[Comportement collectif de suspensions colloïdales hors équilibre]
Une suspension colloïdale est un liquide hétérogène contenant des particules solides microscopiques. Les colloïdes jouent un rôle important dans notre vie quotidienne, des industries alimentaires et pharmaceutiques à la médecine et aux nanotechnologies. Il est pratique de distinguer deux classes majeures de suspensions colloïdales : à lʼéquilibre, et active, cʼest-à-dire maintenue en dehors de lʼéquilibre thermodynamique par des champs électriques ou magnétiques externes, de la lumière, des réactions chimiques, ou un flux de cisaillement hydrodynamique. Alors que les propriétés des suspensions colloïdales à lʼéquilibre sont assez bien comprises, les colloïdes actifs constituent un formidable défi, et la recherche en est encore à lʼetape exploratoire. Une des propriétés les plus remarquables des colloïdes actifs est la possibilité dʼauto-assemblage dynamique, une tendance naturelle des composants simples à sʼorganiser dans des architectures fonctionnelles complexes. Les exemples sʼétendent des cristaux et membranes colloïdaux modifiables et auto-réparables aux micro-nageurs et robots auto-assemblés. Les suspensions colloïdales actives peuvent montrer des propriétés matérielles qui ne sont pas présentes dans leurs homologues à lʼéquilibre, comme, par exemple, une viscosité réduite, une auto-diffusivité augmentée, etc. Ce travail examine les développements les plus récents dans le domaine de la physique des colloïdes actifs, dans le but dʼélucider les mécanismes de physique fondamentale régissant lʼauto-assemblage et le comportement collectif.
Colloidal suspensions, heterogeneous fluids containing solid microscopic particles, play an important role in our everyday life, from food and pharmaceutical industries to medicine and nanotechnology. Colloidal suspensions can be divided in two major classes: equilibrium, and active, i.e. maintained out of thermodynamic equilibrium by external electric or magnetic fields, light, chemical reactions, or hydrodynamic shear flow. While the properties of equilibrium colloidal suspensions are fairly well understood, out-of-equilibrium colloids pose a formidable challenge and the research is in its early exploratory stage. The possibility of dynamic self-assembly, a natural tendency of simple building blocks to organize into complex functional architectures, is one of the most remarkable properties of out-of-equilibrium colloids. Examples range from tunable, self-healing colloidal crystals and membranes to self-assembled microswimmers and robots. In contrast to their equilibrium counterparts, out-of-equilibrium colloidal suspensions may exhibit novel material properties, e.g. reduced viscosity, enhanced self-diffusivity, etc. This work reviews recent developments in the field of self-assembly and collective behavior of out-of-equilibrium colloids, with the focus on the fundamental physical mechanisms.
Mot clés : Colloïdes, Auto-assemblage, Comportement collectif
Igor S. Aranson 1, 2
@article{CRPHYS_2013__14_6_518_0, author = {Igor S. Aranson}, title = {Collective behavior in out-of-equilibrium colloidal suspensions}, journal = {Comptes Rendus. Physique}, pages = {518--527}, publisher = {Elsevier}, volume = {14}, number = {6}, year = {2013}, doi = {10.1016/j.crhy.2013.05.002}, language = {en}, }
Igor S. Aranson. Collective behavior in out-of-equilibrium colloidal suspensions. Comptes Rendus. Physique, Volume 14 (2013) no. 6, pp. 518-527. doi : 10.1016/j.crhy.2013.05.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.05.002/
[1] Foundations of Colloid Science, vol. 1, Clarendon Press, Oxford, 1987
[2] Colloids and Interfaces in Life Sciences, CRC, 2003
[3] E-reader revolution? [Technology e-readers], Eng. Technol., Volume 7 (2012), pp. 68-71
[4] Dynamic properties of interfaces in soft matter: Experiments and theory, Rev. Mod. Phys., Volume 83 (2011), pp. 1367-1403
[5] Soft condensed matter, Phys. A, Stat. Mech. Appl., Volume 313 (2002), pp. 1-31
[6] Soft Matter Physics: An Introduction, Springer-Verlag, 2003
[7] Insights from soft condensed matter, Rev. Mod. Phys., Volume 71 (1999), p. S367-S373
[8] Granular Patterns, Oxford University Press, Oxford, 2009
[9] Intermolecular and Surface Forces, Academic Press, 2011
[10] Local crystalline order in a 2d colloidal glass former, Eur. Phys. J. B, Volume 26 (2008), pp. 161-168
[11] Controlling competition between crystallization and glass formation in binary colloids with an external field, J. Phys. Condens. Matter, Volume 20 (2008), p. 404225
[12] Diffraction of light by ordered suspensions, J. Phys. Chem., Volume 73 (1969), pp. 2386-2389
[13] Ordered macroporous materials by colloidal assembly: A possible route to photonic bandgap materials, Adv. Mater., Volume 11 (1999), pp. 1261-1265
[14] Self-assembly route for photonic crystals with a bandgap in the visible region, Nat. Mater., Volume 6 (2007), pp. 202-205
[15] et al. Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures, Nat. Mater., Volume 10 (2011), pp. 872-876
[16] Lane formation in driven mixtures of oppositely charged colloids, Soft Matter, Volume 7 (2011), pp. 2352-2356
[17] Electrophoresis of concentrated colloidal dispersions in low-polar solvents, J. Colloid Interface Sci., Volume 361 (2011), pp. 443-455
[18] Ionic colloidal crystals of oppositely charged particles, Nature, Volume 437 (2005), pp. 235-240
[19] Directed colloidal self-assembly with biaxial electric fields, Adv. Mater., Volume 21 (2009), pp. 3116-3120
[20] Design rule for colloidal crystals of dna-functionalized particles, Phys. Rev. Lett., Volume 107 (2011), p. 045902
[21] Colloidal self-assembly: Designed to yield, Nat. Mater., Volume 10 (2011), pp. 410-411
[22] Colloidal dispersions in external fields: Recent developments, J. Phys. Condens. Matter, Volume 20 (2008), p. 404201
[23] Lock and key colloids, Nature, Volume 464 (2010), pp. 575-578
[24] Directed self-assembly of a colloidal kagome lattice, Nature, Volume 469 (2011), pp. 381-384
[25] Magnetic assembly of colloidal superstructures with multipole symmetry, Nature, Volume 457 (2009), pp. 999-1002
[26] Dna-guided crystallization of colloidal nanoparticles, Nature, Volume 451 (2008), pp. 549-552
[27] Surface roughness directed self-assembly of patchy particles into colloidal micelles, Proc. Natl. Acad. Sci. USA, Volume 109 (2012), pp. 10787-10792
[28] Microscopic artificial swimmers, Nature, Volume 437 (2005), pp. 862-865
[29] Magnetically actuated colloidal microswimmers, J. Phys. Chem. B, Volume 112 (2008), pp. 16525-16528
[30] et al. Self-assembled magnetic surface swimmers, Phys. Rev. Lett., Volume 102 (2009), p. 118103
[31] Two-dimensional colloid crystals obtained by coupling of flow and confinement, Phys. Rev. Lett., Volume 91 (2003), p. 128301
[32] Field-induced self-assembly of suspended colloidal membranes, Phys. Rev. Lett., Volume 103 (2009), p. 228301
[33] Magnetic manipulation of self-assembled colloidal asters, Nat. Mater., Volume 10 (2011), pp. 698-703
[34] Biomimetism and bioinspiration as tools for the design of innovative materials and systems, Nat. Mater., Volume 4 (2005), pp. 277-288
[35] Self-assembly: From crystals to cells, Soft Matter, Volume 5 (2009), pp. 1110-1128
[36] Colloidal assembly: The road from particles to colloidal molecules and crystals, Angew. Chem., Int. Ed. Engl., Volume 50 (2011), pp. 360-388
[37] Non-equilibrium magnetic colloidal dispersions at liquid–air interfaces: Dynamic patterns, magnetic order and self-assembled swimmers, J. Phys. Condens. Matter, Volume 23 (2011), p. 153101
[38] Emergent colloidal dynamics in electromagnetic fields, Soft Matter, Volume 9 (2013), pp. 3693-3704 | DOI
[39] In pursuit of propulsion at the nanoscale, Soft Matter, Volume 6 (2010), pp. 726-738
[40] The hydrodynamics of swimming microorganisms, Rep. Prog. Phys., Volume 72 (2009), p. 09601
[41] Induced-charge electrophoresis of metallodielectric particles, Phys. Rev. Lett., Volume 100 (2008), p. 58302
[42] Reduction of viscosity in suspension of swimming bacteria, Phys. Rev. Lett., Volume 103 (2009), p. 148101
[43] Effective viscosity of microswimmer suspensions, Phys. Rev. Lett., Volume 104 (2010), p. 098102
[44] Three-dimensional model for the effective viscosity of bacterial suspensions, Phys. Rev. E, Volume 80 (2009), p. 041922
[45] The dilute rheology of swimming suspensions: A simple kinetic model, Exp. Mech., Volume 50 (2010), pp. 1275-1281
[46] Particle diffusion in a quasi-two-dimensional bacterial bath, Phys. Rev. Lett., Volume 84 (2000), pp. 3017-3020
[47] Enhanced mixing and spatial instability in concentrated bacterial suspensions, Phys. Rev. E, Volume 80 (2009), p. 031903
[48] Band formation in mixtures of oppositely charged colloids driven by an ac electric field, Phys. Rev. Lett., Volume 106 (2011), p. 228303
[49] Dynamic self-assembly and patterns in electrostatically driven granular media, Phys. Rev. Lett., Volume 90 (2003), p. 114301
[50] Particle-resolved instabilities in colloidal dispersions, Soft Matter, Volume 6 (2010), pp. 3133-3142
[51] Assembly of ordered colloidal aggregrates by electric-field-induced fluid flow, Nature, Volume 386 (1997), pp. 57-59
[52] Theory of pattern formation of metallic microparticles in poorly conducting liquids, Phys. Rev. Lett., Volume 92 (2004), p. 234301
[53] Self-assembly and vortices formed by microparticles in weak electrolytes, Phys. Rev. Lett., Volume 93 (2004), p. 84502
[54] A colloidal model system with an interaction tunable from hard sphere to soft and dipolar, Nature, Volume 421 (2003), pp. 513-517
[55] Structure formation in electromagnetically driven granular media, Phys. Rev. Lett., Volume 94 (2005), p. 108002
[56] Using triaxial magnetic fields to create high susceptibility particle composites, Phys. Rev. E, Volume 69 (2004), p. 021508
[57] Simple models for two-dimensional tunable colloidal crystals in rotating ac electric fields, J. Chem. Phys., Volume 130 (2009), p. 154901
[58] Generating strange magnetic and dielectric interactions: Classical molecules and particle foams, J. Chem. Phys., Volume 118 (2003), p. 1557
[59] Dynamics of self assembly of magnetized disks rotating at the liquid–air interface, Proc. Natl. Acad. Sci. USA, Volume 99 (2002), p. 4147
[60] Vortex magnetic field mixing with anisometric particles, J. Appl. Phys., Volume 107 (2010), p. 114911
[61] Ordered complex structures formed by paramagnetic particles via self-assembly under an ac/dc combined magnetic field, Langmuir, Volume 27 (2011), pp. 9160-9164
[62] Reconfigurable responsive structures assembled from magnetic Janus particles, Soft Matter, Volume 5 (2009), pp. 1285-1292
[63] Linking synchronization to self-assembly using magnetic Janus colloids, Nature, Volume 491 (2012), pp. 578-581
[64] Surface wave assisted self-assembly of multidomain magnetic structures, Phys. Rev. Lett., Volume 96 (2006), p. 078701
[65] Driven magnetic particles on a fluid surface: Pattern assisted surface flows, Phys. Rev. Lett., Volume 99 (2007), p. 158301
[66] Acoustic streaming, Theor. Comput. Fluid Dyn., Volume 10 (1998), pp. 349-356
[67] Model for dynamic self-assembled magnetic surface structures, Phys. Rev. E, Volume 82 (2010), p. 015301
[68] Catalytically induced electrokinetics for motors and micropumps, J. Am. Chem. Soc., Volume 128 (2006), pp. 14881-14888
[69] Self-motile colloidal particles: From directed propulsion to random walk, Phys. Rev. Lett., Volume 99 (2007), p. 048102
[70] Highly efficient catalytic microengines: Template electrosynthesis of polyaniline/platinum microtubes, J. Am. Chem. Soc., Volume 133 (2011), pp. 11862-11864
[71] Controlled propulsion of artificial magnetic nanostructured propellers, Nano Lett., Volume 9 (2009), pp. 2243-2245
[72] Catalytic nanomotors: Autonomous movement of striped nanorods, J. Am. Chem. Soc., Volume 126 (2004), pp. 13424-13431
[73] Microbots swimming in the flowing streams of microfluidic channels, J. Am. Chem. Soc., Volume 133 (2011), p. 701
[74] Propulsion of a molecular machine by asymmetric distribution of reaction products, Phys. Rev. Lett., Volume 94 (2005), p. 220801
[75] Electrokinetic locomotion due to reaction-induced charge auto-electrophoresis, J. Fluid Mech., Volume 680 (2011), pp. 31-66
[76] Induced-charge electrokinetic phenomena: Theory and microfluidic applications, Phys. Rev. Lett., Volume 92 (2004), p. 66101
[77] Dispersion of self-propelled rods undergoing fluctuation-driven flips, Phys. Rev. Lett., Volume 110 (2013), p. 038301
[78] E. coli in Motion, Springer-Verlag, 2004
[79] Reverse and flick: Hybrid locomotion in bacteria, Proc. Natl. Acad. Sci. USA, Volume 108 (2011), pp. 2635-2636
[80] When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation, Europhys. Lett., Volume 101 (2013), p. 20010
[81] Self-concentration and large-scale coherence in bacterial dynamics, Phys. Rev. Lett., Volume 93 (2004), p. 98103
[82] Concentration dependence of the collective dynamics of swimming bacteria, Phys. Rev. Lett., Volume 98 (2007), p. 158102
[83] Swimming bacteria power microscopic gears, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), pp. 969-974
[84] Dynamic clustering in active colloidal suspensions with chemical signaling, Phys. Rev. Lett., Volume 108 (2012), p. 268303
[85] Sedimentation and effective temperature of active colloidal suspensions, Phys. Rev. Lett., Volume 105 (2010), p. 088304
[86] Sedimentation, trapping, and rectification of dilute bacteria, Europhys. Lett., Volume 86 (2009), p. 60002
[87] Phase separation and rotor self-assembly in active particle suspensions, Proc. Natl. Acad. Sci. USA, Volume 109 (2012), pp. 4052-4057
[88] Chemo and phototactic nano/microbots, Faraday Discuss., Volume 143 (2009), pp. 15-27
[89] Schooling behavior of light-powered autonomous micromotors in water, Angew. Chem., Int. Ed. Engl., Volume 48 (2009), pp. 3308-3312
[90] Emergent, collective oscillations of self-mobile particles and patterned surfaces under redox conditions, ACS Nano, Volume 4 (2010), pp. 4845-4851
[91] Living crystals of light-activated colloidal surfers, Science, Volume 339 (2013), pp. 936-940
[92] Reconfigurable self-assembly of mesoscale optical components at a liquid–liquid interface, Adv. Mater., Volume 23 (2011), pp. 2413-2418
[93] Soft robotics for chemists, Angew. Chem., Volume 123 (2011), pp. 1930-1935
[94] Influence of hydrodynamic interactions on lane formation in oppositely charged driven colloids, Eur. Phys. J. E, Volume 26 (2008), pp. 143-150
[95] Theory of strong intrinsic mixing of particle suspensions in vortex magnetic fields, Phys. Rev. E, Volume 79 (2009), p. 011503
[96] Asters, vortices, and rotating spirals in active gels of polar filaments, Phys. Rev. Lett., Volume 92 (2004), p. 078101
[97] The mechanics and statistics of active matter, Annu. Rev. Condens. Matter Phys., Volume 1 (2010), pp. 323-345
[98] Onset of collective and cohesive motion, Phys. Rev. Lett., Volume 92 (2004), p. 025702
[99] Large-scale collective properties of self-propelled rods, Phys. Rev. Lett., Volume 104 (2010), p. 184502
[100] Attractive colloidal rods in shear flow, Phys. Rev. Lett., Volume 101 (2008), p. 168302
[101] Crystallization in a dense suspension of self-propelled particles, Phys. Rev. Lett., Volume 108 (2012), p. 168301
[102] Orientational order and instabilities in suspensions of self-locomoting rods, Phys. Rev. Lett., Volume 99 (2007), p. 58102
[103] Nonlinear field equations for aligning self-propelled rods, Phys. Rev. Lett., Volume 109 (2012), p. 268701
Cité par Sources :
Commentaires - Politique