We review the latest theoretical advances in the application of the framework of Transformation Optics for the analytical description of deeply sub-wavelength electromagnetic phenomena. First, we present a general description of the technique, together with its usual exploitation for metamaterial conception and optimization in different areas of wave physics. Next, we discuss in detail the design of plasmonic metasurfaces, including the description of singular geometries which allow for broadband absorption in ultrathin platforms. Finally, we discuss the quasi-analytical treatment of plasmon–exciton strong coupling in nanocavities at the single emitter level.
Nous passons en revue les dernières avancées dans l’application du cadre de l’optique transformationnelle pour la description analytique des phénomènes électromagnétiques en régime fortement sub-longueur d’onde. En premier lieu, nous présentons une description générale de la technique, ainsi que son exploitation usuelle dans la conception et l’optimisation des métamatériaux dans différentes disciplines de la physique des ondes. En second lieu, nous discutons en détail de la conception de métasurfaces plasmoniques, y compris la description de géométries singulières qui permettent une absorption sur une large plage de fréquences dans les plates-formes ultra-minces. Enfin, nous discutons du traitement quasi-analytique du couplage fort plasmon–exciton dans les nanocavités au niveau d’un seul émetteur.
Published online:
Mots-clés : Optique transformationnelle, Plasmonique, Métasurface, Excitonique en fort couplage
Paloma A. Huidobro 1; Antonio I. Fernández-Domínguez 2
@article{CRPHYS_2020__21_4-5_389_0, author = {Paloma A. Huidobro and Antonio I. Fern\'andez-Dom{\'\i}nguez}, title = {Transformation optics for plasmonics: from metasurfaces to excitonic strong coupling}, journal = {Comptes Rendus. Physique}, pages = {389--408}, publisher = {Acad\'emie des sciences, Paris}, volume = {21}, number = {4-5}, year = {2020}, doi = {10.5802/crphys.22}, language = {en}, }
TY - JOUR AU - Paloma A. Huidobro AU - Antonio I. Fernández-Domínguez TI - Transformation optics for plasmonics: from metasurfaces to excitonic strong coupling JO - Comptes Rendus. Physique PY - 2020 SP - 389 EP - 408 VL - 21 IS - 4-5 PB - Académie des sciences, Paris DO - 10.5802/crphys.22 LA - en ID - CRPHYS_2020__21_4-5_389_0 ER -
%0 Journal Article %A Paloma A. Huidobro %A Antonio I. Fernández-Domínguez %T Transformation optics for plasmonics: from metasurfaces to excitonic strong coupling %J Comptes Rendus. Physique %D 2020 %P 389-408 %V 21 %N 4-5 %I Académie des sciences, Paris %R 10.5802/crphys.22 %G en %F CRPHYS_2020__21_4-5_389_0
Paloma A. Huidobro; Antonio I. Fernández-Domínguez. Transformation optics for plasmonics: from metasurfaces to excitonic strong coupling. Comptes Rendus. Physique, Metamaterials 1, Volume 21 (2020) no. 4-5, pp. 389-408. doi : 10.5802/crphys.22. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.22/
[1] Refraction and geometry in Maxwell’s equations, J. Mod. Opt., Volume 43 (1996) no. 4, pp. 773-793 | DOI | MR | Zbl
[2] Controlling Electromagnetic Fields, Science, Volume 312 (2006) no. 5781, pp. 1780-1782 | DOI | MR | Zbl
[3] Transformation optics and metamaterials, Nat. Mater., Volume 9 (2010) no. 5, pp. 387-396 | DOI
[4] Transformation optics: from classic theory and applications to its new branches, Laser Photon. Rev., Volume 11 (2017) no. 6, 1700034
[5] A spacetime cloak, or a history editor, J. Opt., Volume 13 (2010) no. 2, 024003
[6] Demonstration of temporal cloaking, Nature, Volume 481 (2012) no. 7379, p. 62 | DOI
[7] General relativity in electrical engineering, New J. Phys., Volume 8 (2006) no. 10, p. 247 | DOI
[8] Electromagnetic wormholes and virtual magnetic monopoles from metamaterials, Phys. Rev. Lett., Volume 99 (2007) no. 18, 183901 | DOI
[9] Metric signature transitions in optical metamaterials, Phy. Rev. Lett., Volume 105 (2010) no. 6, 067402
[10] A completely covariant approach to transformation optics, J. Opt., Volume 13 (2010) no. 2, 024008
[11] Wave propagation in complex coordinates, J. Opt., Volume 18 (2016) no. 4, 044016 | DOI
[12] Spatial kramers–kronig relations and the reflection of waves, Nat. Photon., Volume 9 (2015) no. 7, p. 436 | DOI
[13] Observation of parity–time symmetry in optics, Nat. Phys., Volume 6 (2010) no. 3, p. 192 | DOI
[14] P t metamaterials via complex-coordinate transformation optics, Phys. Rev. Lett., Volume 110 (2013) no. 17, 173901 | DOI
[15] Perfect surface wave cloaks, Phys. Rev. Lett., Volume 111 (2013) no. 21, 213901 | DOI
[16] Transforming two-dimensional guided light using nonmagnetic metamaterial waveguides, Phys. Rev. B, Volume 93 (2016), 085429 | DOI
[17] Transformation optics for antennas: why limit the bandwidth with metamaterials?, Sci. Rep., Volume 3 (2013), p. 1903 | DOI
[18] Metamaterial electromagnetic cloak at microwave frequencies, Science, Volume 314 (2006), p. 977 | DOI
[19] One path to acoustic cloaking, New J. Phys., Volume 9 (2007) no. 3, p. 45 | DOI
[20] Acoustic cloaking in three dimensions using acoustic metamaterials, Appl. Phys. Lett., Volume 91 (2007) no. 18, 183518 | DOI
[21] Three-dimensional broadband omnidirectional acoustic ground cloak, Nat. Mater., Volume 13 (2014) no. 4, pp. 352-355 | DOI
[22] Cloaking of matter waves, Phys. Rev. Lett., Volume 100 (2008) no. 12, 123002 | DOI
[23] Transformation thermodynamics: cloaking and concentrating heat flux, Opt. Exp., Volume 20 (2012) no. 7, pp. 8207-8218 | DOI
[24] On cloaking for elasticity and physical equations with a transformation invariant form, New J. Phys., Volume 8 (2006) no. 10, p. 248-248 | DOI
[25] Experiments on elastic cloaking in thin plates, Phys. Rev. Lett., Volume 108 (2012) no. 1, 014301 | DOI
[26] An elasto-mechanical unfeelability cloak made of pentamode metamaterials, Nat. Commun., Volume 5 (2014), p. 4130 | DOI
[27] Mechanical cloak design by direct lattice transformation, Proc. Natl Acad. Sci. USA, Volume 112 (2015) no. 16, pp. 4930-4934 | DOI
[28] Achieving control of in-plane elastic waves, Appl. Phys. Lett., Volume 94 (2009) no. 6, 061903 | DOI
[29] Experiments on seismic metamaterials: molding surface waves, Phys. Rev. Lett., Volume 112 (2014), 133901 | DOI
[30] Transformation optics for plasmonics, Nano Lett., Volume 10 (2010) no. 6, pp. 1985-1990 | DOI
[31] Transformational plasmon optics, Nano Lett., Volume 10 (2010) no. 6, pp. 1991-1997 | DOI
[32] Controlling surface plasmon polaritons in transformed coordinates, J. Mod. Opt., Volume 58 (2011) no. 12, pp. 994-1003 | DOI
[33] Plasmonic space folding: focusing surface plasmons via negative refraction in complementary media, ACS Nano, Volume 5 (2011) no. 9, pp. 6819-6825 | DOI
[34] Transformation plasmonics, Nanophotonics, Volume 1 (2012) no. 1, pp. 51-64 | DOI
[35] Moulding the flow of surface plasmons using conformal and quasiconformal mappings, New J. Phys., Volume 13 (2011) no. 3, 033011
[36] Hidden progress: broadband plasmonic invisibility, Opt. Express, Volume 18 (2010) no. 15, pp. 15757-15768 | DOI
[37] Plasmonic luneburg and eaton lenses, Nat. Nanotechnol., Volume 6 (2011) no. 3, p. 151 | DOI
[38] Cyclic concentrator, carpet cloaks and fisheye lens via transformation plasmonics, J. Opt., Volume 18 (2016) no. 4, 044023 | DOI
[39] Near-field lenses in two dimensions, J. Phys.: Condens. Matter, Volume 14 (2002) no. 36, p. 8463
[40] Principles of Nano-Optics, Cambridge University Press, Cambridge, UK, 2012 | DOI
[41] Conformal transformation applied to plasmonics beyond the quasistatic limit, Phys. Rev. B, Volume 82 (2010) no. 20, 205109 | DOI
[42] Transformation optics and subwavelength control of light, Science, Volume 337 (2012) no. 6094, pp. 549-552 | DOI | MR | Zbl
[43] Harvesting light with transformation optics, Sci. China Information Sci., Volume 56 (2013) no. 12, pp. 1-13 | DOI
[44] Transforming the optical landscape, Science, Volume 348 (2015) no. 6234, pp. 521-524 | DOI
[45] Plasmonic light-harvesting devices over the whole visible spectrum, Nano Lett., Volume 10 (2010) no. 7, pp. 2574-2579 | DOI
[46] Collection and concentration of light by touching spheres: a transformation optics approach, Phys. Rev. Lett., Volume 105 (2010) no. 26, 266807 | DOI
[47] Broadband plasmonic device concentrating the energy at the nanoscale: the crescent-shaped cylinder, Phys. Rev. B, Volume 82 (2010) no. 12, 125430 | DOI
[48] Theory of three-dimensional nanocrescent light harvesters, Nano Lett., Volume 12 (2012) no. 11, pp. 5946-5953 | DOI
[49] Transformation optics and hidden symmetries, Phys. Rev. B, Volume 89 (2014) no. 24, 245125 | DOI
[50] Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach, ACS Nano, Volume 5 (2011) no. 4, pp. 3293-3308 | DOI
[51] Capturing photons with transformation optics, Nat. Phys., Volume 9 (2013) no. 8, p. 518 | DOI
[52] Transformation-optics description of nonlocal effects in plasmonic nanostructures, Phys. Rev. Lett., Volume 108 (2012) no. 10, 106802 | DOI
[53] Transformation-optics insight into nonlocal effects in separated nanowires, Phys. Rev. B, Volume 86 (2012) no. 24, 241110 | DOI
[54] Transformation optics: a time-and frequency-domain analysis of electron-energy loss spectroscopy, Nano Lett., Volume 16 (2016) no. 8, pp. 5156-5162 | DOI
[55] Surface second-harmonic generation from metallic-nanoparticle configurations: a transformation-optics approach, Phys. Rev. B, Volume 99 (2019) no. 23, 235429
[56] Description of van der waals interactions using transformation optics, Phys. Rev. Lett., Volume 111 (2013) no. 3, 033602 | DOI
[57] van der Waals interactions at the nanoscale: the effects of nonlocality, Proc. Natl Acad. Sci. USA, Volume 111 (2014) no. 52, pp. 18422-18427 | DOI
[58] Hybridization of singular plasmons via transformation optics, Proc. Natl Acad. Sci. USA, Volume 116 (2019) no. 28, pp. 13785-13790 (https://www.pnas.org/content/116/28/13785.full.pdf) | DOI
[59] An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials, IEEE Antennas Propag. Mag., Volume 54 (2012) no. 2, pp. 10-35 | DOI
[60] Planar photonics with metasurfaces, Science, Volume 339 (2013) no. 6125, 1232009
[61] Functional and nonlinear optical metasurfaces, Laser Photonics Rev., Volume 9 (2015) no. 2, pp. 195-213 | DOI
[62] Metasurfaces: from microwaves to visible, Phys. Rep., Volume 634 (2016), pp. 1-72 | DOI | MR
[63] Metamaterial, plasmonic and nanophotonic devices, Rep. Prog. Phys., Volume 80 (2017) no. 3, 036401 | DOI
[64] Spoof surface plasmon metamaterials, Elements in Emerging Theories and Technologies in Metamaterials, Cambridge University Press, Cambridge, UK, 2018
[65] Broadband light bending with plasmonic nanoantennas, Science, Volume 335 (2012) no. 6067, p. 427-427 | DOI
[66] Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science (New York), Volume 334 (2011) no. 6054, p. 333-7 | DOI
[67] Recent advances in planar optics: from plasmonic to dielectric metasurfaces, Optica, Volume 4 (2017) no. 1, pp. 139-152 | DOI
[68] Plasmonic meta-atoms and metasurfaces, Nat. Photon., Volume 8 (2014) no. 12, p. 889 | DOI
[69] Graphene plasmonics: a platform for strong light-matter interaction, Nano Lett., Volume 11 (2011) no. (8), pp. 3370-3377 | DOI
[70] Graphene plasmonics for tunable terahertz metamaterials, Nat. Nanotechnol., Volume 6 (2011) no. 10, pp. 630-634 | DOI
[71] Fields radiated by a nanoemitter in a graphene sheet, Phys. Rev. B, Volume 84 (2011) no. 19, 195446
[72] Graphene plasmonics, Nat. Photon., Volume 6 (2012) no. 11, pp. 749-758 | DOI
[73] Graphene plasmonics for terahertz to mid-infrared applications, ACS Nano, Volume 8 (2014) no. 2, pp. 1086-1101 | DOI
[74] A new theoretical method for diffraction gratings and its numerical application, J. Opt., Volume 11 (1980) no. 4, pp. 235-241 | DOI
[75] Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings, Phys. Rev. B, Volume 54 (1996), pp. 6227-6244 | DOI
[76] Designing plasmonic gratings with transformation optics, Phys. Rev. X, Volume 5 (2015) no. 3, 031029
[77] Hidden symmetries in plasmonic gratings, Phys. Rev. B, Volume 95 (2017) no. 15, pp. 1-8
[78] Graphene as a tunable anisotropic or isotropic plasmonic metasurface, ACS Nano, Volume 10 (2016) no. 5, pp. 5499-5506 | DOI
[79] Comsol multiphysics, 1998 (published electronally at https://www.comsol.com/)
[80] Computing one-dimensional metasurfaces, Phys. Rev. B, Volume 99 (2019), 085408
[81] Graphene, plasmons and transformation optics, J. Opt., Volume 18 (2016) no. 4, 044024
[82] Exact solution for square-wave grating covered with graphene: surface plasmon-polaritons in the terahertz range, J. Phys.: Condens. Matter, Volume 25 (2013) no. 12, 125303
[83] Analytical solution for the diffraction of an electromagnetic wave by a graphene grating, J. Opt. (Bristol, U. K.), Volume 15 (2013) no. 11, 114008
[84] Flatland plasmonics and nanophotonics based on graphene and beyond, Nanophotonics, Volume 6 (2017) no. 6, pp. 1239-1262 | DOI
[85] et al. Ultrafast nonlinear optical response of dirac fermions in graphene, Nat. Commun., Volume 9 (2018) no. 1, p. 1018 | DOI
[86] Electrostatic doping of graphene through ultrathin hexagonal boron nitride films, Nano Lett., Volume 11 (2011) no. 11, pp. 4631-4635 | DOI
[87] Tunable terahertz meta-surface with graphene cut-wires, ACS Photon., Volume 2 (2015) no. 1, pp. 151-156 | DOI
[88] Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons, Phys. Rev. B, Volume 85 (2012) no. 8, 081405(R)
[89] Transformation optics using graphene, Science (New York, N.Y.), Volume 332 (2011) no. 6035, pp. 1291-1294 | DOI
[90] et al. Probing the ultimate plasmon confinement limits with a van der waals heterostructure, Science, Volume 360 (2018) no. 6386, pp. 291-295 | DOI
[91] Tunable plasmonic metasurface for perfect absorption, EPJ Appl. Metamat., Volume 4 (2017), p. 6 | DOI
[92] Physics of unbounded, broadband absorption/gain efficiency in plasmonic nanoparticles, Phys. Rev. B, Volume 87 (2013), 205418
[93] Anomalous absorption, plasmonic resonances, and invisibility of radially anisotropic spheres, Radio Sci., Volume 50 (2015) no. 1, pp. 18-28 | DOI
[94] Nonlocal effects in singular plasmonic metasurfaces, Phys. Rev. B, Volume 99 (2019), 165423 | DOI
[95] Broadband tunable THz absorption with singular graphene metasurfaces, ACS Nano, Volume 12 (2018) no. 2, pp. 1006-1013 | DOI
[96] Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves, Nat. Commun., Volume 3 (2012), p. 969 | DOI
[97] Compacted dimensions and singular plasmonic surfaces, Science, Volume 358 (2017) no. 6365, pp. 915-917 | DOI | MR | Zbl
[98] Transformation optics approach to singular metasurfaces, Phys. Rev. B, Volume 98 (2018), 125409 | DOI
[99] Singular graphene metasurfaces, EPJ Appl. Metamat., Volume 6 (2019), p. 10 | DOI
[100] Single-molecule optomechanics in “picocavities”, Science, Volume 354 (2016) no. 6313, pp. 726-729 | DOI
[101] Nonlocal effects in plasmonic metasurfaces with almost touching surfaces, Phys. Rev. B, Volume 101 (2020) no. 7, 075434 | DOI
[102] Probing graphene’s nonlocality with singular metasurfaces, Nanophotonics, Volume 9 (2020) no. 2, pp. 309-316 | DOI
[103] Resonant-state expansion of dispersive open optical systems: creating gold from sand, Phys. Rev. B, Volume 93 (2016) no. 7, 075417 | DOI
[104] Generalizing normal mode expansion of electromagnetic green’s tensor to open systems, Phys. Rev. Appl., Volume 11 (2019) no. 4, 044018
[105] Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators, Phys. Rev. Lett., Volume 110 (2013) no. 23, 237401 | DOI
[106] Modes and mode volumes of leaky optical cavities and plasmonic nanoresonators, ACS Photon., Volume 1 (2013) no. 1, pp. 2-10 | DOI
[107] Completeness and divergence-free behavior of the quasi-normalmodes using causality principle, OSA Contin., Volume 1 (2018), pp. 340-348 | DOI
[108] Analytical formalism for the interaction of two-level quantum systems with metal nanoresonators, Phys. Rev. X, Volume 5 (2015) no. 2, 021008
[109] Quantized pseudomodes for plasmonic cavity qed, Opt. Lett., Volume 43 (2018) no. 8, pp. 1834-1837 | DOI
[110] Quantization of quasinormal modes for open cavities and plasmonic cavity quantum electrodynamics, Phys. Rev. Lett., Volume 122 (2019) no. 21, 213901 | DOI
[111] Three-dimensional quantization of the electromagnetic field in dispersive and absorbing inhomogeneous dielectrics, Phys. Rev. A, Volume 57 (1998) no. 5, p. 3931 | DOI
[112] Transformation optics approach to plasmon-exciton strong coupling in nanocavities, Phys. Rev. Lett., Volume 117 (2016) no. 10, 107401
[113] Plasmon-exciton coupling in symmetry-broken nanocavities, ACS Photon., Volume 5 (2018) no. 1, pp. 177-185
[114] Description of bow-tie nanoantennas excited by localized emitters using conformal transformation, Acs Photon., Volume 3 (2016) no. 7, pp. 1223-1232 | DOI
[115] Aluminum nanotripods for light-matter coupling robust to nanoemitter orientation, Laser Photonics Rev., Volume 11 (2017) no. 5, 1700051 | DOI
[116] Light-forbidden transitions in plasmon-emitter interactions beyond the weak coupling regime, ACS Photon., Volume 5 (2018) no. 8, pp. 3415-3420 | DOI
[117] Dipolar and quadrupolar excitons coupled to a nanoparticle-on-a-mirror cavity, Phys. Rev. B, Volume 101 (2020), 035403 | DOI
[118] et al. The Theory of Open Quantum Systems, Oxford University Press on Demand, Oxford, UK, 2002
[119] Reversible dynamics of single quantum emitters near metal-dielectric interfaces, Phys. Rev. B, Volume 89 (2014) no. 4, 041402 | DOI
[120] Quantum emitters near a metal nanoparticle: strong coupling and quenching, Phys. Rev. Lett., Volume 112 (2014) no. 25, 253601 | DOI
[121] Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters, Chem. Rev., Volume 111 (2011) no. 6, pp. 3888-3912 | DOI
[122] Spatiotemporal dynamics and control of strong coupling in plasmonic nanocavities, ACS Photon., Volume 4 (2017) no. 10, pp. 2410-2418 | DOI
[123] Strong coupling of single emitters interacting with phononic infrared antennae, New J. Phys., Volume 16 (2014) no. 1, 013052 | DOI
[124] Enhancing photon correlations through plasmonic strong coupling, Optica, Volume 4 (2017) no. 11, pp. 1363-1367 | DOI
[125] Strong coupling of quantum dots in microcavities, Phys. Rev. Lett., Volume 101 (2008) no. 8, 083601
[126] Photon statistics in collective strong coupling: nanocavities and microcavities, Phys. Rev. A, Volume 98 (2018) no. 1, 013839 | DOI
Cited by Sources:
Comments - Policy