Comptes Rendus
Light-control of materials via nonlinear phononics
Comptes Rendus. Physique, Volume 22 (2021) no. S2, pp. 161-184.

Nonlinear phononics is the phenomenon in which a coherent dynamics in a material along a set of phonons is launched after its infrared-active phonons are selectively excited using external light pulses. The microscopic mechanism underlying this phenomenon is the nonlinear coupling of the pumped infrared-active mode to other phonon modes present in a material. Nonlinear phonon couplings can cause finite time-averaged atomic displacements with or without broken crystal symmetries depending on the order, magnitude and sign of the nonlinearities. Such coherent lattice displacements along phonon coordinates can be used to control the physical properties of materials and even induce transient phases with lower symmetries. Light-control of materials via nonlinear phononics has become a practical reality due to the availability of intense mid-infrared lasers that can drive large-amplitude oscillations of the infrared-active phonons of materials. Mid-infrared pump induced insulator–metal transitions and spin and orbital order melting have been observed in pump–probe experiments. First principles based microscopic theory of nonlinear phononics has been developed, and it has been used to better understand how the lattice evolves after a mid-infrared pump excitation of infrared-active phonons. This theory has been used to predict light-induced switching of ferroelectric polarization as well as ferroelectricity in paraelectrics and ferromagnetism in antiferromagnets, which have been partially confirmed in recent experiments. This review summarizes the experimental and theoretical developments within this emerging field.

Première publication :
Publié le :
DOI : 10.5802/crphys.44
Mots clés : Nonlinear phononics, Ultrafast control, Light-matter interaction, Mode-selective control, Light-induced phonon dynamics
Alaska Subedi 1, 2

1 CPHT, CNRS, Ecole Polytechnique, IP Paris, F-91128 Palaiseau, France
2 Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2021__22_S2_161_0,
     author = {Alaska Subedi},
     title = {Light-control of materials via nonlinear phononics},
     journal = {Comptes Rendus. Physique},
     pages = {161--184},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {S2},
     year = {2021},
     doi = {10.5802/crphys.44},
     language = {en},
}
TY  - JOUR
AU  - Alaska Subedi
TI  - Light-control of materials via nonlinear phononics
JO  - Comptes Rendus. Physique
PY  - 2021
SP  - 161
EP  - 184
VL  - 22
IS  - S2
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.44
LA  - en
ID  - CRPHYS_2021__22_S2_161_0
ER  - 
%0 Journal Article
%A Alaska Subedi
%T Light-control of materials via nonlinear phononics
%J Comptes Rendus. Physique
%D 2021
%P 161-184
%V 22
%N S2
%I Académie des sciences, Paris
%R 10.5802/crphys.44
%G en
%F CRPHYS_2021__22_S2_161_0
Alaska Subedi. Light-control of materials via nonlinear phononics. Comptes Rendus. Physique, Volume 22 (2021) no. S2, pp. 161-184. doi : 10.5802/crphys.44. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.44/

[1] A. H. Zewail Laser selective chemistry — is it possible?, Phys. Today, Volume 33 (1980), pp. 27-33 | DOI

[2] R. N. Zare Laser control of chemical reactions, Science, Volume 279 (1998) no. 5358, pp. 1875-1879 | DOI

[3] W. S. Warren; H. Rabitz; M. Dahleh Coherent control of quantum dynamics: The dream is alive, Science, Volume 259 (1993), pp. 1581-1589 | DOI | MR | Zbl

[4] N. Bloembergen; A. H. Zewail Energy redistribution in isolated molecules and the question of mode-selective laser chemistry revisited, J. Phys. Chem., Volume 88 (1984), pp. 5459-5465 | DOI

[5] C. S. Parmenter Vibrational redistribution within excited electronic states of polyatomic molecules, Faraday Discuss. Chem. Soc., Volume 75 (1983), pp. 7-22 | DOI

[6] D. J. Nesbitt; R. W. Field Vibrational energy flow in highly excited molecules: Role of intramolecular vibrational redistribution, J. Phys. Chem., Volume 100 (1996), pp. 12735-12756 | DOI

[7] S. Woutersen; P. Hamm Nonlinear two-dimensional vibrational spectroscopy of peptides, J. Phys. Condens. Matter, Volume 14 (2002) no. 39, R1035–R1062 | DOI

[8] M. Khalil; A. Tokmakoff Signatures of vibrational interactions in coherent two-dimensional infrared spectroscopy, Chem. Phys., Volume 266 (2001), pp. 213-230 | DOI

[9] M. Khalil; N. Demirdöven; A. Tokmakoff Coherent 2D IR spectroscopy: Molecular structure and dynamics in solution, J. Phys. Chem., Volume 107 (2003), pp. 5258-5279 | DOI

[10] N. Huse; K. Heyne; J. Dreyer; E. T. J. Nibbering; T. Elsaesser Vibrational multilevel quantum coherence due to anharmonic couplings in intermolecular hydrogen bonds, Phys. Rev. Lett., Volume 91 (2003), 197401 | DOI

[11] R. F. Wallis; A. A. Maradudin Ionic Raman effect. II. The first-order ionic Raman effect, Phys. Rev. B, Volume 3 (1971), pp. 2063-2075 | DOI

[12] T. P. Martin; L. Genzel Ionic Raman scattering and ionic frequency mixing, Phys. Status Solidi B, Volume 61 (1974) no. 2, pp. 493-502 | DOI

[13] M. Först; C. Manzoni; S. Kaiser; Y. Tomioka; Y. Tokura; R. Merlin; A. Cavalleri Nonlinear phononics as an ultrafast route to lattice control, Nat. Phys., Volume 7 (2011), pp. 854-866 | DOI

[14] T. F. Nova; A. Cartella; A. Cantaluppi; M. Först; D. Bossini; R. V. Mikhaylovskiy; A. V. Kimel; A. Cavalleri An effective magnetic field from optically driven phonons, Nat. Phys., Volume 13 (2016), pp. 132-136 | DOI

[15] J. R. Hortensius; D. Afanasiev; A. Sasani; E. Bousquet; A. D. Caviglia Ultrafast strain engineering and coherent structural dynamics from resonantly driven optical phonons in LaAlO 3 , NPJ Quant. Mater., Volume 5 (2020), 95 | DOI

[16] R. Mankowsky; A. von Hoegen; M. Först; A. Cavalleri Ultrafast reversal of the ferroelectric polarization, Phys. Rev. Lett., Volume 118 (2017), 197601 | DOI

[17] M. Först; R. Mankowsky; H. Bromberger; D. M. Fritz; H. Lemke; D. Zhu; M. Chollet; Y. Tomioka; Y. Tokura; R. Merlin; J. P. Hill; S. L. Johnson; A. Cavalleri Displacive lattice excitation through nonlinear phononics viewed by femtosecond X-ray diffraction, Solid State Commun., Volume 169 (2013), pp. 24-27 | DOI

[18] R. Mankowsky; A. Subedi; M. Först; S. O. Mariager; M. Chollet; H. T. Lemke; J. S. Robinson; J. M. Glownia; M. P. Minitti; A. Frano et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa 2 Cu 3 O 6.5 , Nature (London), Volume 516 (2014), pp. 71-73 | DOI

[19] A. Subedi Proposal for ultrafast switching of ferroelectrics using midinfrared pulses, Phys. Rev. B, Volume 92 (2015), 214303 | DOI

[20] M. Rini; R. Tobey; N. Dean; J. Itatani; Y. Tomioka; Y. Tokura; R. W. Schoenlein; A. Cavalleri Control of the electronic phase of a manganite by mode-selective vibrational excitation, Nature (London), Volume 449 (2007), pp. 72-74 | DOI

[21] V. Esposito; M. Fechner; R. Mankowsky; H. Lemke; M. Chollet; J. M. Glownia; M. Nakamura; M. Kawasaki; Y. Tokura; U. Staub; P. Beaud; M. Först Nonlinear electron–phonon coupling in doped manganites, Phys. Rev. Lett., Volume 118 (2017), 247601 | DOI

[22] A. D. Caviglia; R. Scherwitzl; P. Popovich; W. Hu; H. Bromberger; R. Singla; M. Mitrano; M. C. Hoffmann; S. Kaiser; P. Zubko et al. Nonlinear electron–phonon coupling in doped manganites, Phys. Rev. Lett., Volume 108 (2012), 136801

[23] R. I. Tobey; D. Prabhakaran; A. T. Boothroyd; A. Cavalleri Ultrafast electronic phase transition in La 1/2 Sr 3/2 MnO 4 by coherent vibrational excitation: Evidence for nonthermal melting of orbital order, Phys. Rev. Lett., Volume 101 (2008), 197404 | DOI

[24] M. Först; R. I. Tobey; S. Wall; H. Broberger; V. Khanna; A. L. Cavalieri; Y.-D. Chuang; W. S. Lee; R. Moore; W. F. Schlotter et al. Driving magnetic order in a manganite by ultrafast lattice excitation, Phys. Rev. B, Volume 84 (2011), 241104(R) | DOI

[25] M. Först; A. D. Caviglia; R. Scherwitzl; R. Mankowsky; P. Zubko; V. Khanna; H. Bromberger; S. B. Wilkins; Y.-D. Chuang; W. S. Lee et al. Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface, Nat. Mater., Volume 14 (2015), pp. 883-888 | DOI

[26] A. Subedi Midinfrared-light-induced ferroelectricity in oxide paraelectrics via nonlinear phononics, Phys. Rev. B, Volume 95 (2017), 134113 | DOI

[27] T. F. Nova; A. S. Disa; M. Fechner; A. Cavalleri Metastable ferroelectricity in optically strained SrTiO 3 , Science, Volume 364 (2019), pp. 1075-1079 | DOI

[28] X. Li; T. Qiu; J. Zhang; E. Baldini; J. Lu; A. M. Rappe; K. A. Nelson Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO 3 , Science, Volume 364 (2019), pp. 1079-1082 | DOI

[29] D. Fausti; R. I. Tobey; N. Dean; S. Kaiser; A. Dienst; M. C. Hoffmann; S. Pyon; T. Takayama; H. Takagi; A. Cavalleri Light-induced superconductivity in a stripe-ordered cuprate, Science, Volume 331 (2011), pp. 189-191 | DOI

[30] S. Kaiser; C. R. Hunt; D. Nicoletti; W. Hu; I. Gierz; H. Y. Liu; M. Le Tacon; T. Loew; D. Haug; B. Keimer; A. Cavalleri Optically induced coherent transport far above Tc in underdoped YBa 2 Cu 3 O 6+δ , Phys. Rev. B, Volume 89 (2014), 184516 | DOI

[31] W. Hu; S. Kaiser; D. Nicoletti; C. R. Hunt; I. Gierz; M. C. Hoffmann; M. Le Tacon; T. Loew; B. Keimer; A. Cavalleri Optically enhanced coherent transport in YBa 2 Cu 3 O 6.5 by ultrafast redistribution of interlayer coupling, Nat. Mater., Volume 13 (2014), pp. 705-711 | DOI

[32] M. Mitrano; A. Cantaluppi; D. Nicoletti; S. Kaiser; A. Perucchi; S. Lupi; P. Di Pietro; D. Pontiroli; M. Ricc; S. R. Clark; D. Jaksch; A. Cavalleri Possible light-induced superconductivity in K 3 C 60 at high temperature, Nature (London), Volume 530 (2016), pp. 461-464 | DOI

[33] R. Mankowsky; M. Först; A. Cavalleri Non-equilibrium control of complex solids by nonlinear phononics, Rep. Prog. Phys., Volume 79 (2016), 064503 | DOI

[34] D. Nicoletti; A. Cavalleri Nonlinear light-matter interaction at terahertz frequencies, Adv. Opt. Photon. 8 (2016), pp. 401-464 | DOI

[35] A. Cavalleri Photo-induced superconductivity, Contemp. Phys., Volume 59 (2018), pp. 31-46 | DOI

[36] T. Qi; Y.-H. Shin; K.-L. Yeh; K. A. Nelson; A. M. Rappe Collective coherent control: Synchronization of polarization in ferroelectric PbTiO 3 by shaped THz fields, Phys. Rev. Lett., Volume 102 (2009), 247603

[37] Y. Shinohara; K. Yabana; Y. Kawashita; J.-I. Iwata; T. Otobe; G. F. Bertsch Coherent phonon generation in time-dependent density functional theory, Phys. Rev. B, Volume 82 (2010), 155110 | DOI

[38] A. Subedi; A. Cavalleri; A. Georges Theory of nonlinear phononics for coherent light control of solids, Phys. Rev. B, Volume 89 (2014), 220301(R) | DOI

[39] D. M. Juraschek; M. Fechner; N. A. Spaldin Ultrafast structure switching through nonlinear phononics, Phys. Rev. Lett., Volume 118 (2017), 054101 | DOI

[40] P. G. Radaelli Breaking symmetry with light: Ultrafast ferroelectricity and magnetism from three-phonon coupling, Phys. Rev. B, Volume 97 (2018), 085145 | DOI

[41] D. Afanasiev; J. R. Hortensius; B. A. Ivanov; A. Sasani; E. Bousquet; Y. M. Blanter; R. V. Mikhaylovskiy; A. V. Kimel; A. D. Caviglia Ultrafast control of magnetic interactions via light-driven phonons, Nat. Mater. (2021), pp. 1-5 | DOI

[42] A. S. Disa; M. Fechner; T. F. Nova; B. Liu; M. Först; D. Prabhakaran; P. G. Radaelli; A. Cavalleri Polarizing an antiferromagnet by optical engineering of the crystal field, Nat. Phys., Volume 16 (2020), pp. 937-941 | DOI

[43] M. Gu; J. M. Rondinelli Ultrafast band engineering and transient spin currents in antiferromagnetic oxides, Sci. Rep., Volume 6 (2016), 25121

[44] D. M. Juraschek; P. Narang; N. A. Spaldin Phono-magnetic analogs to opto-magnetic effects, Phys. Rev. Res., Volume 2 (2020), 043035 | DOI

[45] D. M. Juraschek; T. Neuman; J. Flick; P. Narang Cavity control of nonlinear phononics (2019) (https://arxiv.org/abs/1912.00122)

[46] D. M. Juraschek; Q. N. Meier; P. Narang Parametric excitation of an optically silent Goldstone-like phonon mode, Phys. Rev. Lett., Volume 124 (2020), 117401 | DOI

[47] M. Först; R. Mankowsky; A. Cavalleri Mode-selective control of the crystal lattice, Acc. Chem. Res., Volume 48 (2015), pp. 380-387 | DOI

[48] M. Buzzi; M. Först; A. Cavalleri Measuring non-equilibrium dynamics in complex solids with ultrashort X-ray pulses, Phil. Trans. R. Soc. A, Volume 377 (2019) no. 2145, 20170478 | DOI

[49] P. Salén; M. Basini; S. Bonetti; J. Hebling; M. Krasilnikov; A. Y. Nikitin; G. Shamuilov; Z. Tibai; V. Zhaunerchyk; V. Goryashko Matter manipulation with extreme terahertz light: Progress in the enabling THz technology, Phys. Rep., Volume 836-837 (2019), pp. 1-74 | DOI

[50] Y. Okimoto; Y. Tomioka; Y. Onose; Y. Otsuka; Y. Tokura Optical study of Pr 1-x Ca x MnO 3  (x = 0.4) in a magnetic field: Variation of electronic structure with charge ordering and disordering phase transitions, Phys. Rev. B, Volume 59 (1999), pp. 7401-7408 | DOI

[51] Y. Tomioka; A. Asamitsu; H. Kuwahara; Y. Moritomo; Y. Tokura Magnetic-field-induced metal-insulator phenomena in Pr 1-x Ca x MnO 3 with controlled charge-ordering instability, Phys. Rev. B, Volume 53 (1996), R1689–R1692 | DOI

[52] K. Miyano; T. Tanaka; Y. Tomioka; Y. Tokura Photoinduced insulator-to-metal transition in a perovskite manganite, Phys. Rev. Lett., Volume 78 (1997), pp. 4257-4260 | DOI

[53] A. Asamitsu; Y. Tomioka; H. Kuwahara; Y. Tokura Current switching of resistive states in magnetoresistive manganites, Nature (London), Volume 388 (1997), pp. 50-52 | DOI

[54] C. C. Homes; T. Timusk; D. A. Bonn; R. Liang; W. N. Hardy Optical properties along the c-axis of YBa 2 Cu 3 O 6+x , for x = 0.500.95 evolution of the pseudogap, Physica C, Volume 254 (1995) no. 3-4, pp. 265-280 | DOI

[55] M. Fechner; N. A. Spaldin Effects of intense optical phonon pumping on the structure and electronic properties of yttrium barium copper oxide, Phys. Rev. B, Volume 94 (2016), 134307 | DOI

[56] G. V. Subba Rao; C. N. R. Rao; J. R. Ferraro Infrared and electronic spectra of rare earth perovskites: Ortho-chromites, -manganites and -ferrites, Appl. Spectrosc., Volume 24 (1970), pp. 436-445

[57] D. M. Juraschek; S. F. Maehrlein Sum-frequency ionic Raman scattering, Phys. Rev. B, Volume 97 (2018), 174302 | DOI

[58] M. Kozina; M. Fechner; P. Marsik; T. van Driel; J. M. Glownia; C. Bernhard; M. Radovic; D. Zhu; S. Bonetti; U. Staub; M. C. Hoffmann Terahertz-driven phonon upconversion in SrTiO 3 , Nat. Phys., Volume 15 (2019), pp. 387-392 | DOI

[59] D. M. Juraschek; M. Fechner; A. V. Balatsky; N. A. Spaldin Dynamical multiferroicity, Phys. Rev. Mater., Volume 1 (2017), 014401

[60] M. Fechner; A. Sukhov; L. Chotorlishvili; C. Kenel; J. Berakdar; N. A. Spaldin Magnetophononics: Ultrafast spin control through the lattice, Phys. Rev. Mater., Volume 2 (2018), 064401

[61] M. Gu; J. M. Rondinelli Nonlinear phononic control and emergent magnetism in Mott insulating titanates, Phys. Rev. B, Volume 98 (2018), 024102

[62] G. Khalsa; N. A. Benedek Ultrafast optically induced ferromagnetic/anti-ferromagnetic phase transition in GdTiO 3 from first principles, NPJ Quant. Mater., Volume 3 (2018), 15 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Foreword: Ultrafast Phenomena in condensed matter physics

Eric Collet; Sylvain Ravy

C. R. Phys (2021)


Toward nonthermal control of excited quantum materials: framework and investigations by ultrafast electron scattering and imaging

Xiaoyi Sun; Shuaishuai Sun; Chong-Yu Ruan

C. R. Phys (2021)


Linear and nonlinear mesoscopic thermoelectric transport with coupling with heat baths

Jian-Hua Jiang; Yoseph Imry

C. R. Phys (2016)