[Excitons de moiré au niveau des défauts de ligne dans les hétérocouches de dichalcogénures de métaux de transition]
In heterobilayers of 2D semiconductors, moiré pattern forms due to the inevitable lattice mismatch and twisting. Earlier works have shown that interlayer excitons in long-period moiré pattern experience a pronounced superlattice potential and have nanoscale patterned light-coupling properties. This leads to remarkable new possibilities to explore exciton physics and tailor optical properties. Line defects such as twin domain boundaries are commonly found in semiconducting transition metal dichalcogenides monolayer, which, in the context of a heterobilayer, leads to an interface between the -stacking moiré and -stacking moiré. Here, we show that such interface created by twin-domain boundary realizes a line-defect in the moiré superlattices for interlayer excitons, which localises a one-dimensional exciton mode of topological origin. The defect configuration in the moiré exciton superlattices can be continuously tuned by the interlayer translation and twisting angle, and is also a reflection of the atomic configuration of the domain boundary. The dispersion, wavefunction, and light coupling properties of the interface exciton modes are investigated at different superlattice defect configurations.
Publié le :
Jianju Tang 1, 2 ; Hongyi Yu 1, 3 ; Chih-Kang Shih 4 ; Wang Yao 1, 2
@article{CRPHYS_2021__22_S4_53_0, author = {Jianju Tang and Hongyi Yu and Chih-Kang Shih and Wang Yao}, title = {Moir\'e excitons at line defects in transition metal dichalcogenides heterobilayers}, journal = {Comptes Rendus. Physique}, pages = {53--68}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {S4}, year = {2021}, doi = {10.5802/crphys.50}, language = {en}, }
TY - JOUR AU - Jianju Tang AU - Hongyi Yu AU - Chih-Kang Shih AU - Wang Yao TI - Moiré excitons at line defects in transition metal dichalcogenides heterobilayers JO - Comptes Rendus. Physique PY - 2021 SP - 53 EP - 68 VL - 22 IS - S4 PB - Académie des sciences, Paris DO - 10.5802/crphys.50 LA - en ID - CRPHYS_2021__22_S4_53_0 ER -
%0 Journal Article %A Jianju Tang %A Hongyi Yu %A Chih-Kang Shih %A Wang Yao %T Moiré excitons at line defects in transition metal dichalcogenides heterobilayers %J Comptes Rendus. Physique %D 2021 %P 53-68 %V 22 %N S4 %I Académie des sciences, Paris %R 10.5802/crphys.50 %G en %F CRPHYS_2021__22_S4_53_0
Jianju Tang; Hongyi Yu; Chih-Kang Shih; Wang Yao. Moiré excitons at line defects in transition metal dichalcogenides heterobilayers. Comptes Rendus. Physique, Volume 22 (2021) no. S4, pp. 53-68. doi : 10.5802/crphys.50. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.50/
[1] Single-layer MoS transistors, Nat. Nanotechnol., Volume 6 (2011), pp. 147-150 | DOI
[2] Spin and pseudospins in layered transition metal dichalcogenides, Nat. Phys., Volume 10 (2014), pp. 343-350 | DOI
[3] Atomically thin MoS: a new direct-gap semiconductor, Phys. Rev. Lett., Volume 105 (2010), 136805
[4] Emerging photoluminescence in monolayer MoS, Nano Lett., Volume 10 (2010) no. 4, pp. 1271-1275 | DOI
[5] Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., Volume 7 (2012), pp. 699-712 | DOI
[6] Valley-contrasting physics in graphene: magnetic moment and topological transport, Phys. Rev. Lett., Volume 99 (2007), 236809 | DOI
[7] Valley-dependent optoelectronics from inversion symmetry breaking, Phys. Rev. B, Volume 77 (2008), 235406
[8] Coupled spin and valley physics in monolayers of MoS and other group-VI dichalcogenides, Phys. Rev. Lett., Volume 108 (2012), 196802 | DOI
[9] Valley polarization in MoS monolayers by optical pumping, Nat. Nanotechnol., Volume 7 (2012), pp. 490-493 | DOI
[10] Control of valley polarization in monolayer MoS by optical helicity, Nat. Nanotechnol., Volume 7 (2012), pp. 494-498 | DOI
[11] et al. Valley-selective circular dichroism of monolayer molybdenum disulphide, Nat. Commun., Volume 3 (2012), 887
[12] Valley excitons in two-dimensional semiconductors, Nat. Sci. Rev., Volume 2 (2015), pp. 57-70 | DOI
[13] Optical spectrum of MoS: many-body effects and diversity of exciton states, Phys. Rev. Lett., Volume 111 (2013), 216805
[14] Low-temperature photocarrier dynamics in monolayer MoS, Appl. Phys. Lett., Volume 99 (2011), 102109 | DOI
[15] et al. Optical generation of excitonic valley coherence in monolayer WSe, Nat. Nanotechnol., Volume 8 (2013), pp. 634-638 | DOI
[16] et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides, Nat. Commun., Volume 6 (2015), 8315 | DOI
[17] et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides, Proc. Natl Acad. Sci. USA, Volume 111 (2014), pp. 6198-6202 | DOI
[18] Ultrafast charge transfer in atomically thin MoS/WS heterostructures, Nat. Nanotechnol., Volume 9 (2014), pp. 682-686 | DOI
[19] et al. Atomically thin p–n junctions with van der Waals heterointerfaces, Nat. Nanotechnol., Volume 9 (2014), pp. 676-681 | DOI
[20] et al. Observation of long-lived interlayer excitons in monolayer MoSe–WSe heterostructures, Nat. Commun., Volume 6 (2015), 6242 | DOI
[21] Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers, Phys. Rev. Lett., Volume 115 (2015), 187002
[22] Valley-polarized exciton dynamics in a 2D semiconductor heterostructure, Science, Volume 351 (2016), pp. 688-691 | DOI
[23] Signatures of moiré-trapped valley excitons in MoSe/WSe heterobilayers, Nature, Volume 567 (2019), pp. 66-70 | DOI
[24] et al. Evidence for moiré excitons in van der Waals heterostructures, Nature, Volume 567 (2019) no. 7746, pp. 71-75 | DOI
[25] et al. Observation of moiré excitons in WSe/WS heterostructure superlattices, Nature, Volume 567 (2019) no. 7746, pp. 76-80 | DOI
[26] Ultrafast dynamics in van der Waals heterostructures, Nat. Nanotechnol., Volume 13 (2018), pp. 994-1003 | DOI
[27] Interlayer valley excitons in heterobilayers of transition metal dichalcogenides, Nat. Nanotechnol., Volume 13 (2018), pp. 1004-1015 | DOI
[28] Room-temperature electrical control of exciton flux in a van der Waals heterostructure, Nature, Volume 560 (2018), pp. 340-344 | DOI
[29] Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures, Nat. Photon., Volume 13 (2019), pp. 131-136 | DOI
[30] et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures, Nature, Volume 567 (2019), pp. 81-86 | DOI
[31] Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices, Sci. Adv., Volume 3 (2017), e1701696
[32] Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides, Phys. Rev. B, Volume 95 (2017), 115429
[33] Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS/WSe hetero-bilayers, Sci. Adv., Volume 3 (2017), e1601459 | DOI
[34] Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers, 2D Mater., Volume 5 (2018), 035021
[35] Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers, Phys. Rev. B, Volume 97 (2018), 035306
[36] Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles, Nano Lett., Volume 13 (2012), pp. 253-258 | DOI
[37] Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide, Nat. Mater., Volume 12 (2013), pp. 554-561 | DOI
[38] Intrinsic structural defects in monolayer molybdenum disulfide, Nano Lett., Volume 13 (2013), pp. 2615-2622 | DOI
[39] Joined edges in MoS: metallic and half-metallic wires, J. Phys.: Condens. Matter, Volume 25 (2013), 312201
[40] et al. Dense network of one-dimensional midgap metallic modes in monolayer MoSe and their spatial undulations, Phys. Rev. Lett., Volume 113 (2014), 066105
[41] et al. Atomic scale microstructure and properties of Se-deficient two-dimensional MoSe, ACS Nano, Volume 9 (2015), pp. 3274-3283 | DOI
[42] Vacancy-induced formation and growth of inversion domains in transition-metal dichalcogenide monolayer, ACS Nano, Volume 9 (2015), pp. 5189-5197 | DOI
[43] et al. Three-fold rotational defects in two-dimensional transition metal dichalcogenides, Nat. Commun., Volume 6 (2015), 6736
[44] et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe, Nat. Phys., Volume 12 (2016), pp. 751-756 | DOI
[45] Metallic twin grain boundaries embedded in MoSe monolayers grown by molecular beam epitaxy, ACS Nano, Volume 11 (2017), pp. 5130-65139 | DOI
[46] Engineering the electronic properties of two-dimensional transition metal dichalcogenides by introducing mirror twin boundaries, Adv. Electron. Mater., Volume 3 (2017), 1600468
[47] Electronic properties of graphene/hexagonal-boron-nitride moiré superlattice, Phys. Rev. B, Volume 90 (2014), 155406 | DOI
[48] Edge states in graphene: From gapped flat-band to gapless chiral modes, Phys. Rev. Lett., Volume 102 (2009), 096801
Cité par Sources :
Commentaires - Politique