Comptes Rendus
Living Fluids/Fluides vivants
Active suspensions and their nonlinear models
[Les suspensions actives et leurs modèles non linéaires]
Comptes Rendus. Physique, Volume 14 (2013) no. 6, pp. 497-517.

Les suspensions actives, telles que les suspensions de micro-organismes auto-propulsés ou autres nageurs microscopiques artificiels, sont connues pour leur dynamique complexe et la formation de motifs en raison dʼinteractions hydrodynamiques. Nous résumons dans cet article les dernières avancées dans la modélisation de ces systèmes à lʼaide de théories cinétiques continues. Dans un premier temps, nous développons un modèle cinétique élémentaire pour une suspension de particules auto-propulsées alongées et considérons sa stabilité et sa dynamique non linéaire. Nous présentons ensuite des extensions de ce modèle pour analyser la rhéologie effective des suspensions actives en écoulement externe, lʼeffet des interactions stériques dans les systémes à forte concentration et la dynamique de suspensions chimiotactiques dans des champs chimiques.

Active suspensions, such as suspensions of self-propelled microorganisms and related synthetic microswimmers, are known to undergo complex dynamics and pattern formation as a result of hydrodynamic interactions. In this review, we summarize recent efforts to model these systems using continuum kinetic theories. We first derive a basic kinetic model for a suspension of self-propelled rodlike particles and discuss its stability and nonlinear dynamics. We then present extensions of this model to analyze the effective rheology of active suspensions in external flows, the effect of steric interactions in concentrated systems, and the dynamics of chemotactically responsive suspensions in chemical fields.

Publié le :
DOI : 10.1016/j.crhy.2013.04.001
Keywords: Active suspension, Kinetic theory, Swimming microorganisms, Hydrodynamic interactions, Instability
Mot clés : Suspension active, Théorie cinétique, Micro-organismes nageants, Interactions hydrodynamiques, Instabilité

David Saintillan 1 ; Michael J. Shelley 2

1 Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
2 Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
@article{CRPHYS_2013__14_6_497_0,
     author = {David Saintillan and Michael J. Shelley},
     title = {Active suspensions and their nonlinear models},
     journal = {Comptes Rendus. Physique},
     pages = {497--517},
     publisher = {Elsevier},
     volume = {14},
     number = {6},
     year = {2013},
     doi = {10.1016/j.crhy.2013.04.001},
     language = {en},
}
TY  - JOUR
AU  - David Saintillan
AU  - Michael J. Shelley
TI  - Active suspensions and their nonlinear models
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 497
EP  - 517
VL  - 14
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.04.001
LA  - en
ID  - CRPHYS_2013__14_6_497_0
ER  - 
%0 Journal Article
%A David Saintillan
%A Michael J. Shelley
%T Active suspensions and their nonlinear models
%J Comptes Rendus. Physique
%D 2013
%P 497-517
%V 14
%N 6
%I Elsevier
%R 10.1016/j.crhy.2013.04.001
%G en
%F CRPHYS_2013__14_6_497_0
David Saintillan; Michael J. Shelley. Active suspensions and their nonlinear models. Comptes Rendus. Physique, Volume 14 (2013) no. 6, pp. 497-517. doi : 10.1016/j.crhy.2013.04.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.04.001/

[1] E. Lauga; T.R. Powers The hydrodynamics of swimming microorganisms, Rep. Prog. Phys., Volume 72 (2009), p. 096601

[2] E.W. Knight-Jones Relation between metachronism and the direction of ciliary beat in Metazoa, Q. J. Microsc. Sci., Volume 95 (1954), pp. 503-521

[3] K.-I. Okamoto; Y. Nakaoka Reconstitution of metachronal waves in ciliated cortical sheets of Paramecium. I. Wave stabilities, J. Exp. Biol., Volume 192 (1994), pp. 61-72

[4] X.-L. Wu; A. Libchaber Particle diffusion in a quasi-two-dimensional bacterial bath, Phys. Rev. Lett., Volume 84 (2000), pp. 3017-3020

[5] C. Dombrowski; L. Cisneros; S. Chatkaew; R.E. Goldstein; J.O. Kessler Self-concentration and large-scale coherence in bacterial dynamics, Phys. Rev. Lett., Volume 93 (2004), p. 098103

[6] I. Tuval; L. Cisneros; C. Dombrowski; C.W. Wolgemuth; J.O. Kessler; R.E. Goldstein Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, Volume 102 (2005), pp. 2277-2282

[7] L.H. Cisneros; R. Cortez; C. Dombrowski; R.E. Goldstein; J.O. Kessler Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations, Exp. Fluids, Volume 43 (2007), pp. 737-753

[8] N.H. Mendelson; A. Bourque; K. Wilkening; K.R. Anderson; J.C. Watkins Organized cell swimming motions in Bacillus subtilis colonies: patterns of short-lived whirls and jets, J. Bacteriol., Volume 181 (1999), pp. 600-609

[9] A. Sokolov; I.S. Aranson; J.O. Kessler; R.E. Goldstein Concentration dependence of the collective dynamics of swimming bacteria, Phys. Rev. Lett., Volume 98 (2007), p. 158102

[10] A. Sokolov; R.E. Goldstein; F.I. Feldchtein; I.S. Aranson Enhanced mixing and spatial instability in concentrated bacterial suspensions, Phys. Rev. E, Volume 80 (2009), p. 031903

[11] G.V. Soni; B.M. Jaffar Ali; T. Hatwalne; G.V. Shivashankar Single particle tracking of correlated bacterial dynamics, Biophys. J., Volume 84 (2003), pp. 2634-2637

[12] Q. Liao; G. Subramanian; M.P. DeLisa; D.L. Koch; M. Wu Pair velocity correlations among swimming Escherichia coli bacteria are determined by force-quadrupole hydrodynamic interactions, Phys. Fluids, Volume 19 (2007), p. 061701

[13] M.J. Kim; K.S. Breuer Enhanced diffusion due to motile bacteria, Phys. Fluids, Volume 16 (2004), pp. 78-81

[14] K.C. Leptos; J.S. Guasto; J.P. Gollub; A.I. Pesci; R.E. Goldstein Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms, Phys. Rev. Lett., Volume 103 (2009), p. 198103

[15] H. Kurtuldu; J.S. Guasto; K.A. Jonhson; J.P. Gollub Enhancement of biomixing by swimming algal cells in two dimensions, Phys. Rev. Lett., Volume 108 (2011), pp. 10391-10395

[16] S.J. Ebbens; J.R. Howse In pursuit of propulsion at the nanoscale, Soft Matter, Volume 6 (2010), pp. 726-738

[17] W.F. Paxton; K.C. Kistler; C.C. Olmeda; A. Sen; S.K. St. Angelo; Y. Cao; T.E. Mallouk; P.E. Lammert Catalytic nano motors: autonomous movement of striped nanorods, J. Am. Chem. Soc., Volume 126 (2004), pp. 13424-13431

[18] W.F. Paxton; A. Sen; T.E. Mallouk Motility of catalytic nanoparticles through self-generated forces, Eur. J. Chem., Volume 11 (2005), pp. 6462-6470

[19] J.R. Howse; R.A.L. Jones; A.J. Ryan; T. Gough; R. Vafabakhsh; R. Golestanian Self-motile colloidal particles: from directed propulsion to random walk, Phys. Rev. Lett., Volume 99 (2007), p. 048102

[20] J.L. Moran; P.M. Wheat; J.D. Posner Locomotion of electrocatalytic nanomotors due to reaction induced charge autoelectrophoresis, Phys. Rev. E, Volume 81 (2010), p. 065302

[21] R. Laocharoensuk; J. Burdick; J. Wang Carbon-nanotube-induced acceleration of catalytic nanomotors, ACS Nano, Volume 2 (2008), pp. 1069-1075

[22] R. Dreyfus; J. Baudry; M.L. Roper; H.A. Stone; M. Fermigier; J. Bibette Microscopic artificial swimmers, Nature, Volume 437 (2005), pp. 862-865

[23] D. Zerrouki; J. Baudry; D. Pine; P. Chaiken; J. Bibette Chiral colloidal clusters, Nature, Volume 455 (2008), p. 380

[24] A. Ghosh; P. Fischer Controlled propulsion of artificial magnetic nanostructured propellers, Nano Lett., Volume 9 (2009) no. 6, pp. 2243-2245

[25] L. Zhang; J.J. Abbott; L. Dong; B.E. Kratochvil; D. Bell; B.J. Nelson Artificial bacterial flagella: Fabrication and magnetic control, Appl. Phys. Lett., Volume 94 (2009), p. 064107

[26] T. Surrey; F. Nédélec; S. Leibler; E. Karsenti Physical properties determining self-organization of motors and microtubules, Science, Volume 292 (2001), pp. 1167-1171

[27] S. Köhler; V. Schaller; A.R. Bausch Collective dynamics of active cytoskeletal networks, PLoS ONE, Volume 6 (2011), p. 23798

[28] T. Sanchez; D. Chen; S. DeCamp; M. Heymann; Z. Dogic Spontaneous motion in hierarchically assembled active matter, Nature, Volume 491 (2012), pp. 431-435

[29] V. Schaller; C. Weber; C. Semmrich; E. Frey; A.R. Bausch Polar patterns of driven filaments, Nature, Volume 467 (2010), pp. 73-77

[30] Y. Sumino; K. Nagai; Y. Shitaka; D. Tanaka; K. Yoshikawa; H. Chate; K. Oiwa Large-scale vortex lattice emerging from collectively moving microtubules, Nature, Volume 483 (2012), pp. 448-452

[31] J.P. Hernandez-Ortiz; C.G. Stoltz; M.D. Graham Transport and collective dynamics in suspensions of confined swimming particles, Phys. Rev. Lett., Volume 95 (2005), p. 204501

[32] K. Drescher; R.E. Goldstein; N. Michel; M. Polin; I. Tuval Direct measurement of the flow field around swimming microorganisms, Phys. Rev. Lett., Volume 105 (2010), p. 168101

[33] J.S. Guasto; K.A. Johnson; J.P. Gollub Oscillatory flows induced by microorganisms swimming in two dimensions, Phys. Rev. Lett., Volume 105 (2010), p. 168102

[34] K. Drescher; J. Dunkel; L.H. Cisneros; S. Ganguly; R.E. Goldstein Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering, Proc. Natl. Acad. Sci. USA, Volume 108 (2011), pp. 10940-10945

[35] J.P. Hernández-Ortiz; P.T. Underhill; M.D. Graham Dynamics of confined suspensions of swimming particles, J. Phys. Condens. Matter, Volume 21 (2009), p. 204107

[36] T. Ishikawa; T.J. Pedley The rheology of a semi-dilute suspension of swimming model micro-organisms, J. Fluid Mech., Volume 588 (2007), pp. 399-435

[37] T. Ishikawa; J.T. Locsei; T.J. Pedley Fluid particle diffusion in a semidilute suspension of model micro-organisms, Phys. Rev. E, Volume 82 (2010), p. 021408

[38] T. Ishikawa; T.J. Pedley Coherent structures in monolayers of swimming particles, Phys. Rev. Lett., Volume 100 (2008), p. 088103

[39] T. Ishikawa; J.T. Locsei; T.J. Pedley Development of coherent structures in concentrated suspensions of swimming model micro-organisms, J. Fluid Mech., Volume 615 (2008), pp. 401-431

[40] D. Saintillan; M. Shelley Orientational order and instabilities in suspensions of self-locomoting rods, Phys. Rev. Lett., Volume 99 (2007), p. 058102

[41] D. Saintillan; M. Shelley Emergence of coherent structures and large-scale flows in motile suspensions, J. R. Soc. Interface, Volume 9 (2012), p. 571

[42] R.A. Simha; S. Ramaswamy Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles, Phys. Rev. Lett., Volume 89 (2002), p. 058101

[43] D. Saintillan; M. Shelley Instabilities and pattern formation in active particle suspensions: Kinetic theory and continuum simulations, Phys. Rev. Lett., Volume 100 (2008), p. 178103

[44] D. Saintillan; M. Shelley Instabilities, pattern formation and mixing in active suspensions, Phys. Fluids, Volume 20 (2008), p. 123304

[45] C. Wolgemuth Collective swimming and the dynamics of bacterial turbulence, Biophys. J., Volume 95 (2008), p. 1564

[46] G. Subramanian; D.L. Koch Critical bacterial concentration for the onset of collective swimming, J. Fluid Mech., Volume 632 (2009), pp. 359-400

[47] A. Baskaran; M.C. Marchetti Statistical mechanics and hydrodynamics of bacterial suspensions, Proc. Natl. Acad. Sci. USA, Volume 106 (2009), pp. 15567-15572

[48] H. Wensinka; J. Dunkel; S. Heidenreich; K. Drescher; R. Goldstein; H. Lowen; J. Yeomans Meso-scale turbulence in living fluids, Proc. Natl. Acad. Sci. USA, Volume 109 (2012), pp. 14308-14313

[49] M. Doi Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases, J. Polym. Sci., Polym. Phys. Ed., Volume 19 (1981), pp. 229-243

[50] M. Doi; S.F. Edwards The Theory of Polymer Dynamics, Oxford University Press, Oxford, 1986

[51] G.K. Batchelor Slender-body theory for particles of arbitrary cross-section in Stokes flow, J. Fluid Mech., Volume 44 (1970), pp. 419-440

[52] J. Keller; S. Rubinow Slender-body theory for slow viscous flow, J. Fluid Mech., Volume 75 (1976), pp. 705-714

[53] R.E. Johnson An improved slender-body theory for Stokes flow, J. Fluid Mech., Volume 99 (1980), pp. 411-431

[54] C. Hohenegger; M. Shelley Dynamics of complex bio-fluids (M. Ben-Amar; A. Goriely; M. Muller; L. Cugliandolo, eds.), New Trends in the Physics and Mechanics of Biological Systems, Oxford University Press, 2011

[55] G.B. Jeffery The motion of ellipsoidal particles immersed in a viscous fluid, Proc. R. Soc. Lond. A, Volume 102 (1922), pp. 161-179

[56] F.P. Bretherton The motion of rigid particles in a shear flow at low Reynolds number, J. Fluid Mech., Volume 14 (1962), pp. 284-304

[57] M. Garcia; S. Berti; P. Peyla; S. Rafaï Random walk of a swimmer in a low-Reynolds-number medium, Phys. Rev. E, Volume 83 (2011), p. 035301

[58] P.T. Underhill; J.P. Hernandez-Ortiz; M.D. Graham Diffusion and spatial correlations in suspensions of swimming particles, Phys. Rev. Lett., Volume 100 (2008), p. 248101

[59] P.T. Underhill; M.D. Graham Correlations and fluctuations of stress and velocity in suspensions of swimming microorganisms, Phys. Fluids, Volume 23 (2011), p. 121902

[60] B.M. Haines; I.S. Aranson; L. Berlyand; D.A. Karpeev Effective viscosity of dilute bacterial suspensions: A two-dimensional model, Phys. Biol., Volume 5 (2008), p. 046003

[61] B.M. Haines; A. Sokolov; I.S. Aranson; L. Berlyand; D.A. Karpeev Three-dimensional model for the effective viscosity of bacterial suspensions, Phys. Rev. E, Volume 80 (2009), p. 041922

[62] V. Gyrya; K. Lipnikov; I.S. Aranson; L. Berlyand Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations, J. Math. Biol., Volume 62 (2011), pp. 707-740

[63] S.D. Ryan; B.M. Haines; L. Berlyand; F. Ziebert; I.S. Aranson Viscosity of bacterial suspensions: Hydrodynamic interactions and self-induced noise, Phys. Rev. E, Volume 83 (2011), p. 050904

[64] A. Decoene; S. Martin; B. Maury Microscopic modeling of active bacterial suspensions, Math. Model. Nat. Phenom., Volume 6 (2011), pp. 98-129

[65] M.J. Lighthill On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers, Commun. Pure Appl. Math., Volume 5 (1952), pp. 109-118

[66] J.R. Blake A spherical envelope approach to ciliary propulsion, J. Fluid Mech., Volume 46 (1971), pp. 199-208

[67] V. Magar; T. Goto; T.J. Pedley Nutrient uptake by a self-propelled steady squirmer, Q. J. Mech. Appl. Math., Volume 56 (2003), pp. 65-91

[68] V. Magar; T.J. Pedley Average nutrient uptake by a self-propelled unsteady squirmer, J. Fluid Mech., Volume 539 (2005), pp. 93-112

[69] A. Kanevsky; M. Shelley; A.-K. Tornberg Modeling simple locomotors in Stokes flow, J. Comput. Phys., Volume 229 (2010), pp. 958-977

[70] J. Happel; H. Brenner Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media, Springer, 1983

[71] C. Brennen; H. Winet Fluid mechanics of propulsion by cilia and flagella, Annu. Rev. Fluid Mech., Volume 9 (1977), pp. 339-398

[72] M.B. Short; C.A. Solari; S. Ganguly; T.R. Powers; J.O. Kessler; R.E. Goldstein Flows driven by agella of multicellular organisms enhance long-range molecular transport, Proc. Natl. Acad. Sci. USA, Volume 103 (2006), pp. 8315-8319

[73] H. Lamb Hydrodynamics, Dover, 1932

[74] T. Ishikawa; M.P. Simmonds; T.J. Pedley Hydrodynamic interaction of two swimming model micro-organisms, J. Fluid Mech., Volume 568 (2006), pp. 119-160

[75] A.A. Evans; T. Ishikawa; T. Yamaguchi; E. Lauga Instabilities and global order in concentrated suspensions of spherical microswimmers, Phys. Fluids, Volume 23 (2011), p. 111702

[76] S. Spagnolie; E. Lauga Hydrodynamics of self-propulsion near a boundary: Predictions and accuracy of far-field approximations, J. Fluid Mech., Volume 700 (2012), pp. 105-147

[77] L. Zhu; M. Do-Quang; E. Lauga; L. Brandt Locomotion by tangential deformation in a polymeric fluid, Phys. Rev. E, Volume 83 (2011), p. 011901

[78] G.K. Batchelor The stress system in a suspension of force-free particles, J. Fluid Mech., Volume 41 (1970), pp. 545-570

[79] G.K. Batchelor The stress generated in a non-dilute suspension of elongated particles by pure straining motion, J. Fluid Mech., Volume 46 (1971), pp. 813-829

[80] G.K. Batchelor Transport properties of two-phase materials with random structure, Annu. Rev. Fluid Mech., Volume 6 (1974), pp. 227-255

[81] B. Ezhilan, M.J. Shelley, D. Saintillan, Instabilities and nonlinear dynamics of concentrated active suspensions, submitted for publication.

[82] C. Hohenegger; M. Shelley Stability of active suspensions, Phys. Rev. E, Volume 81 (2010), p. 046311

[83] H. Brenner A general theory of Taylor dispersion phenomena, Physicochem. Hydrodyn., Volume 1 (1980), pp. 91-123

[84] A. Alizadeh Pahlavan; D. Saintillan Instability regimes in flowing suspensions of swimming micro-organisms, Phys. Fluids, Volume 23 (2011), p. 011901

[85] B. Ezhilan; A. Alizadeh Pahlavan; D. Saintillan Chaotic dynamics and oxygen transport in thin films of aerotactic bacteria, Phys. Fluids, Volume 24 (2012), p. 091701

[86] T. Brotto; J.-B. Caussin; E. Lauga; D. Bartolo Hydrodynamics of confined active fluids, Phys. Rev. Lett., Volume 110 (2013), p. 038101

[87] B.J. Edwards; A.N. Beris; M. Grmela Generalized constitutive equation for polymeric liquid crystals. Part 1. Model formulation using the Hamiltonian (Poisson bracket) formulation, J. Non-Newton. Fluid Mech., Volume 35 (1990), pp. 51-72

[88] A.N. Beris; B.J. Edwards Thermodynamics of Flowing Systems, Oxford University Press, Oxford, 1994

[89] M.E. Cates; O. Heinrich; D. Marenduzzo; K. Stratford Lattice Boltzmann simulations of liquid crystalline fluids: Active gels and blue phases, Soft Matter, Volume 5 (2009), pp. 3791-3800

[90] D. Marenduzzo; E. Orlandini; M.E. Cates; J.M. Yeomans Steady-state hydrodynamic instabilities of active liquid crystals: Hybrid lattice-Boltzmann simulations, Phys. Rev. E, Volume 76 (2007), p. 031921

[91] D. Marenduzzo; E. Orlandini Hydrodynamics of non-homogeneous active gels, Soft Matter, Volume 6 (2010), pp. 774-778

[92] S.M. Fielding; D. Marenduzzo; M.E. Cates Nonlinear dynamics and rheology of active fluids: Simulations in two dimensions, Phys. Rev. E, Volume 83 (2011), p. 041910

[93] E.J. Hinch; L.G. Leal Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations, J. Fluid Mech., Volume 76 (1976), pp. 187-208

[94] F.G. Woodhouse; R.E. Goldstein Spontaneous circulation of confined active suspensions, Phys. Rev. Lett., Volume 109 (2012), p. 168105

[95] H.C. Berg Random Walks in Biology, Princeton University Press, 1983

[96] H.C. Berg; D.A. Brown Chemotaxis in Escherichia coli analysed by three-dimensional tracking, Nature, Volume 239 (1972), pp. 500-504

[97] Y. Hatwalne; S. Ramaswamy; M. Rao; R. Aditi Simha Rheology of active-particle suspensions, Phys. Rev. Lett., Volume 92 (2004), p. 118101

[98] D. Saintillan The dilute rheology of swimming suspensions: A simple kinetic model, Exp. Mech., Volume 50 (2010), pp. 1275-1281

[99] D. Saintillan Extensional rheology of active suspensions, Phys. Rev. E, Volume 81 (2010), p. 056307

[100] H. Brenner Rheology of a dilute suspensions of axisymmetric Brownian particles, Int. J. Multiph. Flow, Volume 1 (1974), pp. 195-341

[101] E.J. Hinch; L.G. Leal The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles, J. Fluid Mech., Volume 52 (1972), pp. 683-712

[102] C.J.S. Petrie The rheology of fibre suspensions, J. Non-Newton. Fluid Mech., Volume 87 (1999), pp. 369-402

[103] H. Brenner; D.W. Condiff Transport mechanics in systems of orientable particles. 4. Convective transport, J. Colloid Interface Sci., Volume 47 (1974), pp. 199-264

[104] S.B. Chen; D.L. Koch Rheology of dilute suspensions of charged fibers, Phys. Fluids, Volume 8 (1996), pp. 2792-2807

[105] A. Sokolov; I.S. Aranson Reduction of viscosity in suspension of swimming bacteria, Phys. Rev. Lett., Volume 103 (2009), p. 148101

[106] S. Rafaï; L. Jibuti; P. Peyla Effective viscosity of microswimmer suspensions, Phys. Rev. Lett., Volume 104 (2010), p. 098102

[107] J. Gachelin, G. Miño, H. Berthet, A. Lindner, A. Rousselet, E. Clément, Non-Newtonian viscosity of E. coli suspensions, submitted for publication.

[108] B.M. Haines; I.S. Aranson; L. Berlyand; D.A. Karpeev Effective viscosity of bacterial suspensions: A three-dimensional PDE model with stochastic torque, Commun. Pure Appl. Anal., Volume 11 (2012), pp. 19-46

[109] D. Marenduzzo; E. Orlandini; J.M. Yeomans Hydrodynamics and rheology of active liquid crystals: A numerical investigation, Phys. Rev. Lett., Volume 98 (2007), p. 118102

[110] M.E. Cates; S.M. Fielding; D. Marenduzzo; E. Orlandini; J.M. Yeomans Shearing active gels close to the isotropic-nematic transition, Phys. Rev. Lett., Volume 101 (2008), p. 068102

[111] Z. Cui Weakly sheared active suspensions: Hydrodynamics, stability, and rheology, Phys. Rev. E, Volume 83 (2011), p. 031911

[112] L. Giomi; T.B. Liverpool; M.C. Marchetti Sheared active fluids: Thickening, thinning, and vanishing viscosity, Phys. Rev. E, Volume 81 (2010), p. 051908

[113] S. Heidenreich; S. Hess; S.H.L. Klapp Nonlinear rheology of active particle suspensions: Insights from an analytical approach, Phys. Rev. E, Volume 83 (2011), p. 011907

[114] L.H. Cisneros; J.O. Kessler; S. Ganguly; R.E. Goldstein Dynamics of swimming bacteria: Transition to directional order at high concentration, Phys. Rev. E, Volume 83 (2011), p. 061907

[115] N.C. Darnton; L. Turner; S. Rojevsky; H.C. Berg Dynamics of bacterial swarming, Biophys. J., Volume 98 (2010), pp. 2082-2090

[116] H.P. Zhang; A. Beʼer; E.-L. Florin; H.L. Swinney Collective motion and density fluctuations in bacterial colonies, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), pp. 13626-13630

[117] X. Chen; X. Dong; A. Beʼer; H.L. Swinney; H.P. Zhang Scale-invariant correlations in dynamics bacterial clusters, Phys. Rev. Lett., Volume 108 (2012), p. 148101

[118] P.G. de Gennes; J. Prost The Physics of Liquid Crystals, Clarendon Press, Oxford, 1993

[119] P.G. de Gennes Phenomenology of short-range-order effects in the isotropic phase of nematic materials, Phys. Lett. A, Volume 30 (1969), pp. 454-455

[120] T.B. Liverpool; M.C. Marchetti Hydrodynamics and rheology of active polar filaments (P. Lenz, ed.), Cell Motility, Springer, 2008, pp. 177-206

[121] L. Giomi; M.C. Marchetti; T.B. Liverpool Complex spontaneous flows and concentration banding in active polar films, Phys. Rev. Lett., Volume 101 (2008), p. 198101

[122] I.S. Aranson; A. Sokolov; J.O. Kessler; R.E. Goldstein Model for dynamical coherence in thin films of self-propelled microorganisms, Phys. Rev. E, Volume 75 (2007), p. 040901

[123] W. Maier; A. Saupe Eine einfache molekulare Theorie des nematischen kristallinflüssigen Zustandes, Z. Naturforsch., Volume 13 (1958), pp. 564-566

[124] D.J. Jeffrey; J.F. Morris; J.F. Brady The pressure moments for two spheres in a low-Reynolds-number flow, Phys. Fluids A, Volume 5 (1993), pp. 2317-2325

[125] P.R. Nott; J.F. Brady Pressure-driven flow of suspensions: Simulation and theory, J. Fluid Mech., Volume 275 (1994), pp. 157-199

[126] P.R. Nott; E. Guazzelli; O. Pouliquen The suspension balance model revisited, Phys. Fluids, Volume 23 (2011), p. 043304

[127] D.A. Brown; H.C. Berg Temporal stimulation of chemotaxis in Escherichia coli, Proc. Natl. Acad. Sci. USA, Volume 71 (1974), pp. 1388-1392

[128] R.N. Bearon; T.J. Pedley Modelling run-and-tumble chemotaxis in a shear flow, Bull. Math. Biol., Volume 62 (2000), pp. 775-791

[129] G. Subramanian; D.L. Koch; S.R. Fitzgibbon The stability of a homogeneous suspension of chemotactic bacteria, Phys. Fluids, Volume 23 (2011), p. 041901

[130] T.V. Kasyap; D.L. Koch Chemotaxis driven instability of a confined bacterial suspension, Phys. Rev. Lett., Volume 108 (2012), p. 038101

[131] E. Lushi; R.E. Goldstein; M.J. Shelley Collective chemotactic dynamics in the presence of self-generated fluid flows, Phys. Rev. E, Volume 86 (2012), p. 040902

[132] E.O. Budrene; H.C. Berg Complex patterns formed by motile cells of Escherichia coli, Nature, Volume 349 (1991), pp. 630-633

[133] B.L. Bassler Small talk: Cell-to-cell communication in bacteria, Cell, Volume 109 (2002), pp. 421-424

[134] S. Park; P.M. Wolanin; E.A. Yuzbashyan; P. Silberzan; J.B. Stock; R.H. Austin Motion to form a quorum, Science, Volume 301 (2003), p. 188

[135] E.F. Keller; L.A. Segel Model for chemotaxis, J. Theor. Biol., Volume 30 (1971), pp. 225-234

[136] M.P. Brenner; L. Levitov; E. Budrene Physical mechanisms for chemotactic pattern formation by bacteria, Biophys. J., Volume 74 (1998), pp. 1677-1693

[137] W. Alt Biased random walk models for chemotaxis and related diffusion approximations, J. Math. Biol., Volume 9 (1980), pp. 147-177

[138] K.C. Chen; R.M. Ford; P.T. Cummings Cell balance equation for chemotactic bacteria with a biphasic tumbling frequency, J. Math. Biol., Volume 47 (2003), pp. 518-546

[139] E. Lushi, R.E. Goldstein, M.J. Shelley, Auto-chemotactic active suspensions: Modeling, analysis and simulations, submitted for publication.

[140] J.G. Gibbs; S. Kothari; D. Saintillan; Y.-P. Zhao Geometrically designing the kinematic behavior of catalytic nanomotors, Nano Lett., Volume 11 (2011), pp. 2543-2550

[141] D. Takagi; A.B. Braunschweig; J. Zhang; M.J. Shelley Dispersion of self-propelled rods undergoing fluctuation-driven flips, Phys. Rev. Lett., Volume 110 (2013), p. 038301

[142] G.H. Koenderink; Z. Dogic; F. Nakamura; P.M. Bendix; F.C. MacKintosh; J.H. Hartwig; T.P. Stossel; D.A. Weitz An active biopolymer network controlled by bimolecular motors, Proc. Natl. Acad. Sci. USA, Volume 106 (2009), pp. 15192-15197

[143] S. Ramaswamy The mechanics and statistics of active matter, Annu. Rev. Condens. Matter Phys., Volume 1 (2010), pp. 323-345

[144] M.C. Marchetti; J.F. Joanny; S. Ramaswamy; T.B. Liverpool; J. Prost; M. Rao; R. Aditi Simha Soft active matter, Rev. Mod. Phys. (2011) (submitted for publication)

[145] N. Darnton; L. Turner; K. Breuer; H.C. Berg Moving fluid with bacterial carpets, Biophys. J., Volume 86 (2004), pp. 1863-1870

[146] A. Sokolov; M.M. Apodaca; B.A. Grzybowski; I.S. Aranson Swimming bacteria power microscopic gears, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), pp. 969-974

[147] R. Di Leonardo; L. Angelani; D. DellʼArciprete; G. Ruocco; V. Iebba; S. Schippa; M.P. Conte; F. Mecarini; F. De Angelis; E. Di Fabrizio Bacterial ratchet motors, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), pp. 9541-9545

[148] E.B. Steager; M.S. Sakar; D.H. Kim; V. Kumar; G.J. Pappas; M.J. Kim Electrokinetic and optical control of bacterial microrobots, J. Micromech. Microeng., Volume 21 (2011), p. 035001

Cité par Sources :

Commentaires - Politique