentration for the onset of collective swimming, J. Fluid Mech., Volume 632 (2009), pp. 359-400

[47] A. Baskaran; M.C. Marchetti Statistical mechanics and hydrodynamics of bacterial suspensions, Proc. Natl. Acad. Sci. USA, Volume 106 (2009), pp. 15567-15572

[48] H. Wensinka; J. Dunkel; S. Heidenreich; K. Drescher; R. Goldstein; H. Lowen; J. Yeomans Meso-scale turbulence in living fluids, Proc. Natl. Acad. Sci. USA, Volume 109 (2012), pp. 14308-14313

[49] M. Doi Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases, J. Polym. Sci., Polym. Phys. Ed., Volume 19 (1981), pp. 229-243

[50] M. Doi; S.F. Edwards The Theory of Polymer Dynamics, Oxford University Press, Oxford, 1986

[51] G.K. Batchelor Slender-body theory for particles of arbitrary cross-section in Stokes flow, J. Fluid Mech., Volume 44 (1970), pp. 419-440

[52] J. Keller; S. Rubinow Slender-body theory for slow viscous flow, J. Fluid Mech., Volume 75 (1976), pp. 705-714

[53] R.E. Johnson An improved slender-body theory for Stokes flow, J. Fluid Mech., Volume 99 (1980), pp. 411-431

[54] C. Hohenegger; M. Shelley Dynamics of complex bio-fluids (M. Ben-Amar; A. Goriely; M. Muller; L. Cugliandolo, eds.), New Trends in the Physics and Mechanics of Biological Systems, Oxford University Press, 2011

[55] G.B. Jeffery The motion of ellipsoidal particles immersed in a viscous fluid, Proc. R. Soc. Lond. A, Volume 102 (1922), pp. 161-179

[56] F.P. Bretherton The motion of rigid particles in a shear flow at low Reynolds number, J. Fluid Mech., Volume 14 (1962), pp. 284-304

[57] M. Garcia; S. Berti; P. Peyla; S. Rafaï Random walk of a swimmer in a low-Reynolds-number medium, Phys. Rev. E, Volume 83 (2011), p. 035301

[58] P.T. Underhill; J.P. Hernandez-Ortiz; M.D. Graham Diffusion and spatial correlations in suspensions of swimming particles, Phys. Rev. Lett., Volume 100 (2008), p. 248101

[59] P.T. Underhill; M.D. Graham Correlations and fluctuations of stress and velocity in suspensions of swimming microorganisms, Phys. Fluids, Volume 23 (2011), p. 121902

[60] B.M. Haines; I.S. Aranson; L. Berlyand; D.A. Karpeev Effective viscosity of dilute bacterial suspensions: A two-dimensional model, Phys. Biol., Volume 5 (2008), p. 046003

[61] B.M. Haines; A. Sokolov; I.S. Aranson; L. Berlyand; D.A. Karpeev Three-dimensional model for the effective viscosity of bacterial suspensions, Phys. Rev. E, Volume 80 (2009), p. 041922

[62] V. Gyrya; K. Lipnikov; I.S. Aranson; L. Berlyand Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations, J. Math. Biol., Volume 62 (2011), pp. 707-740

[63] S.D. Ryan; B.M. Haines; L. Berlyand; F. Ziebert; I.S. Aranson Viscosity of bacterial suspensions: Hydrodynamic interactions and self-induced noise, Phys. Rev. E, Volume 83 (2011), p. 050904

[64] A. Decoene; S. Martin; B. Maury Microscopic modeling of active bacterial suspensions, Math. Model. Nat. Phenom., Volume 6 (2011), pp. 98-129

[65] M.J. Lighthill On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers, Commun. Pure Appl. Math., Volume 5 (1952), pp. 109-118

[66] J.R. Blake A spherical envelope approach to ciliary propulsion, J. Fluid Mech., Volume 46 (1971), pp. 199-208

[67] V. Magar; T. Goto; T.J. Pedley Nutrient uptake by a self-propelled steady squirmer, Q. J. Mech. Appl. Math., Volume 56 (2003), pp. 65-91

[68] V. Magar; T.J. Pedley Average nutrient uptake by a self-propelled unsteady squirmer, J. Fluid Mech., Volume 539 (2005), pp. 93-112

[69] A. Kanevsky; M. Shelley; A.-K. Tornberg Modeling simple locomotors in Stokes flow, J. Comput. Phys., Volume 229 (2010), pp. 958-977

[70] J. Happel; H. Brenner Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media, Springer, 1983

[71] C. Brennen; H. Winet Fluid mechanics of propulsion by cilia and flagella, Annu. Rev. Fluid Mech., Volume 9 (1977), pp. 339-398

[72] M.B. Short; C.A. Solari; S. Ganguly; T.R. Powers; J.O. Kessler; R.E. Goldstein Flows driven by agella of multicellular organisms enhance long-range molecular transport, Proc. Natl. Acad. Sci. USA, Volume 103 (2006), pp. 8315-8319

[73] H. Lamb Hydrodynamics, Dover, 1932

[74] T. Ishikawa; M.P. Simmonds; T.J. Pedley Hydrodynamic interaction of two swimming model micro-organisms, J. Fluid Mech., Volume 568 (2006), pp. 119-160

[75] A.A. Evans; T. Ishikawa; T. Yamaguchi; E. Lauga Instabilities and global order in concentrated suspensions of spherical microswimmers, Phys. Fluids, Volume 23 (2011), p. 111702

[76] S. Spagnolie; E. Lauga Hydrodynamics of self-propulsion near a boundary: Predictions and accuracy of far-field approximations, J. Fluid Mech., Volume 700 (2012), pp. 105-147

[77] L. Zhu; M. Do-Quang; E. Lauga; L. Brandt Locomotion by tangential deformation in a polymeric fluid, Phys. Rev. E, Volume 83 (2011), p. 011901

[78] G.K. Batchelor The stress system in a suspension of force-free particles, J. Fluid Mech., Volume 41 (1970), pp. 545-570

[79] G.K. Batchelor The stress generated in a non-dilute suspension of elongated particles by pure straining motion, J. Fluid Mech., Volume 46 (1971), pp. 813-829

[80] G.K. Batchelor Transport properties of two-phase materials with random structure, Annu. Rev. Fluid Mech., Volume 6 (1974), pp. 227-255

[81] B. Ezhilan, M.J. Shelley, D. Saintillan, Instabilities and nonlinear dynamics of concentrated active suspensions, submitted for publication.

[82] C. Hohenegger; M. Shelley Stability of active suspensions, Phys. Rev. E, Volume 81 (2010), p. 046311

[83] H. Brenner A general theory of Taylor dispersion phenomena, Physicochem. Hydrodyn., Volume 1 (1980), pp. 91-123

[84] A. Alizadeh Pahlavan; D. Saintillan Instability regimes in flowing suspensions of swimming micro-organisms, Phys. Fluids, Volume 23 (2011), p. 011901

[85] B. Ezhilan; A. Alizadeh Pahlavan; D. Saintillan Chaotic dynamics and oxygen transport in thin films of aerotactic bacteria, Phys. Fluids, Volume 24 (2012), p. 091701

[86] T. Brotto; J.-B. Caussin; E. Lauga; D. Bartolo Hydrodynamics of confined active fluids, Phys. Rev. Lett., Volume 110 (2013), p. 038101

[87] B.J. Edwards; A.N. Beris; M. Grmela Generalized constitutive equation for polymeric liquid crystals. Part 1. Model formulation using the Hamiltonian (Poisson bracket) formulation, J. Non-Newton. Fluid Mech., Volume 35 (1990), pp. 51-72

[88] A.N. Beris; B.J. Edwards Thermodynamics of Flowing Systems, Oxford University Press, Oxford, 1994

[89] M.E. Cates; O. Heinrich; D. Marenduzzo; K. Stratford Lattice Boltzmann simulations of liquid crystalline fluids: Active gels and blue phases, Soft Matter, Volume 5 (2009), pp. 3791-3800

[90] D. Marenduzzo; E. Orlandini; M.E. Cates; J.M. Yeomans Steady-state hydrodynamic instabilities of active liquid crystals: Hybrid lattice-Boltzmann simulations, Phys. Rev. E, Volume 76 (2007), p. 031921

[91] D. Marenduzzo; E. Orlandini Hydrodynamics of non-homogeneous active gels, Soft Matter, Volume 6 (2010), pp. 774-778

[92] S.M. Fielding; D. Marenduzzo; M.E. Cates Nonlinear dynamics and rheology of active fluids: Simulations in two dimensions, Phys. Rev. E, Volume 83 (2011), p. 041910

[93] E.J. Hinch; L.G. Leal Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations, J. Fluid Mech., Volume 76 (1976), pp. 187-208

[94] F.G. Woodhouse; R.E. Goldstein Spontaneous circulation of confined active suspensions, Phys. Rev. Lett., Volume 109 (2012), p. 168105

[95] H.C. Berg Random Walks in Biology, Princeton University Press, 1983

[96] H.C. Berg; D.A. Brown Chemotaxis in Escherichia coli analysed by three-dimensional tracking, Nature, Volume 239 (1972), pp. 500-504

[97] Y. Hatwalne; S. Ramaswamy; M. Rao; R. Aditi Simha Rheology of active-particle suspensions, Phys. Rev. Lett., Volume 92 (2004), p. 118101

[98] D. Saintillan The dilute rheology of swimming suspensions: A simple kinetic model, Exp. Mech., Volume 50 (2010), pp. 1275-1281

[99] D. Saintillan Extensional rheology of active suspensions, Phys. Rev. E, Volume 81 (2010), p. 056307

[100] H. Brenner Rheology of a dilute suspensions of axisymmetric Brownian particles, Int. J. Multiph. Flow, Volume 1 (1974), pp. 195-341

[101] E.J. Hinch; L.G. Leal The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles, J. Fluid Mech., Volume 52 (1972), pp. 683-712

[102] C.J.S. Petrie The rheology of fibre suspensions, J. Non-Newton. Fluid Mech., Volume 87 (1999), pp. 369-402

[103] H. Brenner; D.W. Condiff Transport mechanics in systems of orientable particles. 4. Convective transport, J. Colloid Interface Sci., Volume 47 (1974), pp. 199-264

[104] S.B. Chen; D.L. Koch Rheology of dilute suspensions of charged fibers, Phys. Fluids, Volume 8 (1996), pp. 2792-2807

[105] A. Sokolov; I.S. Aranson Reduction of viscosity in suspension of swimming bacteria, Phys. Rev. Lett., Volume 103 (2009), p. 148101

[106] S. Rafaï; L. Jibuti; P. Peyla Effective viscosity of microswimmer suspensions, Phys. Rev. Lett., Volume 104 (2010), p. 098102

[107] J. Gachelin, G. Miño, H. Berthet, A. Lindner, A. Rousselet, E. Clément, Non-Newtonian viscosity of E. coli suspensions, submitted for publication.

[108] B.M. Haines; I.S. Aranson; L. Berlyand; D.A. Karpeev Effective viscosity of bacterial suspensions: A three-dimensional PDE model with stochastic torque, Commun. Pure Appl. Anal., Volume 11 (2012), pp. 19-46

[109] D. Marenduzzo; E. Orlandini; J.M. Yeomans Hydrodynamics and rheology of active liquid crystals: A numerical investigation, Phys. Rev. Lett., Volume 98 (2007), p. 118102

[110] M.E. Cates; S.M. Fielding; D. Marenduzzo; E. Orlandini; J.M. Yeomans Shearing active gels close to the isotropic-nematic transition, Phys. Rev. Lett., Volume 101 (2008), p. 068102

[111] Z. Cui Weakly sheared active suspensions: Hydrodynamics, stability, and rheology, Phys. Rev. E, Volume 83 (2011), p. 031911

[112] L. Giomi; T.B. Liverpool; M.C. Marchetti Sheared active fluids: Thickening, thinning, and vanishing viscosity, Phys. Rev. E, Volume 81 (2010), p. 051908

[113] S. Heidenreich; S. Hess; S.H.L. Klapp Nonlinear rheology of active particle suspensions: Insights from an analytical approach, Phys. Rev. E, Volume 83 (2011), p. 011907

[114] L.H. Cisneros; J.O. Kessler; S. Ganguly; R.E. Goldstein Dynamics of swimming bacteria: Transition to directional order at high concentration, Phys. Rev. E, Volume 83 (2011), p. 061907

[115] N.C. Darnton; L. Turner; S. Rojevsky; H.C. Berg Dynamics of bacterial swarming, Biophys. J., Volume 98 (2010), pp. 2082-2090

[116] H.P. Zhang; A. Beʼer; E.-L. Florin; H.L. Swinney Collective motion and density fluctuations in bacterial colonies, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), pp. 13626-13630

[117] X. Chen; X. Dong; A. Beʼer; H.L. Swinney; H.P. Zhang Scale-invariant correlations in dynamics bacterial clusters, Phys. Rev. Lett., Volume 108 (2012), p. 148101

[118] P.G. de Gennes; J. Prost The Physics of Liquid Crystals, Clarendon Press, Oxford, 1993

[119] P.G. de Gennes Phenomenology of short-range-order effects in the isotropic phase of nematic materials, Phys. Lett. A, Volume 30 (1969), pp. 454-455

[120] T.B. Liverpool; M.C. Marchetti Hydrodynamics and rheology of active polar filaments (P. Lenz, ed.), Cell Motility, Springer, 2008, pp. 177-206

[121] L. Giomi; M.C. Marchetti; T.B. Liverpool Complex spontaneous flows and concentration banding in active polar films, Phys. Rev. Lett., Volume 101 (2008), p. 198101

[122] I.S. Aranson; A. Sokolov; J.O. Kessler; R.E. Goldstein Model for dynamical coherence in thin films of self-propelled microorganisms, Phys. Rev. E, Volume 75 (2007), p. 040901

[123] W. Maier; A. Saupe Eine einfache molekulare Theorie des nematischen kristallinflüssigen Zustandes, Z. Naturforsch., Volume 13 (1958), pp. 564-566

[124] D.J. Jeffrey; J.F. Morris; J.F. Brady The pressure moments for two spheres in a low-Reynolds-number flow, Phys. Fluids A, Volume 5 (1993), pp. 2317-2325

[125] P.R. Nott; J.F. Brady Pressure-driven flow of suspensions: Simulation and theory, J. Fluid Mech., Volume 275 (1994), pp. 157-199

[126] P.R. Nott; E. Guazzelli; O. Pouliquen The suspension balance model revisited, Phys. Fluids, Volume 23 (2011), p. 043304

[127] D.A. Brown; H.C. Berg Temporal stimulation of chemotaxis in Escherichia coli, Proc. Natl. Acad. Sci. USA, Volume 71 (1974), pp. 1388-1392

[128] R.N. Bearon; T.J. Pedley Modelling run-and-tumble chemotaxis in a shear flow, Bull. Math. Biol., Volume 62 (2000), pp. 775-791

[129] G. Subramanian; D.L. Koch; S.R. Fitzgibbon The stability of a homogeneous suspension of chemotactic bacteria, Phys. Fluids, Volume 23 (2011), p. 041901

[130] T.V. Kasyap; D.L. Koch Chemotaxis driven instability of a confined bacterial suspension, Phys. Rev. Lett., Volume 108 (2012), p. 038101

[131] E. Lushi; R.E. Goldstein; M.J. Shelley Collective chemotactic dynamics in the presence of self-generated fluid flows, Phys. Rev. E, Volume 86 (2012), p. 040902

[132] E.O. Budrene; H.C. Berg Complex patterns formed by motile cells of Escherichia coli, Nature, Volume 349 (1991), pp. 630-633

[133] B.L. Bassler Small talk: Cell-to-cell communication in bacteria, Cell, Volume 109 (2002), pp. 421-424

[134] S. Park; P.M. Wolanin; E.A. Yuzbashyan; P. Silberzan; J.B. Stock; R.H. Austin Motion to form a quorum, Science, Volume 301 (2003), p. 188

[135] E.F. Keller; L.A. Segel Model for chemotaxis, J. Theor. Biol., Volume 30 (1971), pp. 225-234

[136] M.P. Brenner; L. Levitov; E. Budrene Physical mechanisms for chemotactic pattern formation by bacteria, Biophys. J., Volume 74 (1998), pp. 1677-1693

[137] W. Alt Biased random walk models for chemotaxis and related diffusion approximations, J. Math. Biol., Volume 9 (1980), pp. 147-177

[138] K.C. Chen; R.M. Ford; P.T. Cummings Cell balance equation for chemotactic bacteria with a biphasic tumbling frequency, J. Math. Biol., Volume 47 (2003), pp. 518-546

[139] E. Lushi, R.E. Goldstein, M.J. Shelley, Auto-chemotactic active suspensions: Modeling, analysis and simulations, submitted for publication.

[140] J.G. Gibbs; S. Kothari; D. Saintillan; Y.-P. Zhao Geometrically designing the kinematic behavior of catalytic nanomotors, Nano Lett., Volume 11 (2011), pp. 2543-2550

[141] D. Takagi; A.B. Braunschweig; J. Zhang; M.J. Shelley Dispersion of self-propelled rods undergoing fluctuation-driven flips, Phys. Rev. Lett., Volume 110 (2013), p. 038301

[142] G.H. Koenderink; Z. Dogic; F. Nakamura; P.M. Bendix; F.C. MacKintosh; J.H. Hartwig; T.P. Stossel; D.A. Weitz An active biopolymer network controlled by bimolecular motors, Proc. Natl. Acad. Sci. USA, Volume 106 (2009), pp. 15192-15197

[143] S. Ramaswamy The mechanics and statistics of active matter, Annu. Rev. Condens. Matter Phys., Volume 1 (2010), pp. 323-345

[144] M.C. Marchetti; J.F. Joanny; S. Ramaswamy; T.B. Liverpool; J. Prost; M. Rao; R. Aditi Simha Soft active matter, Rev. Mod. Phys. (2011) (submitted for publication)

[145] N. Darnton; L. Turner; K. Breuer; H.C. Berg Moving fluid with bacterial carpets, Biophys. J., Volume 86 (2004), pp. 1863-1870

[146] A. Sokolov; M.M. Apodaca; B.A. Grzybowski; I.S. Aranson Swimming bacteria power microscopic gears, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), pp. 969-974

[147] R. Di Leonardo; L. Angelani; D. DellʼArciprete; G. Ruocco; V. Iebba; S. Schippa; M.P. Conte; F. Mecarini; F. De Angelis; E. Di Fabrizio Bacterial ratchet motors, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), pp. 9541-9545

[148] E.B. Steager; M.S. Sakar; D.H. Kim; V. Kumar; G.J. Pappas; M.J. Kim Electrokinetic and optical control of bacterial microrobots, J. Micromech. Microeng., Volume 21 (2011), p. 035001

  • Sho C. Takatori; Titus Quah; James B. Rawlings Feedback Control of Active Matter, Annual Review of Condensed Matter Physics, Volume 16 (2025) no. 1, p. 319 | DOI:10.1146/annurev-conmatphys-042424-043926
  • Larbi Zakaria; Faïçal Larachi; Abdelwahid Azzi Nanoparticle and scalar mixing of magnetic colloids in microchannels—Prevalence of Kelvin body force over spin-up flow, Chemical Engineering Science, Volume 310 (2025), p. 121547 | DOI:10.1016/j.ces.2025.121547
  • Amir Nourhani Biomimetic swarm of active particles with coupled passive-active interactions, Soft Matter (2025) | DOI:10.1039/d4sm01298d
  • Michael te Vrugt; Raphael Wittkowski Metareview: a survey of active matter reviews, The European Physical Journal E, Volume 48 (2025) no. 2 | DOI:10.1140/epje/s10189-024-00466-z
  • Saptorshi Ghosh; Aparna Baskaran; Michael F. Hagan Achieving designed texture and flows in bulk active nematics using optimal control theory, The Journal of Chemical Physics, Volume 162 (2025) no. 13 | DOI:10.1063/5.0244046
  • William Uspal Hydrodynamics of Active Colloids, Active Colloids (2024), p. 412 | DOI:10.1039/9781837674589-00412
  • Mitia Duerinckx Semi-Dilute Rheology of Particle Suspensions: Derivation of Doi-Type Models, Archive for Rational Mechanics and Analysis, Volume 248 (2024) no. 6 | DOI:10.1007/s00205-024-02047-y
  • Dóra Bárdfalvy; Viktor Škultéty; Cesare Nardini; Alexander Morozov; Joakim Stenhammar Collective motion in a sheet of microswimmers, Communications Physics, Volume 7 (2024) no. 1 | DOI:10.1038/s42005-024-01587-9
  • Henning Reinken Introduction, Controlling Mesoscale Turbulence (2024), p. 1 | DOI:10.1007/978-3-031-67636-9_1
  • Henning Reinken Derivation of a Continuum Theory for Polar Active Fluids, Controlling Mesoscale Turbulence (2024), p. 61 | DOI:10.1007/978-3-031-67636-9_3
  • Elio Espejo Analysis of a model describing bacterial colony expansion in radial geometry driven by chemotaxis, European Journal of Applied Mathematics (2024), p. 1 | DOI:10.1017/s0956792524000809
  • Leonid Berlyand; Hai Chi; Mykhailo Potomkin; Nung Kwan Yip Dynamics and steady state of squirmer motion in liquid crystal, European Journal of Applied Mathematics, Volume 35 (2024) no. 2, p. 225 | DOI:10.1017/s0956792523000177
  • Suryanarayana Maddu; Scott Weady; Michael J. Shelley Learning fast, accurate, and stable closures of a kinetic theory of an active fluid, Journal of Computational Physics, Volume 504 (2024), p. 112869 | DOI:10.1016/j.jcp.2024.112869
  • M.P. Dalwadi; C. Moreau; E.A. Gaffney; K. Ishimoto; B.J. Walker Generalised Jeffery's equations for rapidly spinning particles. Part 1. Spheroids, Journal of Fluid Mechanics, Volume 979 (2024) | DOI:10.1017/jfm.2023.923
  • Viktor Škultéty; Dóra Bárdfalvy; Joakim Stenhammar; Cesare Nardini; Alexander Morozov Hydrodynamic instabilities in a two-dimensional sheet of microswimmers embedded in a three-dimensional fluid, Journal of Fluid Mechanics, Volume 980 (2024) | DOI:10.1017/jfm.2023.985
  • Mingyang Guan; Weiquan Jiang; Luoyi Tao; Guoqian Chen; Joseph H.W. Lee Migration of confined micro-swimmers subject to anisotropic diffusion, Journal of Fluid Mechanics, Volume 985 (2024) | DOI:10.1017/jfm.2024.349
  • Scott Weady Variational bounds and nonlinear stability of an active nematic suspension, Journal of Fluid Mechanics, Volume 988 (2024) | DOI:10.1017/jfm.2024.401
  • Prathmesh Vinze; Sebastien Michelin Self-organization of autophoretic suspensions in confined shear flows, Physical Review Fluids, Volume 9 (2024) no. 1 | DOI:10.1103/physrevfluids.9.014202
  • Michael J. Shelley Flows, self-organization, and transport in living cells, Physical Review Fluids, Volume 9 (2024) no. 12 | DOI:10.1103/physrevfluids.9.120501
  • Ryan R. Keogh; Timofey Kozhukhov; Kristian Thijssen; Tyler N. Shendruk Active Darcy’s Law, Physical Review Letters, Volume 132 (2024) no. 18 | DOI:10.1103/physrevlett.132.188301
  • Johannes Flommersfeld; Stefan Stöberl; Omar Shah; Joachim O. Rädler; Chase P. Broedersz Geometry-Sensitive Protrusion Growth Directs Confined Cell Migration, Physical Review Letters, Volume 132 (2024) no. 9 | DOI:10.1103/physrevlett.132.098401
  • Filippo De Luca; Ivan Maryshev; Erwin Frey Supramolecular Assemblies in Active Motor-Filament Systems: Micelles, Bilayers, and Foams, Physical Review X, Volume 14 (2024) no. 3 | DOI:10.1103/physrevx.14.031031
  • Brato Chakrabarti; Manas Rachh; Stanislav Y. Shvartsman; Michael J. Shelley Cytoplasmic stirring by active carpets, Proceedings of the National Academy of Sciences, Volume 121 (2024) no. 30 | DOI:10.1073/pnas.2405114121
  • Dominik Sturm; Suryanarayana Maddu; Ivo F. Sbalzarini Learning locally dominant force balances in active particle systems, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 480 (2024) no. 2304 | DOI:10.1098/rspa.2023.0532
  • Roee Bashan; Naomi Oppenheimer Hydrodynamically induced aggregation of two dimensional oriented active particles, Soft Matter, Volume 20 (2024) no. 19, p. 3901 | DOI:10.1039/d3sm01670f
  • Wan Luo; Aparna Baskaran; Robert A. Pelcovits; Thomas R. Powers Flow states of two dimensional active gels driven by external shear, Soft Matter, Volume 20 (2024) no. 4, p. 738 | DOI:10.1039/d3sm00919j
  • Titus Quah; Kevin J. Modica; James B. Rawlings; Sho C. Takatori Model predictive control of non-interacting active Brownian particles, Soft Matter, Volume 20 (2024) no. 43, p. 8581 | DOI:10.1039/d4sm00902a
  • Cayce Fylling; Joshua Tamayo; Arvind Gopinath; Maxime Theillard Multi-population dissolution in confined active fluids, Soft Matter, Volume 20 (2024) no. 7, p. 1392 | DOI:10.1039/d3sm01196h
  • Samane Fazeli; Alireza Sahab; Ali Moarefianpur A novel robust adaptive control for nonlinear uncertain quarter-vehicle suspension system in presence of unknown time delay actuation, Systems Science Control Engineering, Volume 12 (2024) no. 1 | DOI:10.1080/21642583.2023.2293907
  • Saverio E. Spagnolie; Patrick T. Underhill Swimming in Complex Fluids, Annual Review of Condensed Matter Physics, Volume 14 (2023) no. 1, p. 381 | DOI:10.1146/annurev-conmatphys-040821-112149
  • Kenta Ishimoto A Multiscale Numerical Simulation of Quasi-Two-Dimensional Bacterial Turbulence Using a Regularized Stokeslet Representation, Gas Dynamics with Applications in Industry and Life Sciences, Volume 429 (2023), p. 215 | DOI:10.1007/978-3-031-35871-5_11
  • Zineb Boulaaras; Abdelaziz Aouiche; Kheireddine Chafaa Approval of Artificial Intelligence and Machine Learning Models to Solve Problems in Nonlinear Active Suspension Systems, Handbook of Research on AI and Machine Learning Applications in Customer Support and Analytics (2023), p. 128 | DOI:10.4018/978-1-6684-7105-0.ch008
  • Oliver Sieber Existence of global weak solutions to an inhomogeneous Doi model for active liquid crystals, Journal of Differential Equations, Volume 354 (2023), p. 1 | DOI:10.1016/j.jde.2023.01.006
  • Nishanth Murugan; Anubhab Roy Instability of a thin film of chemotactic active suspension, Journal of Fluid Mechanics, Volume 955 (2023) | DOI:10.1017/jfm.2022.1063
  • Mingyang Guan; Weiquan Jiang; Bohan Wang; Li Zeng; Zhi Li; Guoqian Chen Pre-asymptotic dispersion of active particles through a vertical pipe: the origin of hydrodynamic focusing, Journal of Fluid Mechanics, Volume 962 (2023) | DOI:10.1017/jfm.2023.273
  • Smitha Maretvadakethope; Andrew L. Hazel; Bakhti Vasiev; Rachel N. Bearon The interplay between bulk flow and boundary conditions on the distribution of microswimmers in channel flow, Journal of Fluid Mechanics, Volume 976 (2023) | DOI:10.1017/jfm.2023.897
  • Kenta Ishimoto Jeffery’s Orbits and Microswimmers in Flows: A Theoretical Review, Journal of the Physical Society of Japan, Volume 92 (2023) no. 6 | DOI:10.7566/jpsj.92.062001
  • Ruben Poehnl; William E. Uspal Shape-induced pairing of spheroidal squirmers, Physical Review Fluids, Volume 8 (2023) no. 11 | DOI:10.1103/physrevfluids.8.113103
  • Hamza Issa; Giovanniantonio Natale; Gilles Ausias; Julien Férec Modeling and numerical simulations of Brownian rodlike particles with anisotropic translational diffusion, Physical Review Fluids, Volume 8 (2023) no. 3 | DOI:10.1103/physrevfluids.8.033302
  • Brato Chakrabarti; Michael J. Shelley; Sebastian Fürthauer Collective Motion and Pattern Formation in Phase-Synchronizing Active Fluids, Physical Review Letters, Volume 130 (2023) no. 12 | DOI:10.1103/physrevlett.130.128202
  • Ellen Zheng; Martin Brandenbourger; Louis Robinet; Peter Schall; Edan Lerner; Corentin Coulais Self-Oscillation and Synchronization Transitions in Elastoactive Structures, Physical Review Letters, Volume 130 (2023) no. 17 | DOI:10.1103/physrevlett.130.178202
  • Yuval Shoham; Naomi Oppenheimer Hamiltonian Dynamics and Structural States of Two-Dimensional Active Particles, Physical Review Letters, Volume 131 (2023) no. 17 | DOI:10.1103/physrevlett.131.178301
  • Dallas Albritton; Laurel Ohm On the Stabilizing Effect of Swimming in an Active Suspension, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 6, p. 6093 | DOI:10.1137/22m1496037
  • Vaseem A. Shaik; Zhiwei Peng; John F. Brady; Gwynn J. Elfring Confined active matter in external fields, Soft Matter, Volume 19 (2023) no. 7, p. 1384 | DOI:10.1039/d2sm01135b
  • Sebastian Fürthauer; Michael J. Shelley How Cross-Link Numbers Shape the Large-Scale Physics of Cytoskeletal Materials, Annual Review of Condensed Matter Physics, Volume 13 (2022) no. 1, p. 365 | DOI:10.1146/annurev-conmatphys-052521-093943
  • Gianmarco Lazzini; Luca Romoli; Francesco Fuso Fluid-driven bacterial accumulation in proximity of laser-textured surfaces, Colloids and Surfaces B: Biointerfaces, Volume 217 (2022), p. 112654 | DOI:10.1016/j.colsurfb.2022.112654
  • A.V. Bochkarev; A.I. Zemlyanukhin; A.P. Chetverikov; M.G. Velarde Single and multi-vertices solitons in lattices of active Morse - van der Pol units, Communications in Nonlinear Science and Numerical Simulation, Volume 114 (2022), p. 106678 | DOI:10.1016/j.cnsns.2022.106678
  • Scott Weady; Michael J. Shelley; David B. Stein A fast Chebyshev method for the Bingham closure with application to active nematic suspensions, Journal of Computational Physics, Volume 457 (2022), p. 110937 | DOI:10.1016/j.jcp.2021.110937
  • Nishanth Murugan; Anubhab Roy Instability of an autochemotactic active suspension, Journal of Fluid Mechanics, Volume 934 (2022) | DOI:10.1017/jfm.2021.1155
  • Laurel Ohm; Michael J. Shelley Weakly nonlinear analysis of pattern formation in active suspensions, Journal of Fluid Mechanics, Volume 942 (2022) | DOI:10.1017/jfm.2022.392
  • T. Traverso; S. Michelin Collective dynamics and rheology of confined phoretic suspensions, Journal of Fluid Mechanics, Volume 943 (2022) | DOI:10.1017/jfm.2022.366
  • Benno Liebchen; Aritra K Mukhopadhyay Interactions in active colloids, Journal of Physics: Condensed Matter, Volume 34 (2022) no. 8, p. 083002 | DOI:10.1088/1361-648x/ac3a86
  • Achal Mahajan; David Saintillan Self-induced hydrodynamic coil-stretch transition of active polymers, Physical Review E, Volume 105 (2022) no. 1 | DOI:10.1103/physreve.105.014608
  • Henrik Nordanger; Alexander Morozov; Joakim Stenhammar Anisotropic diffusion of ellipsoidal tracers in microswimmer suspensions, Physical Review Fluids, Volume 7 (2022) no. 1 | DOI:10.1103/physrevfluids.7.013103
  • J. K. Bhattacharjee; T. R. Kirkpatrick Activity induced turbulence in driven active matter, Physical Review Fluids, Volume 7 (2022) no. 3 | DOI:10.1103/physrevfluids.7.034602
  • Scott Weady; David B. Stein; Michael J. Shelley Thermodynamically consistent coarse-graining of polar active fluids, Physical Review Fluids, Volume 7 (2022) no. 6 | DOI:10.1103/physrevfluids.7.063301
  • Haruki Hayano; Akira Furukawa Hydrodynamic interactions in anomalous rheology of active suspensions, Physical Review Research, Volume 4 (2022) no. 4 | DOI:10.1103/physrevresearch.4.043091
  • Achal Mahajan; Wen Yan; Alexandra Zidovska; David Saintillan; Michael J. Shelley Euchromatin Activity Enhances Segregation and Compaction of Heterochromatin in the Cell Nucleus, Physical Review X, Volume 12 (2022) no. 4 | DOI:10.1103/physrevx.12.041033
  • Igor S Aranson Bacterial active matter, Reports on Progress in Physics, Volume 85 (2022) no. 7, p. 076601 | DOI:10.1088/1361-6633/ac723d
  • Jaideep Katuri; Ruben Poehnl; Andrey Sokolov; William Uspal; Alexey Snezhko Arrested-motility states in populations of shape-anisotropic active Janus particles, Science Advances, Volume 8 (2022) no. 26 | DOI:10.1126/sciadv.abo3604
  • Arezoo M. Ardekani Motile microorganisms in complex fluids, Science Talks, Volume 3 (2022), p. 100048 | DOI:10.1016/j.sctalk.2022.100048
  • Qi Wang Generalized Onsager Principle and It Applications, Frontiers and Progress of Current Soft Matter Research (2021), p. 101 | DOI:10.1007/978-981-15-9297-3_3
  • L Andrei; V Chindea; D L Baldeăn Researching particulate matter characteristics for mitigating health risks generated by road vehicles, IOP Conference Series: Materials Science and Engineering, Volume 1169 (2021) no. 1, p. 012031 | DOI:10.1088/1757-899x/1169/1/012031
  • Hongfei Chen; Jean-Luc Thiffeault Shape matters: a Brownian microswimmer in a channel, Journal of Fluid Mechanics, Volume 916 (2021) | DOI:10.1017/jfm.2021.144
  • Francisco Rojas-Pérez; Blaise Delmotte; Sébastien Michelin Hydrochemical interactions of phoretic particles: a regularized multipole framework, Journal of Fluid Mechanics, Volume 919 (2021) | DOI:10.1017/jfm.2021.387
  • Weiquan Jiang; Guoqian Chen Transient dispersion process of active particles, Journal of Fluid Mechanics, Volume 927 (2021) | DOI:10.1017/jfm.2021.747
  • B Deußen; A Jayaram; F Kummer; Y Wang; T Speck; M Oberlack High-order simulation scheme for active particles driven by stress boundary conditions, Journal of Physics: Condensed Matter, Volume 33 (2021) no. 24, p. 244004 | DOI:10.1088/1361-648x/abf8cf
  • Francisca Guzmán-Lastra; Hartmut Löwen; Arnold J. T. M. Mathijssen Active carpets drive non-equilibrium diffusion and enhanced molecular fluxes, Nature Communications, Volume 12 (2021) no. 1 | DOI:10.1038/s41467-021-22029-y
  • Amir Nourhani; David Saintillan Spontaneous directional flow of active magnetic particles, Physical Review E, Volume 103 (2021) no. 4 | DOI:10.1103/physreve.103.l040601
  • S. J. Kole; Gareth P. Alexander; Sriram Ramaswamy; Ananyo Maitra Layered Chiral Active Matter: Beyond Odd Elasticity, Physical Review Letters, Volume 126 (2021) no. 24 | DOI:10.1103/physrevlett.126.248001
  • Shi-Yuan Hu; Jun-Jun Chu; Michael J. Shelley; Jun Zhang Lévy Walks and Path Chaos in the Dispersal of Elongated Structures Moving across Cellular Vortical Flows, Physical Review Letters, Volume 127 (2021) no. 7 | DOI:10.1103/physrevlett.127.074503
  • B. Deußen; M. Oberlack; Y. Wang Probability theory of active suspensions, Physics of Fluids, Volume 33 (2021) no. 6 | DOI:10.1063/5.0047227
  • A. Dhar; P. S. Burada; G. P. Raja Sekhar Effective medium model for a suspension of active swimmers, Physics of Fluids, Volume 33 (2021) no. 9 | DOI:10.1063/5.0062290
  • Markus Bär; Robert Großmann; Sebastian Heidenreich; Fernando Peruani Self-Propelled Rods: Insights and Perspectives for Active Matter, Annual Review of Condensed Matter Physics, Volume 11 (2020) no. 1, p. 441 | DOI:10.1146/annurev-conmatphys-031119-050611
  • Wen Yan; Eduardo Corona; Dhairya Malhotra; Shravan Veerapaneni; Michael Shelley A scalable computational platform for particulate Stokes suspensions, Journal of Computational Physics, Volume 416 (2020), p. 109524 | DOI:10.1016/j.jcp.2020.109524
  • R Pöhnl; M N Popescu; W E Uspal Axisymmetric spheroidal squirmers and self-diffusiophoretic particles, Journal of Physics: Condensed Matter, Volume 32 (2020) no. 16, p. 164001 | DOI:10.1088/1361-648x/ab5edd
  • Jiayi Deng; Mehdi Molaei; Nicholas G. Chisholm; Kathleen J. Stebe Motile Bacteria at Oil–Water Interfaces: Pseudomonas aeruginosa, Langmuir, Volume 36 (2020) no. 25, p. 6888 | DOI:10.1021/acs.langmuir.9b03578
  • D. P. Singh; A. Domínguez; U. Choudhury; S. N. Kottapalli; M. N. Popescu; S. Dietrich; P. Fischer Interface-mediated spontaneous symmetry breaking and mutual communication between drops containing chemically active particles, Nature Communications, Volume 11 (2020) no. 1 | DOI:10.1038/s41467-020-15713-y
  • Simon F. Schoeller; William V. Holt; Eric E. Keaveny Collective dynamics of sperm cells, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 375 (2020) no. 1807, p. 20190384 | DOI:10.1098/rstb.2019.0384
  • Aritra Das; J. K. Bhattacharjee; T. R. Kirkpatrick Transition to turbulence in driven active matter, Physical Review E, Volume 101 (2020) no. 2 | DOI:10.1103/physreve.101.023103
  • Tanniemola B. Liverpool Steady-state distributions and nonsteady dynamics in nonequilibrium systems, Physical Review E, Volume 101 (2020) no. 4 | DOI:10.1103/physreve.101.042107
  • V. Škultéty; Š. Birnšteinová; T. Lučivjanský; J. Honkonen Universality in incompressible active fluid: Effect of nonlocal shear stress, Physical Review E, Volume 102 (2020) no. 3 | DOI:10.1103/physreve.102.032616
  • T. Traverso; S. Michelin Hydrochemical interactions in dilute phoretic suspensions: From individual particle properties to collective organization, Physical Review Fluids, Volume 5 (2020) no. 10 | DOI:10.1103/physrevfluids.5.104203
  • Zhiwei Peng; John F. Brady Upstream swimming and Taylor dispersion of active Brownian particles, Physical Review Fluids, Volume 5 (2020) no. 7 | DOI:10.1103/physrevfluids.5.073102
  • Dóra Bárdfalvy; Shan Anjum; Cesare Nardini; Alexander Morozov; Joakim Stenhammar Symmetric Mixtures of Pusher and Puller Microswimmers Behave as Noninteracting Suspensions, Physical Review Letters, Volume 125 (2020) no. 1 | DOI:10.1103/physrevlett.125.018003
  • Nuris Figueroa-Morales; Rodrigo Soto; Gaspard Junot; Thierry Darnige; Carine Douarche; Vincent A. Martinez; Anke Lindner; Éric Clément 3D Spatial Exploration by E. coli Echoes Motor Temporal Variability, Physical Review X, Volume 10 (2020) no. 2 | DOI:10.1103/physrevx.10.021004
  • Viktor Škultéty; Cesare Nardini; Joakim Stenhammar; Davide Marenduzzo; Alexander Morozov Swimming Suppresses Correlations in Dilute Suspensions of Pusher Microorganisms, Physical Review X, Volume 10 (2020) no. 3 | DOI:10.1103/physrevx.10.031059
  • David Saintillan Physical mechanisms of platelet formation, Proceedings of the National Academy of Sciences, Volume 117 (2020) no. 36, p. 21841 | DOI:10.1073/pnas.2014390117
  • Jonas Denk; Erwin Frey Pattern-induced local symmetry breaking in active-matter systems, Proceedings of the National Academy of Sciences, Volume 117 (2020) no. 50, p. 31623 | DOI:10.1073/pnas.2010302117
  • S. J. Thomson; M. Durey; R. R. Rosales Collective vibrations of a hydrodynamic active lattice, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 476 (2020) no. 2239, p. 20200155 | DOI:10.1098/rspa.2020.0155
  • Ruhai Zhou Shear stress response of active liquid crystal suspensions, Radiation Effects and Defects in Solids, Volume 175 (2020) no. 1-2, p. 190 | DOI:10.1080/10420150.2020.1718143
  • Andrew M. Nagel; Michael Greenberg; Tyler N. Shendruk; Hendrick W. de Haan Collective Dynamics of Model Pili-Based Twitcher-Mode Bacilliforms, Scientific Reports, Volume 10 (2020) no. 1 | DOI:10.1038/s41598-020-67212-1
  • Aurore Loisy; Jens Eggers; Tanniemola B. Liverpool How many ways a cell can move: the modes of self-propulsion of an active drop, Soft Matter, Volume 16 (2020) no. 12, p. 3106 | DOI:10.1039/d0sm00070a
  • Eric W. Burkholder; John F. Brady Nonlinear microrheology of active Brownian suspensions, Soft Matter, Volume 16 (2020) no. 4, p. 1034 | DOI:10.1039/c9sm01713e
  • Eric Lauga The Fluid Dynamics of Cell Motility, 2020 | DOI:10.1017/9781316796047
  • Mohammad Reza Shabanniya; Ali Naji Active dipolar spheroids in shear flow and transverse field: Population splitting, cross-stream migration, and orientational pinning, The Journal of Chemical Physics, Volume 152 (2020) no. 20 | DOI:10.1063/5.0002757
  • Gaspard Junot; Nuris Figueroa-Morales; Thierry Darnige; Anke Lindner; Rodrigo Soto; Harold Auradou; Eric Clément Swimming bacteria in Poiseuille flow: The quest for active Bretherton-Jeffery trajectories, EPL (Europhysics Letters), Volume 126 (2019) no. 4, p. 44003 | DOI:10.1209/0295-5075/126/44003
  • C. R. HOLLOWAY; D. J. SMITH; R. J. DYSON Linear Rayleigh–Bénard stability of a transversely isotropic fluid, European Journal of Applied Mathematics, Volume 30 (2019) no. 04, p. 659 | DOI:10.1017/s0956792518000359
  • Maxime Theillard; David Saintillan Computational mean-field modeling of confined active fluids, Journal of Computational Physics, Volume 397 (2019), p. 108841 | DOI:10.1016/j.jcp.2019.07.040
  • Weiquan Jiang; Guoqian Chen Dispersion of active particles in confined unidirectional flows, Journal of Fluid Mechanics, Volume 877 (2019), p. 1 | DOI:10.1017/jfm.2019.562
  • R. Alonso-Matilla; D. Saintillan Interfacial instabilities in active viscous films, Journal of Non-Newtonian Fluid Mechanics, Volume 269 (2019), p. 57 | DOI:10.1016/j.jnnfm.2019.06.004
  • R N Bearon; W M Durham A model of strongly biased chemotaxis reveals the trade-offs of different bacterial migration strategies, Mathematical Medicine and Biology: A Journal of the IMA (2019) | DOI:10.1093/imammb/dqz007
  • Sebastian Fürthauer; Bezia Lemma; Peter J. Foster; Stephanie C. Ems-McClung; Che-Hang Yu; Claire E. Walczak; Zvonimir Dogic; Daniel J. Needleman; Michael J. Shelley Self-straining of actively crosslinked microtubule networks, Nature Physics, Volume 15 (2019) no. 12, p. 1295 | DOI:10.1038/s41567-019-0642-1
  • Henning Reinken; Sebastian Heidenreich; Markus Bär; Sabine H L Klapp Anisotropic mesoscale turbulence and pattern formation in microswimmer suspensions induced by orienting external fields, New Journal of Physics, Volume 21 (2019) no. 1, p. 013037 | DOI:10.1088/1367-2630/aaff09
  • Zhaowu Lin; Tong Gao Direct-forcing fictitious domain method for simulating non-Brownian active particles, Physical Review E, Volume 100 (2019) no. 1 | DOI:10.1103/physreve.100.013304
  • T. R. Kirkpatrick; J. K. Bhattacherjee Driven active matter: Fluctuations and a hydrodynamic instability, Physical Review Fluids, Volume 4 (2019) no. 2 | DOI:10.1103/physrevfluids.4.024306
  • Tomer Markovich; Elsen Tjhung; Michael E. Cates Shear-Induced First-Order Transition in Polar Liquid Crystals, Physical Review Letters, Volume 122 (2019) no. 8 | DOI:10.1103/physrevlett.122.088004
  • Quentin Brosseau; Florencio Balboa Usabiaga; Enkeleida Lushi; Yang Wu; Leif Ristroph; Jun Zhang; Michael Ward; Michael J. Shelley Relating Rheotaxis and Hydrodynamic Actuation using Asymmetric Gold-Platinum Phoretic Rods, Physical Review Letters, Volume 123 (2019) no. 17 | DOI:10.1103/physrevlett.123.178004
  • Aurore Loisy; Jens Eggers; Tanniemola B. Liverpool Tractionless Self-Propulsion of Active Drops, Physical Review Letters, Volume 123 (2019) no. 24 | DOI:10.1103/physrevlett.123.248006
  • Anand U. Oza; Leif Ristroph; Michael J. Shelley Lattices of Hydrodynamically Interacting Flapping Swimmers, Physical Review X, Volume 9 (2019) no. 4 | DOI:10.1103/physrevx.9.041024
  • I S Aranson Topological defects in active liquid crystals, Physics-Uspekhi, Volume 62 (2019) no. 9, p. 892 | DOI:10.3367/ufne.2018.10.038433
  • R. Anthony Williams; Ruhai Zhou Instability of active suspensions of liquid crystals, Radiation Effects and Defects in Solids, Volume 174 (2019) no. 1-2, p. 125 | DOI:10.1080/10420150.2019.1577852
  • Daniel Goldstein; Sriram Ramaswamy; Bulbul Chakraborty Stress fluctuations in transient active networks, Soft Matter, Volume 15 (2019) no. 17, p. 3520 | DOI:10.1039/c9sm00205g
  • Jan-Timm Kuhr; Felix Rühle; Holger Stark Collective dynamics in a monolayer of squirmers confined to a boundary by gravity, Soft Matter, Volume 15 (2019) no. 28, p. 5685 | DOI:10.1039/c9sm00889f
  • Dóra Bárdfalvy; Henrik Nordanger; Cesare Nardini; Alexander Morozov; Joakim Stenhammar Particle-resolved lattice Boltzmann simulations of 3-dimensional active turbulence, Soft Matter, Volume 15 (2019) no. 39, p. 7747 | DOI:10.1039/c9sm00774a
  • Aurore Loisy; Anthony P. Thompson; Jens Eggers; Tanniemola B. Liverpool Exact results for sheared polar active suspensions with variable liquid crystalline order, The Journal of Chemical Physics, Volume 150 (2019) no. 10 | DOI:10.1063/1.5080343
  • Eric W. Burkholder; John F. Brady Fluctuation-dissipation in active matter, The Journal of Chemical Physics, Volume 150 (2019) no. 18 | DOI:10.1063/1.5081725
  • Madhav Ranganathan; Alexander Farutin; Chaouqi Misbah Effect of Cytoskeleton Elasticity on Amoeboid Swimming, Biophysical Journal, Volume 115 (2018) no. 7, p. 1316 | DOI:10.1016/j.bpj.2018.08.005
  • R. Alonso-Matilla; D. Saintillan Microfluidic flow actuation using magnetoactive suspensions, EPL (Europhysics Letters), Volume 121 (2018) no. 2, p. 24002 | DOI:10.1209/0295-5075/121/24002
  • Nader Masmoudi Equations for Polymeric Materials, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 973 | DOI:10.1007/978-3-319-13344-7_23
  • Sheng Chen; Peng Gao; Tong Gao Dynamics and structure of an apolar active suspension in an annulus, Journal of Fluid Mechanics, Volume 835 (2018), p. 393 | DOI:10.1017/jfm.2017.759
  • A. Goriely Five ways to model active processes in elastic solids: Active forces, active stresses, active strains, active fibers, and active metrics, Mechanics Research Communications, Volume 93 (2018), p. 75 | DOI:10.1016/j.mechrescom.2017.09.003
  • Michael M. Norton; Arvind Baskaran; Achini Opathalage; Blake Langeslay; Seth Fraden; Aparna Baskaran; Michael F. Hagan Insensitivity of active nematic liquid crystal dynamics to topological constraints, Physical Review E, Volume 97 (2018) no. 1 | DOI:10.1103/physreve.97.012702
  • Henning Reinken; Sabine H. L. Klapp; Markus Bär; Sebastian Heidenreich Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions, Physical Review E, Volume 97 (2018) no. 2 | DOI:10.1103/physreve.97.022613
  • Mohd Suhail Rizvi; Alexander Farutin; Chaouqi Misbah Three-bead steering microswimmers, Physical Review E, Volume 97 (2018) no. 2 | DOI:10.1103/physreve.97.023102
  • Gil Ariel; Marina Sidortsov; Shawn D. Ryan; Sebastian Heidenreich; Markus Bär; Avraham Be'er Collective dynamics of two-dimensional swimming bacteria: Experiments and models, Physical Review E, Volume 98 (2018) no. 3 | DOI:10.1103/physreve.98.032415
  • Enkeleida Lushi; Raymond E. Goldstein; Michael J. Shelley Nonlinear concentration patterns and bands in autochemotactic suspensions, Physical Review E, Volume 98 (2018) no. 5 | DOI:10.1103/physreve.98.052411
  • Babak Nasouri; Gwynn J. Elfring Higher-order force moments of active particles, Physical Review Fluids, Volume 3 (2018) no. 4 | DOI:10.1103/physrevfluids.3.044101
  • Aurore Loisy; Jens Eggers; Tanniemola B. Liverpool Active Suspensions have Nonmonotonic Flow Curves and Multiple Mechanical Equilibria, Physical Review Letters, Volume 121 (2018) no. 1 | DOI:10.1103/physrevlett.121.018001
  • Alexander Panchenko; Denis F. Hinz; Eliot Fried Spatial averaging of a dissipative particle dynamics model for active suspensions, Physics of Fluids, Volume 30 (2018) no. 3, p. 033301 | DOI:10.1063/1.5024746
  • David Saintillan; Michael J. Shelley; Alexandra Zidovska Extensile motor activity drives coherent motions in a model of interphase chromatin, Proceedings of the National Academy of Sciences, Volume 115 (2018) no. 45, p. 11442 | DOI:10.1073/pnas.1807073115
  • C. R. Holloway; G. Cupples; D. J. Smith; J. E. F. Green; R. J. Clarke; R. J. Dyson Influences of transversely isotropic rheology and translational diffusion on the stability of active suspensions, Royal Society Open Science, Volume 5 (2018) no. 8, p. 180456 | DOI:10.1098/rsos.180456
  • Hossein Nili; Ali Naji Re-entrant bimodality in spheroidal chiral swimmers in shear flow, Scientific Reports, Volume 8 (2018) no. 1 | DOI:10.1038/s41598-018-26771-0
  • Eric W. Burkholder; John F. Brady Do hydrodynamic interactions affect the swim pressure?, Soft Matter, Volume 14 (2018) no. 18, p. 3581 | DOI:10.1039/c8sm00197a
  • Alan Cheng Hou Tsang; Michael J. Shelley; Eva Kanso Activity-induced instability of phonons in 1D microfluidic crystals, Soft Matter, Volume 14 (2018) no. 6, p. 945 | DOI:10.1039/c7sm01335c
  • R. J. CLARKE PHOTOFOCUSING OF MICROORGANISMS SWIMMING IN A FLOW WITH SHEAR, The ANZIAM Journal, Volume 59 (2018) no. 4, p. 455 | DOI:10.1017/s1446181118000123
  • Hojjat Behmadi; Zahra Fazli; Ali Najafi A 2D suspension of active agents: the role of fluid mediated interactions, Journal of Physics: Condensed Matter, Volume 29 (2017) no. 11, p. 115102 | DOI:10.1088/1361-648x/aa5a64
  • Sriram Ramaswamy Active matter, Journal of Statistical Mechanics: Theory and Experiment, Volume 2017 (2017) no. 5, p. 054002 | DOI:10.1088/1742-5468/aa6bc5
  • R.J. Clarke Microorganisms and Their Response to Stimuli, Modeling of Microscale Transport in Biological Processes (2017), p. 171 | DOI:10.1016/b978-0-12-804595-4.00007-9
  • Ehssan Nazockdast; Abtin Rahimian; Daniel Needleman; Michael Shelley; Alex Mogilner Cytoplasmic flows as signatures for the mechanics of mitotic positioning, Molecular Biology of the Cell, Volume 28 (2017) no. 23, p. 3261 | DOI:10.1091/mbc.e16-02-0108
  • Daniel Needleman; Zvonimir Dogic Active matter at the interface between materials science and cell biology, Nature Reviews Materials, Volume 2 (2017) no. 9 | DOI:10.1038/natrevmats.2017.48
  • Abhrajit Laskar; R Adhikari Filament actuation by an active colloid at low Reynolds number, New Journal of Physics, Volume 19 (2017) no. 3, p. 033021 | DOI:10.1088/1367-2630/aa5f80
  • Blaise Delmotte; Aleksandar Donev; Michelle Driscoll; Paul Chaikin Minimal model for a hydrodynamic fingering instability in microroller suspensions, Physical Review Fluids, Volume 2 (2017) no. 11 | DOI:10.1103/physrevfluids.2.114301
  • Blaise Delmotte; Michelle Driscoll; Paul Chaikin; Aleksandar Donev Hydrodynamic shocks in microroller suspensions, Physical Review Fluids, Volume 2 (2017) no. 9 | DOI:10.1103/physrevfluids.2.092301
  • Tong Gao; Meredith D. Betterton; An-Sheng Jhang; Michael J. Shelley Analytical structure, dynamics, and coarse graining of a kinetic model of an active fluid, Physical Review Fluids, Volume 2 (2017) no. 9 | DOI:10.1103/physrevfluids.2.093302
  • Tong Gao; Zhaorui Li Self-Driven Droplet Powered By Active Nematics, Physical Review Letters, Volume 119 (2017) no. 10 | DOI:10.1103/physrevlett.119.108002
  • Joakim Stenhammar; Cesare Nardini; Rupert W. Nash; Davide Marenduzzo; Alexander Morozov Role of Correlations in the Collective Behavior of Microswimmer Suspensions, Physical Review Letters, Volume 119 (2017) no. 2 | DOI:10.1103/physrevlett.119.028005
  • Kun-Ta Wu; Jean Bernard Hishamunda; Daniel T. N. Chen; Stephen J. DeCamp; Ya-Wen Chang; Alberto Fernández-Nieves; Seth Fraden; Zvonimir Dogic Transition from turbulent to coherent flows in confined three-dimensional active fluids, Science, Volume 355 (2017) no. 6331 | DOI:10.1126/science.aal1979
  • P. Varuni; Shakti N. Menon; Gautam I. Menon Phototaxis as a Collective Phenomenon in Cyanobacterial Colonies, Scientific Reports, Volume 7 (2017) no. 1 | DOI:10.1038/s41598-017-18160-w
  • Maxime Theillard; Roberto Alonso-Matilla; David Saintillan Geometric control of active collective motion, Soft Matter, Volume 13 (2017) no. 2, p. 363 | DOI:10.1039/c6sm01955b
  • Hossein Nili; Masoud Kheyri; Javad Abazari; Ali Fahimniya; Ali Naji Population splitting of rodlike swimmers in Couette flow, Soft Matter, Volume 13 (2017) no. 25, p. 4494 | DOI:10.1039/c7sm00293a
  • Nikhil Desai; Arezoo M. Ardekani Modeling of active swimmer suspensions and their interactions with the environment, Soft Matter, Volume 13 (2017) no. 36, p. 6033 | DOI:10.1039/c7sm00766c
  • Jan-Timm Kuhr; Johannes Blaschke; Felix Rühle; Holger Stark Collective sedimentation of squirmers under gravity, Soft Matter, Volume 13 (2017) no. 41, p. 7548 | DOI:10.1039/c7sm01180f
  • Michael J. Shelley The Dynamics of Microtubule/Motor-Protein Assemblies in Biology and Physics, Annual Review of Fluid Mechanics, Volume 48 (2016) no. 1, p. 487 | DOI:10.1146/annurev-fluid-010814-013639
  • Roberto Alonso-Matilla; Barath Ezhilan; David Saintillan Microfluidic rheology of active particle suspensions: Kinetic theory, Biomicrofluidics, Volume 10 (2016) no. 4 | DOI:10.1063/1.4954193
  • Shawn D. Ryan; Gil Ariel; Avraham Be’er Anomalous Fluctuations in the Orientation and Velocity of Swarming Bacteria, Biophysical Journal, Volume 111 (2016) no. 1, p. 247 | DOI:10.1016/j.bpj.2016.05.043
  • Eric Lauga; Francois Nadal Clustering instability of focused swimmers, EPL (Europhysics Letters), Volume 116 (2016) no. 6, p. 64004 | DOI:10.1209/0295-5075/116/64004
  • Nader Masmoudi Equations for Polymeric Materials, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_23-1
  • Shawn D. Ryan A model for collective dynamics in ant raids, Journal of Mathematical Biology, Volume 72 (2016) no. 6, p. 1579 | DOI:10.1007/s00285-015-0929-5
  • Andreas Zöttl; Holger Stark Emergent behavior in active colloids, Journal of Physics: Condensed Matter, Volume 28 (2016) no. 25, p. 253001 | DOI:10.1088/0953-8984/28/25/253001
  • Niklas Küchler; Hartmut Löwen; Andreas M. Menzel Getting drowned in a swirl: Deformable bead-spring model microswimmers in external flow fields, Physical Review E, Volume 93 (2016) no. 2 | DOI:10.1103/physreve.93.022610
  • Sebastian Heidenreich; Jörn Dunkel; Sabine H. L. Klapp; Markus Bär Hydrodynamic length-scale selection in microswimmer suspensions, Physical Review E, Volume 94 (2016) no. 2 | DOI:10.1103/physreve.94.020601
  • Alan Cheng Hou Tsang; Eva Kanso Density Shock Waves in Confined Microswimmers, Physical Review Letters, Volume 116 (2016) no. 4 | DOI:10.1103/physrevlett.116.048101
  • Eric Lauga; Sébastien Michelin Stresslets Induced by Active Swimmers, Physical Review Letters, Volume 117 (2016) no. 14 | DOI:10.1103/physrevlett.117.148001
  • M. S. Alqarni; R. N. Bearon Transport of helical gyrotactic swimmers in channels, Physics of Fluids, Volume 28 (2016) no. 7 | DOI:10.1063/1.4958733
  • Leonid Berlyand; Pierre-Emmanuel Jabin; Mykhailo Potomkin Complexity Reduction in Many Particle Systems with Random Initial Data, SIAM/ASA Journal on Uncertainty Quantification, Volume 4 (2016) no. 1, p. 446 | DOI:10.1137/140969786
  • M. Ben Amar Collective chemotaxis and segregation of active bacterial colonies, Scientific Reports, Volume 6 (2016) no. 1 | DOI:10.1038/srep21269
  • Megan S. Davies Wykes; Jérémie Palacci; Takuji Adachi; Leif Ristroph; Xiao Zhong; Michael D. Ward; Jun Zhang; Michael J. Shelley Dynamic self-assembly of microscale rotors and swimmers, Soft Matter, Volume 12 (2016) no. 20, p. 4584 | DOI:10.1039/c5sm03127c
  • Ankita Pandey; P. B. Sunil Kumar; R. Adhikari Flow-induced nonequilibrium self-assembly in suspensions of stiff, apolar, active filaments, Soft Matter, Volume 12 (2016) no. 44, p. 9068 | DOI:10.1039/c6sm02104b
  • Johannes Blaschke; Maurice Maurer; Karthik Menon; Andreas Zöttl; Holger Stark Phase separation and coexistence of hydrodynamically interacting microswimmers, Soft Matter, Volume 12 (2016) no. 48, p. 9821 | DOI:10.1039/c6sm02042a
  • Eric Clement; Anke Lindner; Carine Douarche; Harold Auradou Bacterial suspensions under flow, The European Physical Journal Special Topics, Volume 225 (2016) no. 11-12, p. 2389 | DOI:10.1140/epjst/e2016-60068-6
  • Gwynn J. Elfring; Eric Lauga Theory of Locomotion Through Complex Fluids, Complex Fluids in Biological Systems (2015), p. 283 | DOI:10.1007/978-1-4939-2065-5_8
  • David Saintillan; Michael J. Shelley Theory of Active Suspensions, Complex Fluids in Biological Systems (2015), p. 319 | DOI:10.1007/978-1-4939-2065-5_9
  • Blaise Delmotte; Eric E. Keaveny; Franck Plouraboué; Eric Climent Large-scale simulation of steady and time-dependent active suspensions with the force-coupling method, Journal of Computational Physics, Volume 302 (2015), p. 524 | DOI:10.1016/j.jcp.2015.09.020
  • R. N. Bearon; A. L. Hazel The trapping in high-shear regions of slender bacteria undergoing chemotaxis in a channel, Journal of Fluid Mechanics, Volume 771 (2015) | DOI:10.1017/jfm.2015.198
  • Barath Ezhilan; Roberto Alonso-Matilla; David Saintillan On the distribution and swim pressure of run-and-tumble particles in confinement, Journal of Fluid Mechanics, Volume 781 (2015) | DOI:10.1017/jfm.2015.520
  • Shuming Chen; Tianze Shi; Dengfeng Wang; Jing Chen Multi-objective optimization of the vehicle ride comfort based on Kriging approximate model and NSGA-II, Journal of Mechanical Science and Technology, Volume 29 (2015) no. 3, p. 1007 | DOI:10.1007/s12206-015-0215-x
  • Tommaso Brotto; Denis Bartolo; David Saintillan Spontaneous Flows in Suspensions of Active Cyclic Swimmers, Journal of Nonlinear Science, Volume 25 (2015) no. 5, p. 1125 | DOI:10.1007/s00332-015-9261-x
  • Kwangmin Son; Douglas R. Brumley; Roman Stocker Live from under the lens: exploring microbial motility with dynamic imaging and microfluidics, Nature Reviews Microbiology, Volume 13 (2015) no. 12, p. 761 | DOI:10.1038/nrmicro3567
  • B. U. Felderhof Stokesian spherical swimmers and active particles, Physical Review E, Volume 91 (2015) no. 4 | DOI:10.1103/physreve.91.043018
  • Gary S. Klindt; Benjamin M. Friedrich Flagellar swimmers oscillate between pusher- and puller-type swimming, Physical Review E, Volume 92 (2015) no. 6 | DOI:10.1103/physreve.92.063019
  • Tong Gao; Robert Blackwell; Matthew A. Glaser; M. D. Betterton; Michael J. Shelley Multiscale Polar Theory of Microtubule and Motor-Protein Assemblies, Physical Review Letters, Volume 114 (2015) no. 4 | DOI:10.1103/physrevlett.114.048101
  • Andreas M. Menzel Tuned, driven, and active soft matter, Physics Reports, Volume 554 (2015), p. 1 | DOI:10.1016/j.physrep.2014.10.001
  • J Elgeti; R G Winkler; G Gompper Physics of microswimmers—single particle motion and collective behavior: a review, Reports on Progress in Physics, Volume 78 (2015) no. 5, p. 056601 | DOI:10.1088/0034-4885/78/5/056601
  • Amarin G. McDonnell; Tilvawala C. Gopesh; Jennifer Lo; Moira O'Bryan; Leslie Y. Yeo; James R. Friend; Ranganathan Prabhakar Motility induced changes in viscosity of suspensions of swimming microbes in extensional flows, Soft Matter, Volume 11 (2015) no. 23, p. 4658 | DOI:10.1039/c4sm02742f
  • M. Gregory Forest; Qi Wang; Ruhai Zhou Kinetic attractor phase diagrams of active nematic suspensions: the dilute regime, Soft Matter, Volume 11 (2015) no. 32, p. 6393 | DOI:10.1039/c5sm00852b
  • Abhrajit Laskar; R. Adhikari Brownian microhydrodynamics of active filaments, Soft Matter, Volume 11 (2015) no. 47, p. 9073 | DOI:10.1039/c5sm02021b
  • Oliver Pohl; Holger Stark Self-phoretic active particles interacting by diffusiophoresis: A numerical study of the collapsed state and dynamic clustering, The European Physical Journal E, Volume 38 (2015) no. 8 | DOI:10.1140/epje/i2015-15093-4
  • Suzanne Ahmed; Dillon T. Gentekos; Craig A. Fink; Thomas E. Mallouk Self-Assembly of Nanorod Motors into Geometrically Regular Multimers and Their Propulsion by Ultrasound, ACS Nano, Volume 8 (2014) no. 11, p. 11053 | DOI:10.1021/nn5039614
  • David Saintillan Swimming in shear, Journal of Fluid Mechanics, Volume 744 (2014), p. 1 | DOI:10.1017/jfm.2014.16
  • M. Gregory Forest; Panon Phuworawong; Qi Wang; Ruhai Zhou Rheological signatures in limit cycle behaviour of dilute, active, polar liquid crystalline polymers in steady shear, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 372 (2014) no. 2029, p. 20130362 | DOI:10.1098/rsta.2013.0362
  • Adrien Lefauve; David Saintillan Globally aligned states and hydrodynamic traffic jams in confined suspensions of active asymmetric particles, Physical Review E, Volume 89 (2014) no. 2 | DOI:10.1103/physreve.89.021002
  • Akira Furukawa; Davide Marenduzzo; Michael E. Cates Activity-induced clustering in model dumbbell swimmers: The role of hydrodynamic interactions, Physical Review E, Volume 90 (2014) no. 2 | DOI:10.1103/physreve.90.022303
  • Takuji Ishikawa; T. J. Pedley Dispersion of model microorganisms swimming in a nonuniform suspension, Physical Review E, Volume 90 (2014) no. 3 | DOI:10.1103/physreve.90.033008
  • Andrey Pototsky; Uwe Thiele; Holger Stark Stability of liquid films covered by a carpet of self-propelled surfactant particles, Physical Review E, Volume 90 (2014) no. 3 | DOI:10.1103/physreve.90.030401
  • Andreas Zöttl; Holger Stark Hydrodynamics Determines Collective Motion and Phase Behavior of Active Colloids in Quasi-Two-Dimensional Confinement, Physical Review Letters, Volume 112 (2014) no. 11 | DOI:10.1103/physrevlett.112.118101
  • Hassan Masoud; Michael J. Shelley Collective Surfing of Chemically Active Particles, Physical Review Letters, Volume 112 (2014) no. 12 | DOI:10.1103/physrevlett.112.128304
  • Anke Lindner Flow of complex suspensions, Physics of Fluids, Volume 26 (2014) no. 10 | DOI:10.1063/1.4899260
  • Jean-Baptiste Caussin; Denis Bartolo Tailoring the interactions between self-propelled bodies, The European Physical Journal E, Volume 37 (2014) no. 6 | DOI:10.1140/epje/i2014-14055-8
  • Alexander Farutin; Salima Rafaï; Dag Kristian Dysthe; Alain Duperray; Philippe Peyla; Chaouqi Misbah Amoeboid Swimming: A Generic Self-Propulsion of Cells in Fluids by Means of Membrane Deformations, Physical Review Letters, Volume 111 (2013) no. 22 | DOI:10.1103/physrevlett.111.228102
  • Barath Ezhilan; Michael J. Shelley; David Saintillan Instabilities and nonlinear dynamics of concentrated active suspensions, Physics of Fluids, Volume 25 (2013) no. 7 | DOI:10.1063/1.4812822

Cité par 201 documents. Sources : Crossref

Commentaires - Politique