Comptes Rendus
Dispersion and efficiency engineering of metasurfaces
Comptes Rendus. Physique, Volume 21 (2020) no. 7-8, pp. 641-657.

Metasurfaces, ultrathin two-dimensional arrays of artificially engineered meta-atoms, can impart spatially varying changes towards the incident electromagnetic wave and provide versatile functionalities once unprecedented in sub-wavelength thick natural materials. The wavefront manipulation by metasurfaces usually arises from the strong resonant behaviors of varied meta-atoms in subwavelength lattice, which also brings some drawbacks like the unexpected dispersion due to separate resonances of the meta-atoms and the long concerned low efficiency problem. This paper reviews the recent surge of fruitful works on dispersion and efficiency engineering of metasurfaces and provides an overview of several effective methods to acquire metasurfaces with these distinctive features.

Les méta-surfaces, des réseaux bi-dimensionnels ultra-fins de méta-atomes artificiels, peuvent transférer les variations spatiales de leur structure au champ électromagnétique et conférer ainsi des fonctionnalités jusqu’alors inégalées dans les matériaux naturels d’épaisseur sous-longueur d’onde. La manipulation du front d’onde par les méta-surfaces est généralement obtenue en exploitant le caractère fortement résonant des méta-atomes dans le réseau sous-longueur d’onde, qui conduit par ailleurs à des inconvénients tels qu’une dispersion inattendue en raison des résonances distinctes des méta-atomes et un problème d’efficacité qui a fait l’objet d’une attention de longue date. Cet article passe en revue les percées récentes des travaux sur ces problématiques de la dispersion et de l’efficacité des méta-surfaces et il donne un aperçu de plusieurs méthodes permettant d’obtenir des méta-surfaces avec des propriétés remarquables.

Online First:
Published online:
DOI: 10.5802/crphys.18
Keywords: Metasurface, Bound state in the continuum, Dispersion engineering, Material, Efficiency
Mot clés : Métasurface, État lié dans le continuum, Ingénierie de dispersion, Matériel, Efficacité

Xiaomeng Zhang 1; Benfeng Bai 1; Hong-Bo Sun 1

1 State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2020__21_7-8_641_0,
     author = {Xiaomeng Zhang and Benfeng Bai and Hong-Bo Sun},
     title = {Dispersion and efficiency engineering of metasurfaces},
     journal = {Comptes Rendus. Physique},
     pages = {641--657},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {21},
     number = {7-8},
     year = {2020},
     doi = {10.5802/crphys.18},
     language = {en},
}
TY  - JOUR
AU  - Xiaomeng Zhang
AU  - Benfeng Bai
AU  - Hong-Bo Sun
TI  - Dispersion and efficiency engineering of metasurfaces
JO  - Comptes Rendus. Physique
PY  - 2020
SP  - 641
EP  - 657
VL  - 21
IS  - 7-8
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.18
LA  - en
ID  - CRPHYS_2020__21_7-8_641_0
ER  - 
%0 Journal Article
%A Xiaomeng Zhang
%A Benfeng Bai
%A Hong-Bo Sun
%T Dispersion and efficiency engineering of metasurfaces
%J Comptes Rendus. Physique
%D 2020
%P 641-657
%V 21
%N 7-8
%I Académie des sciences, Paris
%R 10.5802/crphys.18
%G en
%F CRPHYS_2020__21_7-8_641_0
Xiaomeng Zhang; Benfeng Bai; Hong-Bo Sun. Dispersion and efficiency engineering of metasurfaces. Comptes Rendus. Physique, Volume 21 (2020) no. 7-8, pp. 641-657. doi : 10.5802/crphys.18. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.18/

[1] C. Tiejun; D. Smith; L. Ruopeng Metamaterials: Theory, Design and Applications, Springer, New York, 2010

[2] D. R. Smith; J. B. Pendry; M. C. Wiltshire Metamaterials and negative refractive index, Science, Volume 305 (2004) no. 5685, pp. 788-792

[3] V. M. Shalaev Optical negative-index metamaterials, Nat. Photon., Volume 1 (2007) no. 1, p. 41

[4] A. Poddubny; I. Iorsh; P. Belov; Y. Kivshar Hyperbolic metamaterials, Nat. Photon., Volume 7 (2013) no. 12, p. 948

[5] D. Schurig; J. Mock; B. Justice; S. A. Cummer; J. B. Pendry; A. Starr; D. Smith Metamaterial electromagnetic cloak at microwave frequencies, Science, Volume 314 (2006) no. 5801, pp. 977-980

[6] A. V. Kildishev; A. Boltasseva; V. M. Shalaev Planar photonics with metasurfaces, Science, Volume 339 (2013) no. 6125, 1232009

[7] H. T. Chen; A. J. Taylor; N. Yu A review of metasurfaces: physics and applications, Rep. Prog. Phys., Volume 79 (2016) no. 7, 076401

[8] X. Song; L. Huang; C. Tang; J. Li; X. Li; J. Liu; Y. Wang; T. Zentgraf Selective diffraction with complex amplitude modulation by dielectric metasurfaces, Adv. Opt. Mater., Volume 6 (2018) no. 4, 1701181

[9] A. E. Minovich; A. E. Miroshnichenko; A. Y. Bykov; T. V. Murzina; D. N. Neshev; Y. S. Kivshar Functional and nonlinear optical metasurfaces, Laser Photon. Rev., Volume 9 (2015) no. 2, pp. 195-213

[10] S. Chen; Z. Li; Y. Zhang; H. Cheng; J. Tian Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics, Adv. Opt. Mater., Volume 6 (2018) no. 13, 1800104

[11] R. Zhao; L. Huang; C. Tang; J. Li; X. Li; Y. Wang; T. Zentgraf Nanoscale polarization manipulation and encryption based on dielectric metasurfaces, Adv. Opt. Mater., Volume 6 (2018) no. 19, 1800490

[12] E. Karimi; S. A. Schulz; I. De Leon; H. Qassim; J. Upham; R. W. Boyd Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface, Light: Sci. Appl., Volume 3 (2014) no. 5, e167

[13] C. L. Holloway; E. F. Kuester; J. A. Gordon; J. O’Hara; J. Booth; D. R. Smith An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials, IEEE Antennas Propag. Mag., Volume 54 (2012) no. 2, pp. 10-35

[14] E. F. Kuester; M. A. Mohamed; M. Piket-May; C. L. Holloway Averaged transition conditions for electromagnetic fields at a metafilm, IEEE Trans. Antennas Propag., Volume 51 (2003) no. 10, pp. 2641-2651

[15] Y. Yang; A. E. Miroshnichenko; S. V. Kostinski; M. Odit; P. Kapitanova; M. Qiu; Y. S. Kivshar Multimode directionality in all-dielectric metasurfaces, Phys. Rev. B, Volume 95 (2017) no. 16, 165426 | DOI

[16] M. A. Kats; N. Yu; P. Genevet; Z. Gaburro; F. Capasso Effect of radiation damping on the spectral response of plasmonic components, Opt. Express, Volume 19 (2011) no. 22, pp. 21748-21753

[17] A. Forouzmand; M. M. Salary; S. Inampudi; H. Mosallaei A tunable multigate indium-tin-oxide-assisted all-dielectric metasurface, Adv. Opt. Mater., Volume 6 (2018) no. 7, 1701275

[18] Y. Yang; W. Wang; A. Boulesbaa; I. I. Kravchenko; D. P. Briggs; A. Puretzky; D. Geohegan; J. Valentine Nonlinear fano-resonant dielectric metasurfaces, Nano Lett., Volume 15 (2015) no. 11, pp. 7388-7393

[19] S. Colburn; A. Zhan; A. Majumdar Metasurface optics for full-color computational imaging, Sci. Adv., Volume 4 (2018) no. 2, eaar2114

[20] D. Wen; F. Yue; G. Li; G. Zheng; K. Chan; S. Chen; M. Chen; K. F. Li; P. W. H. Wong; K. W. Cheah Helicity multiplexed broadband metasurface holograms, Nat. Commun., Volume 6 (2015), p. 8241

[21] X. Ding; F. Monticone; K. Zhang; L. Zhang; D. Gao; S. N. Burokur; A. de Lustrac; Q. Wu; C. Qiu; A. Alù Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency, Adv. Mater., Volume 27 (2015) no. 7, pp. 1195-1200

[22] G. V. Naik; V. M. Shalaev; A. Boltasseva Alternative plasmonic materials: beyond gold and silver, Adv. Mater., Volume 25 (2013) no. 24, pp. 3264-3294

[23] N. Mohammadi Estakhri; A. Alù Wave-front transformation with gradient metasurfaces, Phys. Rev. X, Volume 6 (2016) no. 4, 041008

[24] Y. Yang; I. Kravchenko; D. P. Briggs; J. Valentine All-dielectric metasurface analogue of electromagnetically induced transparency, Nat. Commun., Volume 5 (2014), p. 5753

[25] B. Luk’yanchuk; N. I. Zheludev; S. A. Maier; N. J. Halas; P. Nordlander; H. Giessen; C. T. Chong The fano resonance in plasmonic nanostructures and metamaterials, Nat. Mater., Volume 9 (2010) no. 9, pp. 707-715

[26] U. Fano Effects of configuration interaction on intensities and phase shifts, Phys. Rev., Volume 124 (1961) no. 6, p. 1866

[27] A. E. Miroshnichenko; S. Flach; Y. S. Kivshar Fano resonances in nanoscale structures, Rev. Mod. Phys., Volume 82 (2010) no. 3, p. 2257

[28] A. Rau Perspectives on the fano resonance formula, Phys. Scr., Volume 69 (2004) no. 1, C10

[29] C. W. Hsu; B. Zhen; A. D. Stone; J. D. Joannopoulos; M. Soljačić Bound states in the continuum, Nat. Rev. Mater., Volume 1 (2016) no. 9, 16048

[30] K. Koshelev; S. Lepeshov; M. Liu; A. Bogdanov; Y. Kivshar Asymmetric metasurfaces with high-q resonances governed by bound states in the continuum, Phys. Rev. Lett., Volume 121 (2018) no. 19, 193903

[31] D. R. Abujetas; N. van Hoof; S. ter Huurne; J. G. Rivas; J. A. Sánchez-Gil Spectral and temporal evidence of robust photonic bound states in the continuum on terahertz metasurfaces, Optica, Volume 6 (2019) no. 8, pp. 996-1001

[32] Y. He; G. Guo; T. Feng; Y. Xu; A. E. Miroshnichenko Toroidal dipole bound states in the continuum, Phys. Rev. B, Volume 98 (2018), 161112

[33] F. Monticone; A. Alù Bound states within the radiation continuum in diffraction gratings and the role of leaky modes, New J. Phys., Volume 19 (2017) no. 9, 093011

[34] M. Liu; D. Y. Choi Extreme Huygens’ metasurfaces based on quasi-bound states in the continuum, Nano Lett., Volume 18 (2018) no. 12, pp. 8062-8069

[35] S. Campione; S. Liu; L. I. Basilio; L. K. Warne; W. L. Langston; T. S. Luk; J. R. Wendt; J. L. Reno; G. A. Keeler; I. Brener Broken symmetry dielectric resonators for high quality factor fano metasurfaces, ACS Photon., Volume 3 (2016) no. 12, pp. 2362-2367

[36] K. Fan; I. V. Shadrivov; W. J. Padilla Dynamic bound states in the continuum, Optica, Volume 6 (2019) no. 2, pp. 169-173

[37] C. Cui; C. Zhou; S. Yuan; X. Qiu; L. Zhu; Y. Wang; Y. Li; J. Song; Q. Huang; Y. Wang; C. Zeng; J. Xia Multiple fano resonances in symmetry-breaking silicon metasurface for manipulating light emission, ACS Photon., Volume 5 (2018) no. 10, pp. 4074-4080

[38] S. Romano; G. Zito; S. Torino; G. Calafiore; E. Penzo; G. Coppola; S. Cabrini; I. Rendina; V. Mocella Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum, Photon. Res., Volume 6 (2018) no. 7, pp. 726-733

[39] Y. K. Srivastava; M. Manjappa; L. Cong; W. Cao; I. Al-Naib; W. Zhang; R. Singh Ultrahigh-qfano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry, Adv. Opt. Mater., Volume 4 (2016) no. 3, pp. 457-463

[40] A. S. Kupriianov; Y. Xu; A. Sayanskiy; V. Dmitriev; Y. S. Kivshar; V. R. Tuz Metasurface engineering through bound states in the continuum, Phys. Rev. Appl., Volume 12 (2019) no. 1, 014024

[41] A. Tittl; A. Leitis; M. Liu; F. Yesilkoy; D.-Y. Choi; D. N. Neshev; Y. S. Kivshar; H. Altug Imaging-based molecular barcoding with pixelated dielectric metasurfaces, Science, Volume 360 (2018) no. 6393, pp. 1105-1109

[42] H. Friedrich; D. Wintgen Interfering resonances and bound states in the continuum, Phys. Rev. A, Volume 32 (1985) no. 6, p. 3231

[43] S. Fan; W. Suh; J. D. Joannopoulos Temporal coupled-mode theory for the fano resonance in optical resonators, JOSA A, Volume 20 (2003) no. 3, pp. 569-572

[44] J. Wiersig Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities, Phys. Rev. Lett., Volume 97 (2006) no. 25, 253901

[45] A. Kodigala; T. Lepetit; Q. Gu; B. Bahari; Y. Fainman; B. Kante Lasing action from photonic bound states in continuum, Nature, Volume 541 (2017) no. 7636, pp. 196-199

[46] A. A. Bogdanov; K. L. Koshelev; P. V. Kapitanova; M. V. Rybin; S. A. Gladyshev; Z. F. Sadrieva; K. B. Samusev; Y. S. Kivshar; M. F. Limonov Bound states in the continuum and fano resonances in the strong mode coupling regime, Adv. Photon., Volume 1 (2019) no. 01, 016001

[47] S. Wang; P. C. Wu; V. C. Su; Y. C. Lai; C. Hung Chu; J. W. Chen; S. H. Lu; J. Chen; B. Xu; C. H. Kuan; T. Li; S. Zhu; D. P. Tsai Broadband achromatic optical metasurface devices, Nat. Commun., Volume 8 (2017) no. 1, p. 187

[48] O. Avayu; E. Almeida; Y. Prior; T. Ellenbogen Composite functional metasurfaces for multispectral achromatic optics, Nat. Commun., Volume 8 (2017), p. 14992

[49] E. Arbabi; A. Arbabi; S. M. Kamali; Y. Horie; A. Faraon Multiwavelength metasurfaces through spatial multiplexing, Sci. Rep., Volume 6 (2016), p. 32803

[50] Z.-B. Fan; H.-Y. Qiu; H.-L. Zhang; X.-N. Pang; L.-D. Zhou; L. Liu; H. Ren; Q.-H. Wang; J.-W. Dong A broadband achromatic metalens array for integral imaging in the visible, Light: Sci. Appl., Volume 8 (2019) no. 1, p. 67

[51] D. Lin; P. Fan; E. Hasman; M. L. Brongersma Dielectric gradient metasurface optical elements, Science, Volume 345 (2014) no. 6194, pp. 298-302

[52] M. Khorasaninejad; W. T. Chen; R. C. Devlin; J. Oh; A. Y. Zhu; F. Capasso Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging, Science, Volume 352 (2016) no. 6290, pp. 1190-1194

[53] W. T. Chen; A. Y. Zhu; V. Sanjeev; M. Khorasaninejad; Z. Shi; E. Lee; F. Capasso A broadband achromatic metalens for focusing and imaging in the visible, Nat. Nanotechnol., Volume 13 (2018) no. 3, pp. 220-226

[54] M. Khorasaninejad; F. Aieta; P. Kanhaiya; M. A. Kats; P. Genevet; D. Rousso; F. Capasso Achromatic metasurface lens at telecommunication wavelengths, Nano Lett., Volume 15 (2015) no. 8, pp. 5358-5362

[55] E. Arbabi; A. Arbabi; S. M. Kamali; Y. Horie; A. Faraon Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules, Optica, Volume 3 (2016) no. 6, pp. 628-633

[56] Y. Zhou; I. Kravchenko; H. Wang; J. R. Nolen; G. Gu; J. Valentine Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics, Nano Lett., Volume 18 (2018) no. 12, pp. 7529-7537

[57] S. Wang; P. C. Wu; V. C. Su; Y. C. Lai; M. K. Chen; H. Y. Kuo; B. H. Chen; Y. H. Chen; T. T. Huang; J. H. Wang; R. M. Lin; C. H. Kuan; T. Li; Z. Wang; S. Zhu; D. P. Tsai A broadband achromatic metalens in the visible, Nat. Nanotechnol., Volume 13 (2018) no. 3, pp. 227-232

[58] E. Arbabi; A. Arbabi; S. M. Kamali; Y. Horie; A. Faraon Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces, Optica, Volume 4 (2017) no. 6, pp. 625-632

[59] F. Ding; Y. Yang; R. A. Deshpande; S. I. Bozhevolnyi A review of gap-surface plasmon metasurfaces: fundamentals and applications, Nanophotonics, Volume 7 (2018) no. 6, pp. 1129-1156

[60] W. Liu; Y. S. Kivshar Generalized Kerker effects in nanophotonics and meta-optics, Opt. Express, Volume 26 (2018) no. 10, pp. 13085-13105

[61] A. Arbabi; Y. Horie; M. Bagheri; A. Faraon Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission, Nat. Nanotechnol., Volume 10 (2015) no. 11, pp. 937-943

[62] N. Yu; P. Genevet; M. A. Kats; F. Aieta; J. P. Tetienne; F. Capasso; Z. Gaburro Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science, Volume 334 (2011) no. 6054, pp. 333-337

[63] Y. Raďi; D. L. Sounas; A. Alù Metagratings: beyond the limits of graded metasurfaces for wave front control, Phys. Rev. Lett., Volume 119 (2017) no. 6, 067404

[64] A. Díaz-Rubio; V. S. Asadchy; A. Elsakka; S. A. Tretyakov From the generalized reflection law to the realization of perfect anomalous reflectors, Sci. Adv., Volume 3 (2017) no. 8, e1602714

[65] E. Hutter; J. H. Fendler Exploitation of localized surface plasmon resonance, Adv. Mater., Volume 16 (2004) no. 19, pp. 1685-1706

[66] P. B. Johnson; R.-W. Christy Optical constants of the noble metals, Phys. Rev. B, Volume 6 (1972) no. 12, p. 4370

[67] G. V. Naik; J. Kim; A. Boltasseva Oxides and nitrides as alternative plasmonic materials in the optical range [invited], Opt. Mater. Express, Volume 1 (2011) no. 6, pp. 1090-1099

[68] S. A. Gregory; Y. Wang; C. De Groot; O. L. Muskens Extreme subwavelength metal oxide direct and complementary metamaterials, ACS Photon., Volume 2 (2015) no. 5, pp. 606-614

[69] U. Guler; G. V. Naik; A. Boltasseva; V. M. Shalaev; A. V. Kildishev Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications, Appl. Phys. B, Volume 107 (2012) no. 2, pp. 285-291

[70] U. Guler; A. Boltasseva; V. M. Shalaev Refractory plasmonics, Science, Volume 344 (2014) no. 6181, pp. 263-264

[71] L. Gui; S. Bagheri; N. Strohfeldt; M. Hentschel; C. M. Zgrabik; B. Metzger; H. Linnenbank; E. L. Hu; H. Giessen Nonlinear refractory plasmonics with titanium nitride nanoantennas, Nano Lett., Volume 16 (2016) no. 9, pp. 5708-5713

[72] Y. Wang; A. Capretti; L. Dal Negro Wide tuning of the optical and structural properties of alternative plasmonic materials, Opt. Mater. Express, Volume 5 (2015) no. 11, pp. 2415-2430

[73] M. Z. Alam; I. De Leon; R. W. Boyd Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region, Science, Volume 352 (2016) no. 6287, pp. 795-797

[74] J. Park; J. H. Kang; S. J. Kim; X. Liu; M. L. Brongersma Dynamic reflection phase and polarization control in metasurfaces, Nano Lett., Volume 17 (2017) no. 1, pp. 407-413

[75] A. Howes; W. Y. Wang; I. Kravchenko; J. Valentine Dynamic transmission control based on all-dielectric Huygens metasurfaces, Optica, Volume 5 (2018) no. 7, pp. 787-792

[76] C. Qu; S. Ma; J. Hao; M. Qiu; X. Li; S. Xiao; Z. Miao; N. Dai; Q. He; S. Sun; L. Zhou Tailor the functionalities of metasurfaces based on a complete phase diagram, Phys. Rev. Lett., Volume 115 (2015) no. 23, 235503

[77] M. Decker; I. Staude; M. Falkner; J. Dominguez; D. N. Neshev; I. Brener; T. Pertsch; Y. S. Kivshar High-efficiency dielectric Huygens’ surfaces, Adv. Opt. Mater., Volume 3 (2015) no. 6, pp. 813-820

[78] A. Arbabi; E. Arbabi; S. M. Kamali; Y. Horie; S. Han; A. Faraon Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations, Nat. Commun., Volume 7 (2016), p. 13682

[79] A. I. Kuznetsov; A. E. Miroshnichenko; M. L. Brongersma; Y. S. Kivshar; B. Luk’yanchuk Optically resonant dielectric nanostructures, Science, Volume 354 (2016) no. 6314, pp. 2956-2963

[80] N. Papasimakis; V. A. Fedotov; V. Savinov; T. A. Raybould; N. I. Zheludev Electromagnetic toroidal excitations in matter and free space, Nat. Mater., Volume 15 (2016) no. 3, pp. 263-271

[81] J. Zhou; T. Koschny; C. M. Soukoulis Magnetic and electric excitations in split ring resonators, Opt. Express, Volume 15 (2007) no. 26, pp. 17881-17890

[82] S. Alrasheed; E. Di Giant magnetic field enhancement in hybridized mim structures, IEEE Photon. Technol. Lett., Volume 29 (2017) no. 24, pp. 2151-2154

[83] I. Staude; A. E. Miroshnichenko; M. Decker; N. T. Fofang; S. Liu; E. Gonzales; J. Dominguez; T. S. Luk; D. N. Neshev; I. Brener Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks, ACS Nano, Volume 7 (2013) no. 9, pp. 7824-7832

[84] I. Staude; J. Schilling Metamaterial-inspired silicon nanophotonics, Nat. Photon., Volume 11 (2017) no. 5, pp. 274-284

[85] R. C. Devlin; M. Khorasaninejad; W. T. Chen; J. Oh; F. Capasso Broadband high-efficiency dielectric metasurfaces for the visible spectrum, Proc. Natl. Acad. Sci. USA, Volume 113 (2016) no. 38, pp. 10473-10478

[86] X. Zhu; W. Yan; U. Levy; N. A. Mortensen; A. Kristensen Resonant laser printing of structural colors on high-index dielectric metasurfaces, Sci. Adv., Volume 3 (2017) no. 5, e1602487

[87] S. Liu; M. B. Sinclair; S. Saravi; G. A. Keeler; Y. Yang; J. Reno; G. M. Peake; F. Setzpfandt; I. Staude; T. Pertsch Resonantly enhanced second-harmonic generation using iii–v semiconductor all-dielectric metasurfaces, Nano Lett., Volume 16 (2016) no. 9, pp. 5426-5432

[88] A. Pors; S. I. Bozhevolnyi Plasmonic metasurfaces for efficient phase control in reflection, Opt. Express, Volume 21 (2013) no. 22, pp. 27438-27451

[89] L. Zhang; S. Mei; K. Huang; C. Qiu Advances in full control of electromagnetic waves with metasurfaces, Adv. Opt. Mater., Volume 4 (2016) no. 6, pp. 818-833

[90] C. M. Watts; X. Liu; W. J. Padilla Metamaterial electromagnetic wave absorbers, Adv. Mater., Volume 24 (2012) no. 23, p. OP98-OP120

[91] G. Zheng; H. Muhlenbernd; M. Kenney; G. Li; T. Zentgraf; S. Zhang Metasurface holograms reaching 80% efficiency, Nat. Nanotechnol., Volume 10 (2015) no. 4, pp. 308-312

[92] R. Alaee; C. Rockstuhl; I. Fernandez-Corbaton An electromagnetic multipole expansion beyond the long-wavelength approximation, Opt. Commun., Volume 407 (2018), pp. 17-21

[93] N. Yu; F. Capasso Flat optics with designer metasurfaces, Nat. Mater., Volume 13 (2014) no. 2, pp. 139-150

[94] E. Khaidarov; H. Hao; R. Paniagua-Dominguez; Y. F. Yu; Y. H. Fu; V. Valuckas; S. L. K. Yap; Y. T. Toh; J. S. K. Ng; A. I. Kuznetsov Asymmetric nanoantennas for ultrahigh angle broadband visible light bending, Nano Lett., Volume 17 (2017) no. 10, 28898084 | DOI

[95] A. Serdiukov; I. Semchenko; S. Tertyakov; A. Sihvola Electromagnetics of Bi-anisotropic Materials—Theory and Application, Vol. 11, Gordon and Breach Science Publishers, 2001

[96] V. S. Asadchy; M. Albooyeh; S. N. Tcvetkova; A. Díaz-Rubio; Y. Ra’di; S. Tretyakov Perfect control of reflection and refraction using spatially dispersive metasurfaces, Phys. Rev. B, Volume 94 (2016) no. 7, 075142

[97] R. Paniagua-Dominguez; Y. F. Yu; E. Khaidarov; S. Choi; V. Leong; R. M. Bakker; X. Liang; Y. H. Fu; V. Valuckas; L. A. Krivitsky A metalens with a near-unity numerical aperture, Nano Lett., Volume 18 (2018) no. 3, pp. 2124-2132

[98] D. Sell; J. Yang; S. Doshay; R. Yang; J. A. Fan Large-angle, multifunctional metagratings based on freeform multimode geometries, Nano Lett., Volume 17 (2017) no. 6, pp. 3752-3757

[99] T. Cui; B. Bai; H. Sun Tunable metasurfaces based on active materials, Adv. Funct. Mater., Volume 29 (2019) no. 10, 1806692

Cited by Sources:

Comments - Policy