Recent experiments have shown that the high-temperature incommensurate (I) charge density wave (CDW) phase of 1T-TaS can be photoinduced from the lower-temperature, nearly commensurate CDW state. In a first step, several independent regions exhibiting I-CDW phase modulations nucleate and grow. After coalescence, these regions form a multidomain I-CDW phase that undergoes coarsening dynamics, i.e. a progressive increase of the domain size or I-CDW correlation length. Using time-resolved X-ray diffraction, we show that the wave vector of the photoinduced I-CDW phase is shorter than in the I-CDW phase at equilibrium, and progressively increases towards its equilibrium value as the correlation length increases. We interpret this behaviour as a consequence of a self-doping of the photoinduced I-CDW, following the presence of trapped electrons in the vicinity of CDW dislocation sites. Putting together results of the present and past experiments, we develop a scenario in which the I-CDW dislocations are created during the coalescence of the I-CDW phase regions.
Plusieurs expériences récentes ont montré que les impulsions laser dans les domaines optique ou proche infrarouge permettent de déclencher des transitions entre états à onde de densité de charge (ODC) dans 1T-TaS. Nous nous intéressons ici à la transition entre l’état à ODC presque commensurable (NC) et l’état à ODC incommensurable (I), habituellement observé au-dessus de 350 K. Lors de cette transition, plusieurs régions présentant les modulations de l’état I se forment et se développent. Lorsque la coalescence a lieu, ces régions se muent en domaines de la phase I photoinduite de 1T-TaS, caractérisés chacun par un phasage particulier de l’ODC I. La phase I ainsi fragmentée en domaines subit alors une dynamique de mûrissement, c’est-à-dire une augmentation progressive de la taille de domaine ou encore de la longueur de corrélation de l’ODC I. En utilisant la diffraction des rayons X résolue en temps, nous montrons que le vecteur d’onde de l’ODC I photoinduite est plus court que dans l’ODC I observée à l’équilibre thermodynamique. Celui-ci s’allonge progressivement vers sa valeur d’équilibre, en même temps que la longueur de corrélation de l’ODC I augmente. Nous attribuons ce comportement à un autodopage de l’ODC I photoinduite, dû à la présence d’électrons piégés au voisinage de dislocations de l’ODC I. En réalisant une synthèse des résultats des différentes expériences menées jusqu’à présent, nous développons un scénario dans lequel les dislocations de l’ODC I sont créées au moment de la coalescence.
Published online:
Mot clés : Transitions de phase photoinduites, Diffraction pompe–sonde des rayons X, Composés à onde de densité de charge, Défauts topologiques, Dichalcogénures de métaux de transition
Amélie Jarnac 1; Vincent L. R. Jacques 2; Laurent Cario 3; Etienne Janod 3; Steven L. Johnson 4; Sylvain Ravy 2; Claire Laulhé 1
@article{CRPHYS_2021__22_S2_139_0, author = {Am\'elie Jarnac and Vincent L.~R. Jacques and Laurent Cario and Etienne Janod and Steven L. Johnson and Sylvain Ravy and Claire Laulh\'e}, title = {Photoinduced charge density wave phase in {1T-TaS}$_2$: growth and coarsening mechanisms}, journal = {Comptes Rendus. Physique}, pages = {139--160}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {S2}, year = {2021}, doi = {10.5802/crphys.89}, language = {en}, }
TY - JOUR AU - Amélie Jarnac AU - Vincent L. R. Jacques AU - Laurent Cario AU - Etienne Janod AU - Steven L. Johnson AU - Sylvain Ravy AU - Claire Laulhé TI - Photoinduced charge density wave phase in 1T-TaS$_2$: growth and coarsening mechanisms JO - Comptes Rendus. Physique PY - 2021 SP - 139 EP - 160 VL - 22 IS - S2 PB - Académie des sciences, Paris DO - 10.5802/crphys.89 LA - en ID - CRPHYS_2021__22_S2_139_0 ER -
%0 Journal Article %A Amélie Jarnac %A Vincent L. R. Jacques %A Laurent Cario %A Etienne Janod %A Steven L. Johnson %A Sylvain Ravy %A Claire Laulhé %T Photoinduced charge density wave phase in 1T-TaS$_2$: growth and coarsening mechanisms %J Comptes Rendus. Physique %D 2021 %P 139-160 %V 22 %N S2 %I Académie des sciences, Paris %R 10.5802/crphys.89 %G en %F CRPHYS_2021__22_S2_139_0
Amélie Jarnac; Vincent L. R. Jacques; Laurent Cario; Etienne Janod; Steven L. Johnson; Sylvain Ravy; Claire Laulhé. Photoinduced charge density wave phase in 1T-TaS$_2$: growth and coarsening mechanisms. Comptes Rendus. Physique, Volume 22 (2021) no. S2, pp. 139-160. doi : 10.5802/crphys.89. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.89/
[1] Correlated electrons in high-temperature superconductors, Rev. Mod. Phys., Volume 66 (1994), pp. 763-840 | DOI
[2] Metal–insulator transitions, Rev. Mod. Phys., Volume 70 (1998), pp. 1039-1263 | DOI
[3] Photoinduced Phase Transitions, World Scientific Publishing, Singapore, 2004
[4] Theory of photoinduced phase transitions in itinerant electron systems, Phys. Rep., Volume 465 (2008), pp. 1-60 | DOI
[5] Dynamics and control in complex transition metal oxides, Annu. Rev. Mater. Res., Volume 44 (2014), pp. 19-43 | DOI
[6] Towards properties on demand in quantum materials, Nat. Mater., Volume 16 (2017), pp. 1077-1088 | DOI
[7] Resistive switching in mott insulators and correlated systems, Adv. Funct. Mater., Volume 25 (2015), pp. 6287-6305 | DOI
[8] Photoinduced enhancement of the charge density wave amplitude, Phys. Rev. Lett., Volume 117 (2016), 056401 | DOI
[9] Laser-induced charge-density-wave transient depinning in chromium, Phys. Rev. Lett., Volume 117 (2016), 156401
[10] A leaky-integrate-and-fire neuron analog realized with a mott insulator, Adv. Funct. Mater., Volume 27 (2017), 1604740 | DOI
[11] Mott insulators: a large class of materials for leaky integrate and fire (LIF) artificial neuron, J. Appl. Phys., Volume 124 (2018), 152124 | DOI
[12] Density Waves in Solids, Perseus Publishing, Cambridge, MA, 2000
[13] Transient electronic structure and melting of a charge density wave in TbTe, Science, Volume 321 (2008), pp. 1649-1652 | DOI
[14] Dynamics of photoinduced charge-density-wave to metal phase transition in KMoO, Phys. Rev. Lett., Volume 102 (2009), 066404 | DOI
[15] Coherent dynamics of macroscopic electronic order through a symmetry-breaking transition, Nat. Phys., Volume 6 (2010), pp. 681-684 | DOI
[16] Snapshots of cooperative atomic motions in the optical suppression of charge density waves, Nature, Volume 468 (2010), pp. 799-802 | DOI
[17] Ultrafast melting of a charge-density wave in the mott insulator 1T-TaS, Phys. Rev. Lett., Volume 105 (2010), 187401 | DOI
[18] Collapse of long-range charge order tracked by time-resolved photoemission at high momenta, Nature, Volume 471 (2011), pp. 490-493 | DOI
[19] Nonthermal melting of a charge density wave in TiSe, Phys. Rev. Lett., Volume 107 (2011), 036403 | DOI
[20] Time-domain classification of charge-density-wave insulators, Nat. Commun., Volume 3 (2012), 1069 | DOI
[21] Structural dynamics of two-dimensional charge-density waves in CeTe investigated by ultrafast electron crystallography, Phys. Rev. B, Volume 86 (2012), 075145
[22] Ultrafast dynamics of charge density waves in 4H–TaSe probed by femtosecond electron diffraction, Phys. Rev. Lett., Volume 109 (2012), 167402 | DOI
[23] Dynamic separation of electron excitation and lattice heating during the photoinduced melting of the periodic lattice distortion in 2H-TaSe, Appl. Phys. Lett., Volume 103 (2013), 071914
[24] Coherent structural dynamics of a prototypical charge-density-wave-to-metal transition, Phys. Rev. Lett., Volume 113 (2014), 026401 | DOI
[25] Evidence for topological defects in a photoinduced phase transition, Nat. Phys., Volume 15 (2019), pp. 27-31 | DOI
[26] Dynamical slowing-down in an ultrafast photoinduced phase transition, Phys. Rev. Lett., Volume 123 (2019), 097601 | DOI
[27] Coherent order parameter dynamics in SmTe, Phys. Rev. B, Volume 99 (2019), 104111 | DOI
[28] Direct observation of an optically induced charge density wave transition in 1T-TaSe, Phys. Rev. B, Volume 92 (2015), 224303
[29] Exploration of metastability and hidden phases in correlated electron crystals visualized by femtosecond optical doping and electron crystallography, Sci. Adv., Volume 1 (2015), e1400173
[30] Ultrafast metamorphosis of a complex charge-density wave, Phys. Rev. Lett., Volume 116 (2016), 016402 | DOI
[31] Stacking order dynamics in the quasi-two-dimensional dichalcogenide 1T-TaS probed with mev ultrafast electron diffraction, Struct. Dyn., Volume 4 (2017), 044020 | DOI
[32] Ultrafast formation of a charge density wave state in 1T-TaS: observation at nanometer scales using time-resolved X-ray diffraction, Phys. Rev. Lett., Volume 118 (2017), 247401 | DOI
[33] Domain-size effects on the dynamics of a charge density wave in 1T-TaS, Phys. Rev. B, Volume 96 (2017), 224101 | DOI
[34] Phase ordering of charge density waves traced by ultrafast low-energy electron diffraction, Nat. Phys., Volume 14 (2018), pp. 184-190 | DOI
[35] Ultrafast switching to a stable hidden quantum state in an electronic crystal, Science, Volume 344 (2014), pp. 177-180 | DOI
[36] Intertwined chiral charge orders and topological stabilization of the light-induced state of a prototypical transition metal dichalcogenide, NPJ Quantum Mater., Volume 4 (2019), 32 | DOI
[37] Light-induced charge density wave in LaTe, Nat. Phys., Volume 16 (2019), pp. 159-163 | DOI
[38] The importance of topological defects in photoexcited phase transitions including memory applications, Appl. Sci., Volume 9 (2019), 890 | DOI
[39] Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides, Adv. Phys., Volume 24 (1975), pp. 117-201 | DOI
[40] Electron microscopy of phase transformations in 1T-TaS, Phys. Rev. B, Volume 44 (1991) no. 5, pp. 2046-2060 | DOI
[41] X-ray crystal-structure refinement of the nearly commensurate phase of 1T-TaS in (3 + 2)-dimensional superspace, Phys. Rev. B, Volume 56 (1997) no. 21, pp. 13757-13767 | DOI
[42] On the origin of charge-density waves in selected layered transition-metal dichalcogenides, J. Phys. Condens. Matter, Volume 23 (2011), 213001 | DOI
[43] Landau theory of charge-density waves in transition-metal dichalcogenides, Phys. Rev. B, Volume 12 (1975), pp. 1187-1196 | DOI
[44] Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., Volume 44 (2011), pp. 1272-1276 | DOI
[45] High-pressure X-ray diffraction study of 1T-TaS, Physica B, Volume 407 (2012), pp. 1704-1706 | DOI
[46] The reflectivity spectra of some group va transition metal dichalcogenides, J. Phys., C, Solid State Phys., Volume 8 (1975), pp. 4236-4248 | DOI
[47] Low-alpha operation for the soleil storage ring, Proceedings of the 2012 International Particle Accelerator Conference (IPAC12) (2012), pp. 1608-1610
[48] X-ray interactions: photoabsorption, scattering, transmission, and reflection at e = 50–30000 eV, z = 1–92, At. Data Nucl. Data Tables, Volume 54 (1993), pp. 181-342 | DOI
[49] Performance and applications of the CdTe- and Si-XPAD3 photon counting 2D detector, J. Instrum., Volume 6 (2011), C01080
[50] The timbel synchronization board for time-resolved experiments at synchrotron soleil, Proceedings of the 2011 International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS2011) (2011), pp. 1036-1038
[51] Time evolution of the electronic structure of 1T-TaS through the insulator–metal transition, Phys. Rev. Lett., Volume 97 (2006), 067402 | DOI
[52] Femtosecond dynamics of electronic states in the mott insulator 1T-TaS by time resolved photoelectron spectroscopy, New J. Phys., Volume 10 (2008), 053019
[53] Persistent order due to transiently enhanced nesting in an electronically excited charge density wave, Nat. Commun., Volume 7 (2016), 10459 | DOI
[54] Electronic crystals: an experimental overview, Adv. Phys., Volume 61 (2012), pp. 325-581 | DOI
[55] https://people.debian.org/~picca/hkl/hkl.html], Université Paris-Saclay (Synchrotron SOLEIL), 91190, Saint-Aubin, France
Ghkl’s documentation [[56] Surface generation and detection of phonons by picosecond light pulses, Phys. Rev. B, Volume 34 (1986), pp. 4129-4138 | DOI
[57] Picosecond X-ray strain rosette reveals direct laser excitation of coherent transverse acoustic phonons, Sci. Rep., Volume 6 (2016), 19140
[58] Structural Phase Transitions in Layered Transition Metal Compounds (K. Motizuki, ed.), Springer, Netherlands, 1986 | DOI
[59] The role of charge density waves in structural transformations of 1T-TaS, Philos. Mag., Volume 31 (1975), pp. 255-274 | DOI
[60] The nearly commensurate phase and effect of harmonics on the successive phase transitions in 1T-TaS, J. Phys. Soc. Japan, Volume 43 (1977), pp. 1509-1517 | DOI
[61] Electron diffraction study of inter- and intrapolytypic phase transition in transition metal dichalcogenides. III. complementary diffraction studies and lattice imaging of the deformation waves, Phys. Status Solidi A, Volume 36 (1976), pp. 757-777 | DOI
[62] Charge-density waves in metallic, layered, transition-metal dichalcogenides, Phys. Rev. Lett., Volume 32 (1974), pp. 882-885 | DOI
[63] Band structures of transition-metal-dichalcogenide layer compounds, Phys. Rev. B, Volume 8 (1973), pp. 3719-3740 | DOI
[64] Collective pinning dynamics of charge-density waves in 1T-TaS, Phys. Rev. B, Volume 86 (2012), 205105
[65] Theory of phase-ordering kinetics, Adv. Phys., Volume 51 (2002), pp. 481-587 | DOI
[66] Elastic and plastic deformations of charge density waves, J. Phys. (France), Volume 49 (1988), pp. 485-496 | DOI
[67] Pair annihilation of pointlike topological defects in the ordering process of quenched systems, Phys. Rev. A, Volume 42 (1990), pp. 911-917 | DOI
[68] Particle-antiparticle annihilation in diffusive motion, J. Chem. Phys., Volume 78 (1983), pp. 2642-2647 | DOI
[69] The Physics of Phase Transitions: Concepts and Applications, Springer, Netherlands, 2006 | Zbl
[70] Phase vortices in charge-density-wave conductors, Phys. Rev. B, Volume 37 (1988), pp. 8668-8673 | DOI
Cited by Sources:
Comments - Policy