Comptes Rendus
Tunable metasurface-based waveplates - A proposal using inverse design
[Lames à retard d’onde accordables à base de métasurfaces - Une approche par conception inverse]
Comptes Rendus. Physique, Volume 21 (2020) no. 7-8, pp. 625-639.

Une approche est proposée pour obtenir un retard de phase d’onde électromagnétique accordable en s’appuyant sur une méta-structure avec deux couches planes en regard l’une de l’autre. Le retard de phase est ajusté par l’intermédiaire de la variation de la distance axiale entre les deux couches. Un contrôle complet de l’ellipticité de l’onde en sortie de dispositif est atteint avec des variations de la distance axiale à l’échelle de la longueur d’onde. Les caractéristiques désirées des méta-structures sont présentées et plusieurs applications physiques sont suggérées, en s’appuyant sur des optimisations topologiques ou des algorithmes génétiques par conception inverse.

An approach to achieve tunable free-space waveplate operation based on a two-layer cascaded metastructure is proposed. Phase retardation is varied through changing the axial distance between the two layers. Full control on the ellipticity of the output wave is attained with wavelength-scale variations in the axial distance. The theoretically desired characteristics of the metastructures are presented and multiple physical implementations are suggested based on inverse design topology optimization.

Première publication :
Publié le :
DOI : 10.5802/crphys.5
Keywords: Polarization, Waveplates, Tunability, Topology optimization, Inverse design, Metastructures
Mot clés : Polarisation, Lames d’onde, Accordabilité, Optimisation topologique, Conception inverse, Métamatériau
Nasim Mohammadi Estakhri 1 ; Nader Engheta 1

1 Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2020__21_7-8_625_0,
     author = {Nasim Mohammadi Estakhri and Nader Engheta},
     title = {Tunable metasurface-based waveplates - {A~proposal} using inverse design},
     journal = {Comptes Rendus. Physique},
     pages = {625--639},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {21},
     number = {7-8},
     year = {2020},
     doi = {10.5802/crphys.5},
     language = {en},
}
TY  - JOUR
AU  - Nasim Mohammadi Estakhri
AU  - Nader Engheta
TI  - Tunable metasurface-based waveplates - A proposal using inverse design
JO  - Comptes Rendus. Physique
PY  - 2020
SP  - 625
EP  - 639
VL  - 21
IS  - 7-8
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.5
LA  - en
ID  - CRPHYS_2020__21_7-8_625_0
ER  - 
%0 Journal Article
%A Nasim Mohammadi Estakhri
%A Nader Engheta
%T Tunable metasurface-based waveplates - A proposal using inverse design
%J Comptes Rendus. Physique
%D 2020
%P 625-639
%V 21
%N 7-8
%I Académie des sciences, Paris
%R 10.5802/crphys.5
%G en
%F CRPHYS_2020__21_7-8_625_0
Nasim Mohammadi Estakhri; Nader Engheta. Tunable metasurface-based waveplates - A proposal using inverse design. Comptes Rendus. Physique, Volume 21 (2020) no. 7-8, pp. 625-639. doi : 10.5802/crphys.5. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.5/

[1] G. Ghosh Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals, Opt. Commun., Volume 163 (1999) no. 1–3, pp. 95-102

[2] N. Yu; F. Aieta; P. Genevet; M. A. Kats; Z. Gaburro; F. Capasso A broadband, background-free quarter-wave plate based on plasmonic metasurfaces, Nano Lett., Volume 12 (2012) no. 12, pp. 6328-6333

[3] B. Yang; W. Ye; X. Yuan; Z. Zhu; C. Zeng Design of ultrathin plasmonic quarter-wave plate based on period coupling, Opt. Lett., Volume 38 (2013) no. 5, pp. 679-681

[4] L. Cong; N. Xu; J. Gu; R. Singh; J. Han; W. Zhang Highly flexible broadband terahertz metamaterial quarter-wave plate, Laser Photonics Rev., Volume 8 (2014) no. 4, pp. 626-632

[5] A. Roberts; L. Lin Plasmonic quarter-wave plate, Opt. Lett., Volume 37 (2012) no. 11, pp. 1820-1822

[6] M. Mutlu; A. E. Akosman; G. Kurt; M. Gokkavas; E. Ozbay Experimental realization of a high-contrast grating based broadband quarter-wave plate, Opt. Express, Volume 20 (2012) no. 25, pp. 27966-27973

[7] A. Pors; S. I. Bozhevolnyi Efficient and broadband quarter-wave plates by gap-plasmon resonators, Opt. Express, Volume 21 (2013) no. 3, pp. 2942-2952

[8] Y. Zhao; A. Alu Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates, Nano Lett., Volume 13 (2013) no. 3, pp. 1086-1091

[9] A. Pors; M. G. Nielsen; S. I. Bozhevolnyi Broadband plasmonic half-wave plates in reflection, Opt. Lett., Volume 38 (2013) no. 4, pp. 513-515

[10] S. Jiang; X. Xiong; Y. Hu; Y. Hu; G. Ma; R. Peng; C. Sun; M. Wang Controlling the polarization state of light with a dispersion-free metastructure, Phys. Rev. X, Volume 4 (2014) no. 2, 021026

[11] Z. H. Jiang; L. Lin; D. Ma; S. Yun; D. H. Werner; Z. Liu; T. S. Mayer Broadband and wide field-of-view plasmonic metasurface-enabled waveplates, Sci. Rep., Volume 4 (2014), p. 7511

[12] F. Ding; Z. Wang; S. He; V. M. Shalaev; A. V. Kildishev Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach, ACS Nano, Volume 9 (2015) no. 4, pp. 4111-4119

[13] D. Wang; Y. Gu; Y. Gong; C. Qiu; M. Hong An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface, Opt. Express, Volume 23 (2015) no. 9, pp. 11114-11122

[14] P. I. Borel; A. Harpøth; L. H. Frandsen; M. Kristensen; P. Shi; J. S. Jensen; O. Sigmund Topology optimization and fabrication of photonic crystal structures, Opt. Express, Volume 12 (2004) no. 9, pp. 1996-2001

[15] J. S. Jensen; O. Sigmund Topology optimization for nano-photonics, Laser Photonics Rev., Volume 5 (2011) no. 2, pp. 308-321

[16] C. M. Lalau-Keraly; S. Bhargava; O. D. Miller; E. Yablonovitch Adjoint shape optimization applied to electromagnetic design, Opt. Express, Volume 21 (2013) no. 18, pp. 21693-21701

[17] B. Shen; P. Wang; R. Polson; R. Menon An integrated-nanophotonics polarization beamsplitter with 2. 4 × 2. 4 μm 2 footprint, Nat. Photonics, Volume 9 (2015) no. 6, p. 378

[18] Y. Noguchi; T. Yamada; M. Otomori; K. Izui; S. Nishiwaki An acoustic metasurface design for wave motion conversion of longitudinal waves to transverse waves using topology optimization, Appl. Phys. Lett., Volume 107 (2015) no. 22, 221909

[19] A. Y. Piggott; J. Lu; K. G. Lagoudakis; J. Petykiewicz; T. M. Babinec; J. Vuckovic Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer, Nat. Photonics, Volume 9 (2015) no. 6, p. 374

[20] F. Callewaert; V. Velev; P. Kumar; A. V. Sahakian; K. Aydin Inverse-designed broadband all-dielectric electromagnetic metadevices, Sci. Rep., Volume 8 (2018) no. 1, p. 1358

[21] Z. Lin; L. Christakis; Y. Li; E. Mazur; A. W. Rodriguez; M. Lončar Topology-optimized dual-polarization Dirac cones, Phys. Rev. B, Volume 97 (2018) no. 8, 081408

[22] Z. Lin; B. Groever; F. Capasso; A. W. Rodriguez; M. Loncar Topology-optimized multilayered metaoptics, Phys. Rev. Appl., Volume 9 (2018) no. 4, 044030

[23] N. Mohammadi Estakhri; B. Edwards; N. Engheta Inverse-designed metastructures that solve equations, Science, Volume 363 (2019) no. 6433, pp. 1333-1338

[24] R. C. Sharp; D. P. Resler; D. S. Hobbs; T. A. Dorschner Electrically tunable liquid-crystal wave plate in the infrared, Opt. Lett., Volume 15 (1990) no. 1, pp. 87-89

[25] L. Wang; X. W. Lin; W. Hu; G. H. Shao; P. Chen; L. J. Liang; B. B. Jin; P. H. Wu; H. Qian; Y. N. Lu; X. Liang Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes, Light Sci. Appl., Volume 4 (2015) no. 2, e253

[26] L. Wang; S. Ge; W. Hu; M. Nakajima; Y. Lu Tunable reflective liquid crystal terahertz waveplates, Opt. Mater. Express, Volume 7 (2017) no. 6, pp. 2023-2029

[27] D. Wang; L. Zhang; Y. Gu; M. Q. Mehmood; Y. Gong; A. Srivastava; L. Jian; T. Venkatesan; C. Qiu; M. Hong Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface, Sci. Rep., Volume 5 (2015), p. 15020

[28] T. Li; L. Huang; J. Liu; Y. Wang; T. Zentgraf Tunable wave plate based on active plasmonic metasurfaces, Opt. Express, Volume 25 (2017) no. 4, pp. 4216-4226

[29] X. Zhao; J. Schalch; J. Zhang; H. R. Seren; G. Duan; R. D. Averitt; X. Zhang Electromechanically tunable metasurface transmission waveplate at terahertz frequencies, Optica, Volume 5 (2018) no. 3, pp. 303-310

[30] B. E. Saleh; M. C. Teich Fundamentals of Photonics, John Wiley & Sons, 2019

[31] N. Mohammadi Estakhri; N Engheta Free-space optical Mach-Zehnder modulator based on two cascaded metasurfaces, CLEO: Applications and Technology, Optical Society of America, 2018, pp. JW2A-93

[32] V. H. Rumsey Reaction concept in electromagnetic theory, Phys. Rev., Volume 94 (1954) no. 6, p. 1483

[33] G. Whitman; F. Schwering Reciprocity identity for periodic surface scattering, IEEE Trans. Antennas Propag., Volume 27 (1979) no. 2, pp. 252-254

[34] N. Yu; P. Genevet; M. A. Kats; F. Aieta; J. Tetienne; F. Capasso; Z. Gaburro Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science, Volume 334 (2011) no. 6054, pp. 333-337

[35] C. Pfeiffer; A. Grbic Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets, Phys. Rev. Lett., Volume 110 (2013) no. 19, 197401

[36] N. Mohammadi Estakhri; A. Alu Wave-front transformation with gradient metasurfaces, Phys. Rev. X, Volume 6 (2016) no. 4, 041008

[37] S. Kruk; B. Hopkins; I. Kravchenko; A. Miroshnichenko; D. N. Neshev; Y. S. Kivshar Invited article: broadband highly efficient dielectric metadevices for polarization control, APL Photonics, Volume 1 (2016) no. 3, 030801

[38] J. P. B. Mueller; N. A. Rubin; R. C. Devlin; B. Groever; F. Capasso Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization, Phys. Rev. Lett., Volume 118 (2017) no. 11, 113901

[39] S. Sun; K. Yang; C. Wang; T. Juan; W. T. Chen; C. Y. Liao; Q. He; S. Xiao; W. T. Kung; G. Y. Guo; L. Zhou High-efficiency broadband anomalous reflection by gradient meta-surfaces, Nano Lett., Volume 12 (2012) no. 12, pp. 6223-6229

[40] N. Mohammadi Estakhri; A. Alu Manipulating optical reflections using engineered nanoscale metasurfaces, Phys. Rev. B, Volume 89 (2014) no. 23, 235419

[41] E. Hasman; V. Kleiner; G. Biener; A. Niv Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics, Appl. Phys. Lett., Volume 82 (2003) no. 3, pp. 328-330

[42] X. Chen; L. Huang; H. Muhlenbernd; G. Li; B. Bai; Q. Tan; G. Jin; C. Qiu; S. Zhang; T. Zentgraf Dual-polarity plasmonic metalens for visible light, Nat. Commun., Volume 3 (2012), p. 1198

[43] Y. Zou; W. Zhang; F. S. Chau; G. Zhou Miniature adjustable-focus endoscope with a solid electrically tunable lens, Opt. Express, Volume 23 (2015) no. 16, pp. 20582-20592

[44] M. Baranski; S. Bargiel; N. Passilly; C. Gorecki; C. Jia; J. Fromel; M Wiemer Micro-optical design of a three-dimensional microlens scanner for vertically integrated micro-opto-electro-mechanical systems, Appl. Opt., Volume 54 (2015) no. 22, pp. 6924-6934

[45] E. Arbabi; A. Arbabi; S. Kamali; Y. Horie; M. Faraji-Dana; A. Faraon MEMS-tunable dielectric metasurface lens, Nat. Commun., Volume 9 (2018) no. 1, p. 812

[46] A. Zhan; S. Colburn; C. M. Dodson; A. Majumdar Metasurface freeform nanophotonics, Sci. Rep., Volume 7 (2017) no. 1, p. 1673

[47] H.-S. Ee; R. Agarwal Tunable metasurface and flat optical zoom lens on a stretchable substrate, Nano Lett., Volume 16 (2016) no. 4, pp. 2818-2823

[48] S. Lee; H. Tung; W. Chen; W. Fang Thermal actuated solid tunable lens, IEEE Photonics Technol. Lett., Volume 18 (2006) no. 21, pp. 2191-2193

[49] J. Ou; E. Plum; J. Zhang; N. I. Zheludev An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared, Nat. Nanotechnol., Volume 8 (2013) no. 4, p. 252

[50] R. C. Devlin; M. Khorasaninejad; W. T. Chen; J. Oh; F. Capasso Broadband high-efficiency dielectric metasurfaces for the visible spectrum, Proc. Natl Acad. Sci. USA, Volume 113 (2016) no. 38, pp. 10473-10478

[51] H. W. Icenogle; B. C. Platt; W. L. Wolfe Refractive indexes and temperature coefficients of germanium and silicon, Appl. Opt., Volume 15 (1976) no. 10, pp. 2348-2351

[52] Comsol (Topology optimizations are performed with COMSOL optimization module, using SNOPT method. Forward simulations are performed using RF module in the frequency domain. www.comsol.com)

[53] Comsol Genetic algorithm minimizations are performed in MATLAB (https://www.mathworks.com/) using LiveLink interface (https://www.comsol.com/livelink-for-matlab)

[54] Y. Jin; R. Kumar; O. Poncelet; O. Mondain-Monval; T. Brunet Flat acoustics with soft gradient-index metasurfaces, Nat. Commun., Volume 10 (2019) no. 1, pp. 1-6

[55] Z. Tian; C. Shen; J. Li; E. Reit; Y. Gu; H. Fu; S. A. Cummer; T. J. Huang Programmable acoustic metasurfaces, Adv. Funct. Mater., Volume 29 (2019) no. 13, 1808489

[56] S. Inampudi; J. Cheng; M. M. Salary; H. Mosallaei Unidirectional thermal radiation from a SiC metasurface, J. Opt. Soc. Amer. B, Volume 35 (2018) no. 1, pp. 39-46

[57] S. I. Bozhevolnyi Shaping wavefronts of single photons with metasurfaces (Conference Presentation), Proc. SPIE 11344, Metamaterials XII, 113440O (1 April 2020), SPIE, 2020

[58] N. M. Estakhri; T. B. Norris Controlling quantum interference using metamaterials, Proc. SPIE 11091, Quantum Nanophotonic Materials, Devices, and Systems 2019, 110911D (3 September 2019), SPIE, 2019

[59] P. Georgi; M. Massaro; K.-H. Luo; B. Sain; N. Montaut; H. Herrmann; T. Weiss; G. Li; C. Silberhorn; T. Zentgraf Metasurface interferometry toward quantum sensors, Light: Sci. Appl., Volume 8 (2019) no. 1, pp. 1-7

[60] R. Bekenstein; I. Pikovski; H. Pichler; E. Shahmoon; S. F. Yelin; M. D. Lukin Quantum metasurfaces with atom arrays, Nat. Phys. (2020), pp. 1-6

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Wave attenuation study on a wide-band seismic metasurface using capped pillars

Muhammad Masaud Hajjaj; Jianwei Tu

C. R. Méca (2022)