Here, we present an overview of a first principles homogenization theory of periodic metamaterials. It is shown that in a rather general context it is possible to formally introduce effective parameters that describe the time evolution of macroscopic (slowly-varying in space) initial states of the electromagnetic field using an effective medium formalism. The theory is applied to different types of “wire metamaterials” characterized by a strong spatial dispersion in the long wavelength limit. It is highlighted that the spatial dispersion may tailor in unique ways the wave phenomena in wire metamaterials leading to exotic tunneling effects and broadband lossless anomalous dispersion.
Nous présentons une revue d’une théorie ab-initio d’homogénéisation de métamatériaux périodiques. Nous montrons dans un cadre général qu’il est possible d’introduire formellement des paramètres effectifs qui décrivent l’évolution temporelle d’états initiaux (états à variation spatiale lente) du champ électromagnétique en faisant appel à un formalisme de type milieu effectif. Cette théorie est appliquée à différents types de métamatériaux constitués de réseaux périodiques de fils métalliques et qui ont par ailleurs la particularité d’être caractérisés par une forte dispersion spatiale dans la limite des grandes longueurs d’onde. Il est souligné que les effets de la dispersion spatiale peuvent mener à un contrôle sans précédent des phénomènes ondulatoires dans ces métamatériaux, notamment avec la possibilité d’effets tunnel exotiques ou encore de dispersion anormale sans perte et large bande.
Published online:
Mots-clés : Homogénéisation, Milieu effectif, Réseaux de fils métalliques, Métamatériaux, Dispersion spatiale
Sylvain Lannebère 1; Tiago A. Morgado 1; Mário G. Silveirinha 1, 2
@article{CRPHYS_2020__21_4-5_367_0, author = {Sylvain Lanneb\`ere and Tiago A. Morgado and M\'ario G. Silveirinha}, title = {First principles homogenization of periodic metamaterials and application to wire media}, journal = {Comptes Rendus. Physique}, pages = {367--388}, publisher = {Acad\'emie des sciences, Paris}, volume = {21}, number = {4-5}, year = {2020}, doi = {10.5802/crphys.4}, language = {en}, }
TY - JOUR AU - Sylvain Lannebère AU - Tiago A. Morgado AU - Mário G. Silveirinha TI - First principles homogenization of periodic metamaterials and application to wire media JO - Comptes Rendus. Physique PY - 2020 SP - 367 EP - 388 VL - 21 IS - 4-5 PB - Académie des sciences, Paris DO - 10.5802/crphys.4 LA - en ID - CRPHYS_2020__21_4-5_367_0 ER -
%0 Journal Article %A Sylvain Lannebère %A Tiago A. Morgado %A Mário G. Silveirinha %T First principles homogenization of periodic metamaterials and application to wire media %J Comptes Rendus. Physique %D 2020 %P 367-388 %V 21 %N 4-5 %I Académie des sciences, Paris %R 10.5802/crphys.4 %G en %F CRPHYS_2020__21_4-5_367_0
Sylvain Lannebère; Tiago A. Morgado; Mário G. Silveirinha. First principles homogenization of periodic metamaterials and application to wire media. Comptes Rendus. Physique, Metamaterials 1, Volume 21 (2020) no. 4-5, pp. 367-388. doi : 10.5802/crphys.4. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.4/
[1] Mixing rules, Metamaterials Handbook: Applications of Metamaterials (F. Capolino, ed.), CRC Press, 2009, 762 pages
[2] Introduction to Solid State Physics, John Wiley & Sons, Hoboken, NJ, 2004
[3] Homogenization of metamaterials by field averaging (invited paper), J. Opt. Soc. Am. B, JOSAB, Volume 23 (2006) no. 3, pp. 391-403 | DOI
[4] Dispersive effective material parameters, Microwave Optical Technol. Lett., Volume 48 (2006) no. 12, pp. 2629-2632 | DOI
[5] Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices, Metamaterials, Volume 1 (2007) no. 2, pp. 62-80 | DOI
[6] Local constitutive parameters of metamaterials from an effective-medium perspective, Phys. Rev. B, Volume 75 (2007) no. 19, 195111
[7] Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters, Phys. Rev. B, Volume 75 (2007) no. 11, 115104
[8] Generalized Lorentz–Lorenz formulas for microstructured materials, Phys. Rev. B, Volume 76 (2007) no. 24, 245117
[9] Effective optical response of metamaterials, Phys. Rev. B, Volume 79 (2009) no. 24, 245132
[10] Nonlocal homogenization theory of structured materials, Metamaterials Handbook: Applications of Metamaterials (F. Capolino, ed.), CRC Press, 2009, Ch. 10
[11] Finite-difference frequency-domain method for the extraction of effective parameters of metamaterials, Phys. Rev. B, Volume 80 (2009) no. 23, 235124
[12] Analytic expressions for the constitutive parameters of magnetoelectric metamaterials, Phys. Rev. E, Volume 81 (2010) no. 3, 036605
[13] On electromagnetic characterization and homogenization of nanostructured metamaterials, J. Opt., Volume 13 (2010) no. 1, 013001
[14] Time domain homogenization of metamaterials, Phys. Rev. B, Volume 83 (2011) no. 16, 165104
[15] Current-driven metamaterial homogenization, Physica B: Condensed Matter, Volume 405 (2010) no. 14, pp. 2930-2934 | DOI
[16] Nonlocal effective medium model for multilayered metal-dielectric metamaterials, Phys. Rev. B, Volume 84 (2011) no. 11, 115438
[17] Nonlocal effective parameters of multilayered metal-dielectric metamaterials, Phys. Rev. B, Volume 86 (2012) no. 11, 115420
[18] First-principles homogenization theory for periodic metamaterials, Phys. Rev. B, Volume 84 (2011) no. 7, 075153
[19] Homogenization of spatially dispersive metamaterial arrays in terms of generalized electric and magnetic polarizations, Photonics Nanostructures - Fundam. Appl., Volume 11 (2013) no. 4, pp. 374-396 | DOI
[20] Anisotropic representation for spatially dispersive periodic metamaterial arrays, Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications (D. H. Werner; D.-H. Kwon, eds.), Springer London, London, 2014, pp. 395-457 | DOI
[21] Generalized Lorentz–Lorenz homogenization formulas for binary lattice metamaterials, Phys. Rev. B, Volume 91 (2015) no. 20, 205127 | DOI
[22] Composite Media with Weak Spatial Dispersion, Pan Stanford Publishing Pte Ltd, Singapur, 2018 | DOI
[23] A strange term coming from nowhere, Topics in the Mathematical Modelling of Composite Materials, Progress in Nonlinear Differential Equations and Their Applications (A. Cherkaev; R. Kohn, eds.), Birkhäuser, Boston, MA, 1997, pp. 45-93
[24] Homogenization of a set of parallel fibres, Waves Random Media, Volume 7 (1997) no. 2, pp. 245-256 | DOI | MR | Zbl
[25] Noncommuting limits in electromagnetic scattering: asymptotic analysis for an array of highly conducting inclusions, SIAM J. Appl. Math., Volume 61 (2001) no. 5, pp. 1706-1730 | MR | Zbl
[26] Noncommuting limits and effective properties for oblique propagation of electromagnetic waves through an array of aligned fibres, Phys. Rev. B, Volume 69 (2004) no. 19, 195112 | DOI
[27] On gaps in the spectrum of some divergent elliptic operators with periodic coefficients, St. Petersburg Math. J., Volume 16 (2005) no. 5, pp. 773-790 | DOI | Zbl
[28] Sensitivity of a dielectric layered structure on a scale below the periodicity: a fully local homogenized model, Phys. Rev. B, Volume 98 (2018) no. 2, 024306 | DOI
[29] Negative refraction makes a perfect lens, Phys. Rev. Lett., Volume 85 (2000) no. 18, pp. 3966-3969 | DOI
[30] Subwavelength imaging in photonic crystals, Phys. Rev. B, Volume 68 (2003) no. 4, 045115
[31] Subwavelength microwave imaging using an array of parallel conducting wires as a lens, Phys. Rev. B, Volume 73 (2006) no. 3, 033108
[32] Applications of Metamaterials, CRC Press, Boca Raton, FL, 2009
[33] Electrodynamics of Continuous Media: Volume 8, Butterworth-Heinemann, Amsterdam u.a., 1984
[34] Crystal Optics with Spatial Dispersion, and Excitons, Springer Series in Solid-State Sciences, Springer-Verlag, Berlin Heidelberg, 1984 | DOI
[35] Effective medium approach to electron waves: graphene superlattices, Phys. Rev. B, Volume 85 (2012) no. 19, 195413
[36] Effective medium theory of electromagnetic and quantum metamaterials, World Scientific Handbook of Metamaterials and Plasmonics (E. Shamonina; S. A. Maier, eds.) (World Scientific Series in Nanoscience and Nanotechnology), World Scientific, 2017, Ch. 2, pp. 37-86 | DOI
[37] Metamaterial-inspired model for electron waves in bulk semiconductors, Phys. Rev. B, Volume 86 (2012) no. 24, 245302
[38] Giant nonlinearity in zero-gap semiconductor superlattices, Phys. Rev. B, Volume 89 (2014) no. 8, 085205
[39] Effective Hamiltonian for electron waves in artificial graphene: a first-principles derivation, Phys. Rev. B, Volume 91 (2015) no. 4, 045416 | DOI
[40] Macroscopic Maxwell’s equations and negative index materials, J. Math. Phys., Volume 51 (2010) no. 5, 052902 | DOI | MR | Zbl
[41] Topological classification of Chern-type insulators by means of the photonic Green function, Phys. Rev. B, Volume 97 (2018) no. 11, 115146
[42] Modal expansions in dispersive material systems with application to quantum optics and topological photonics, Advances in Mathematical Methods for Electromagnetics (K. Kobayashi; P. D. Smith, eds.), IET, 2019
[43] A derivation of the macroscopic Maxwell equations, Amer. J. Phys., Volume 38 (1970) no. 10, pp. 1188-1195 | DOI
[44] Microwave Engineering, Wiley, Hoboken, NJ, 2011
[45] Artificial plasma formed by connected metallic wires at infrared frequencies, Phys. Rev. B, Volume 79 (2009) no. 3, 035118
[46] Plasma simulation by artificial dielectrics and parallel-plate media, IRE Trans. Antennas and Propagation, Volume 10 (1962) no. 1, pp. 82-95 | DOI
[47] Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett., Volume 76 (1996) no. 25, pp. 4773-4776 | DOI
[48] Wire media with negative effective permittivity: a quasi-static model, Microw. Opt. Technol. Lett., Volume 35 (2002) no. 1, pp. 47-51 | DOI
[49] Dispersion and reflection properties of artificial media formed by regular lattices of ideally conducting wires, J. Electromagnetic Waves Appl., Volume 16 (2002) no. 8, pp. 1153-1170 | DOI
[50] Strong spatial dispersion in wire media in the very large wavelength limit, Phys. Rev. B, Volume 67 (2003) no. 11, 113103
[51] Wire Media, Metamaterials Handbook: Applications of Metamaterials (F. Capolino, ed.), CRC Press, 2009, Ch. 15
[52] Wire metamaterials: physics and applications, Adv. Mater., Volume 24 (2012) no. 31, pp. 4229-4248 | DOI
[53] Nonlocal homogenization model for a periodic array of -negative rods, Phys. Rev. E, Volume 73 (2006) no. 4, 046612
[54] On reflection from interfaces with some spatially dispersive metamaterials, J. Magnetism Magnetic Mater., Volume 300 (2006) no. 1, p. e107-e110 | DOI
[55] Canalization of subwavelength images by electromagnetic crystals, Phys. Rev. B, Volume 71 (2005) no. 19, 193105
[56] Resolution of subwavelength transmission devices formed by a wire medium, Phys. Rev. E, Volume 73 (2006) no. 5, 056607
[57] Experimental study of the subwavelength imaging by a wire medium slab, Appl. Phys. Lett., Volume 89 (2006) no. 26, 262109
[58] Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range, Phys. Rev. B, Volume 77 (2008) no. 19, 193108
[59] Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime, Appl. Phys. Lett., Volume 91 (2007) no. 10, 104102 | DOI
[60] Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays, Phys. Rev. Lett., Volume 99 (2007) no. 5, 053903 | DOI
[61] Subwavelength imaging at infrared frequencies using an array of metallic nanorods, Phys. Rev. B, Volume 75 (2007) no. 3, 035108
[62] Transport of an arbitrary near-field component with an array of tilted wires, New J. Phys., Volume 11 (2009) no. 8, 083023
[63] Experimental verification of full reconstruction of the near-field with a metamaterial lens, Appl. Phys. Lett., Volume 97 (2010) no. 14, 144102
[64] Near-field transport by a bent multi-wire endoscope, J. Appl. Phys., Volume 120 (2016) no. 6, 063103 | DOI
[65] Homogenization of metamaterial surfaces and slabs: the crossed wire mesh canonical problem, IEEE Trans. Antennas and Propagation, Volume 53 (2005) no. 1, pp. 59-69 | DOI
[66] Nonresonant structured material with extreme effective parameters, Phys. Rev. B, Volume 78 (2008) no. 3, 033108
[67] Broadband negative refraction with a crossed wire mesh, Phys. Rev. B, Volume 79 (2009) no. 15, 153109
[68] Anomalous refraction of light colors by a metamaterial prism, Phys. Rev. Lett., Volume 102 (2009) no. 19, 193903
[69] Ultraconfined interlaced plasmons, Phys. Rev. Lett., Volume 107 (2011) no. 6, 063903
[70] Negative refraction and partial focusing with a crossed wire mesh: physical insights and experimental verification, Appl. Phys. Lett., Volume 101 (2012) no. 2, 021104
[71] Achromatic lens based on a nanowire material with anomalous dispersion, Opt. Express, OE, Volume 20 (2012) no. 13, pp. 13915-13922 | DOI
[72] Reversed rainbow with a nonlocal metamaterial, Appl. Phys. Lett., Volume 105 (2014) no. 26, 264101
[73] Homogenization of 3-D-connected and nonconnected wire metamaterials, IEEE Trans. Microw. Theory Tech., Volume 53 (2005) no. 4, pp. 1418-1430 | DOI
[74] Taming spatial dispersion in wire metamaterial, J. Phys.: Condens. Matter, Volume 20 (2008) no. 29, 295222
[75] Fundamentals of Plasma Physics, Springer-Verlag, New York, 2004 | DOI | Zbl
[76] Nonlocal permittivity from a quasistatic model for a class of wire media, Phys. Rev. B, Volume 80 (2009) no. 24, 245101
[77] Generalized additional boundary conditions for wire media, New J. Phys., Volume 12 (2010) no. 11, 113047 | Zbl
[78] Radiation from elementary sources in a uniaxial wire medium, Phys. Rev. B, Volume 85 (2012) no. 15, 155125
[79] Poynting vector, heating rate, and stored energy in structured materials: a first-principles derivation, Phys. Rev. B, Volume 80 (2009) no. 23, 235120
[80] Poynting vector in negative-index metamaterials, Phys. Rev. B, Volume 83 (2011) no. 16, 165120
[81] Additional boundary conditions for nonconnected wire media, New J. Phys., Volume 11 (2009) no. 11, 113016
[82] Higher order impedance boundary conditions for sparse wire grids, IEEE Trans. Antennas and Propagation, Volume 48 (2000) no. 5, pp. 720-727 | DOI
[83] Electromagnetic wave refraction at an interface of a double wire medium, Phys. Rev. B, Volume 72 (2005) no. 24, 245113
[84] The theory of electromagnetic waves in a crystal in which excitons are produced, Sov. Phys. JETP, Volume 6 (1958), p. 785 | MR | Zbl
[85] Additional boundary condition for the wire medium, IEEE Trans. Antennas and Propagation, Volume 54 (2006) no. 6, pp. 1766-1780 | DOI | MR | Zbl
[86] A generalized additional boundary condition for mushroom-type and bed-of-nails-type wire media, IEEE Trans. Microw. Theory Tech., Volume 59 (2011) no. 3, pp. 527-532 | DOI
[87] Modeling of spatially-dispersive wire media: transport representation, comparison with natural materials, and additional boundary conditions, IEEE Trans. Antennas and Propagation, Volume 60 (2012) no. 9, pp. 4219-4232 | DOI | MR | Zbl
[88] Non-local susceptibility of the wire medium in the spatial domain considering material boundaries, New J. Phys., Volume 15 (2013) no. 8, 083018
[89] Boundary conditions for quadrupolar metamaterials, New J. Phys., Volume 16 (2014) no. 8, 083042
[90] Boundary conditions for electric quadrupolar continua, Radio Sci., Volume 49 (2014) no. 12, pp. 1289-1299 | DOI
[91] Three-dimensional electromagnetic metamaterials that homogenize to uniform non-Maxwellian media, Phys. Rev. B, Volume 76 (2007) no. 11, 113101 | DOI
[92] Light tunneling anomaly in interlaced metallic wire meshes, Phys. Rev. B, Volume 96 (2017) no. 19, 195132 | DOI
[93] Fano resonances in nested wire media, Phys. Rev. B, Volume 88 (2013) no. 4, 045130
Cited by Sources:
Comments - Policy