Comptes Rendus
Moiré excitons at line defects in transition metal dichalcogenides heterobilayers
[Excitons de moiré au niveau des défauts de ligne dans les hétérocouches de dichalcogénures de métaux de transition]
Comptes Rendus. Physique, Volume 22 (2021) no. S4, pp. 53-68.

In heterobilayers of 2D semiconductors, moiré pattern forms due to the inevitable lattice mismatch and twisting. Earlier works have shown that interlayer excitons in long-period moiré pattern experience a pronounced superlattice potential and have nanoscale patterned light-coupling properties. This leads to remarkable new possibilities to explore exciton physics and tailor optical properties. Line defects such as twin domain boundaries are commonly found in semiconducting transition metal dichalcogenides monolayer, which, in the context of a heterobilayer, leads to an interface between the R-stacking moiré and H-stacking moiré. Here, we show that such interface created by twin-domain boundary realizes a line-defect in the moiré superlattices for interlayer excitons, which localises a one-dimensional exciton mode of topological origin. The defect configuration in the moiré exciton superlattices can be continuously tuned by the interlayer translation and twisting angle, and is also a reflection of the atomic configuration of the domain boundary. The dispersion, wavefunction, and light coupling properties of the interface exciton modes are investigated at different superlattice defect configurations.

Première publication :
Publié le :
DOI : 10.5802/crphys.50
Mots clés : moiré exciton, 2D semiconductors, Twin boundary, Van der Waals heterostructure, moiré superlattices

Jianju Tang 1, 2 ; Hongyi Yu 1, 3 ; Chih-Kang Shih 4 ; Wang Yao 1, 2

1 Department of Physics, the University of Hong Kong, Hong Kong, China
2 HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, China
3 Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing, and School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China
4 Department of Physics, University of Texas at Austin, Austin, TX 78712, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2021__22_S4_53_0,
     author = {Jianju Tang and Hongyi Yu and Chih-Kang Shih and Wang Yao},
     title = {Moir\'e excitons at line defects in transition metal dichalcogenides heterobilayers},
     journal = {Comptes Rendus. Physique},
     pages = {53--68},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {S4},
     year = {2021},
     doi = {10.5802/crphys.50},
     language = {en},
}
TY  - JOUR
AU  - Jianju Tang
AU  - Hongyi Yu
AU  - Chih-Kang Shih
AU  - Wang Yao
TI  - Moiré excitons at line defects in transition metal dichalcogenides heterobilayers
JO  - Comptes Rendus. Physique
PY  - 2021
SP  - 53
EP  - 68
VL  - 22
IS  - S4
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.50
LA  - en
ID  - CRPHYS_2021__22_S4_53_0
ER  - 
%0 Journal Article
%A Jianju Tang
%A Hongyi Yu
%A Chih-Kang Shih
%A Wang Yao
%T Moiré excitons at line defects in transition metal dichalcogenides heterobilayers
%J Comptes Rendus. Physique
%D 2021
%P 53-68
%V 22
%N S4
%I Académie des sciences, Paris
%R 10.5802/crphys.50
%G en
%F CRPHYS_2021__22_S4_53_0
Jianju Tang; Hongyi Yu; Chih-Kang Shih; Wang Yao. Moiré excitons at line defects in transition metal dichalcogenides heterobilayers. Comptes Rendus. Physique, Volume 22 (2021) no. S4, pp. 53-68. doi : 10.5802/crphys.50. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.50/

[1] B. Radisavljevic; A. Radenovic; J. Brivio; I. V. Giacometti; A. Kis Single-layer MoS 2 transistors, Nat. Nanotechnol., Volume 6 (2011), pp. 147-150 | DOI

[2] X. Xu; W. Yao; D. Xiao; T. F. Heinz Spin and pseudospins in layered transition metal dichalcogenides, Nat. Phys., Volume 10 (2014), pp. 343-350 | DOI

[3] K. F. Mak; C. Lee; J. Hone; J. Shan; T. F. Heinz Atomically thin MoS 2 : a new direct-gap semiconductor, Phys. Rev. Lett., Volume 105 (2010), 136805

[4] A. Splendiani; L. Sun; Y. Zhang; T. Li; J. Kim; C.-Y. Chim; G. Galli; F. Wang Emerging photoluminescence in monolayer MoS 2 , Nano Lett., Volume 10 (2010) no. 4, pp. 1271-1275 | DOI

[5] Q. H. Wang; K. Kalantar-Zadeh; A. Kis; J. N. Coleman; M. S. Strano Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., Volume 7 (2012), pp. 699-712 | DOI

[6] D. Xiao; W. Yao; Q. Niu Valley-contrasting physics in graphene: magnetic moment and topological transport, Phys. Rev. Lett., Volume 99 (2007), 236809 | DOI

[7] W. Yao; D. Xiao; Q. Niu Valley-dependent optoelectronics from inversion symmetry breaking, Phys. Rev. B, Volume 77 (2008), 235406

[8] D. Xiao; G.-B. Liu; W. Feng; X. Xu; W. Yao Coupled spin and valley physics in monolayers of MoS 2 and other group-VI dichalcogenides, Phys. Rev. Lett., Volume 108 (2012), 196802 | DOI

[9] H. Zeng; J. Dai; W. Yao; D. Xiao; X. Cui Valley polarization in MoS 2 monolayers by optical pumping, Nat. Nanotechnol., Volume 7 (2012), pp. 490-493 | DOI

[10] K. F. Mak; K. He; J. Shan; T. F. Heinz Control of valley polarization in monolayer MoS 2 by optical helicity, Nat. Nanotechnol., Volume 7 (2012), pp. 494-498 | DOI

[11] T. Cao; G. Wang; W. Han; H. Ye; C. Zhu; J. Shi; Q. Niu; P. Tan; E. Wang; B. Liu et al. Valley-selective circular dichroism of monolayer molybdenum disulphide, Nat. Commun., Volume 3 (2012), 887

[12] H. Yu; X. Cui; X. Xu; W. Yao Valley excitons in two-dimensional semiconductors, Nat. Sci. Rev., Volume 2 (2015), pp. 57-70 | DOI

[13] D. Y. Qiu; H. Felipe; S. G. Louie Optical spectrum of MoS 2 : many-body effects and diversity of exciton states, Phys. Rev. Lett., Volume 111 (2013), 216805

[14] T. Korn; S. Heydrich; M. Hirmer; J. Schmutzler; C. Schüller Low-temperature photocarrier dynamics in monolayer MoS 2 , Appl. Phys. Lett., Volume 99 (2011), 102109 | DOI

[15] A. M. Jones; H. Yu; N. J. Ghimire; S. Wu; G. Aivazian; J. S. Ross; B. Zhao; J. Yan; D. G. Mandrus; D. Xiao et al. Optical generation of excitonic valley coherence in monolayer WSe 2 , Nat. Nanotechnol., Volume 8 (2013), pp. 634-638 | DOI

[16] G. Moody; C. K. Dass; K. Hao; C.-H. Chen; L.-J. Li; A. Singh; K. Tran; G. Clark; X. Xu; G. Berghäuser et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides, Nat. Commun., Volume 6 (2015), 8315 | DOI

[17] H. Fang; C. Battaglia; C. Carraro; S. Nemsak; B. Ozdol; J. S. Kang; H. A. Bechtel; S. B. Desai; F. Kronast; A. A. Unal et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides, Proc. Natl Acad. Sci. USA, Volume 111 (2014), pp. 6198-6202 | DOI

[18] X. Hong; J. Kim; S.-F. Shi; Y. Zhang; C. Jin; Y. Sun; S. Tongay; J. Wu; Y. Zhang; F. Wang Ultrafast charge transfer in atomically thin MoS 2 /WS 2 heterostructures, Nat. Nanotechnol., Volume 9 (2014), pp. 682-686 | DOI

[19] C.-H. Lee; G.-H. Lee; A. M. Van Der Zande; W. Chen; Y. Li; M. Han; X. Cui; G. Arefe; C. Nuckolls; T. F. Heinz et al. Atomically thin p–n junctions with van der Waals heterointerfaces, Nat. Nanotechnol., Volume 9 (2014), pp. 676-681 | DOI

[20] P. Rivera; J. R. Schaibley; A. M. Jones; J. S. Ross; S. Wu; G. Aivazian; P. Klement; K. Seyler; G. Clark; N. J. Ghimire et al. Observation of long-lived interlayer excitons in monolayer MoSe 2 –WSe 2 heterostructures, Nat. Commun., Volume 6 (2015), 6242 | DOI

[21] H. Yu; Y. Wang; Q. Tong; X. Xu; W. Yao Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers, Phys. Rev. Lett., Volume 115 (2015), 187002

[22] P. Rivera; K. L. Seyler; H. Yu; J. R. Schaibley; J. Yan; D. G. Mandrus; W. Yao; X. Xu Valley-polarized exciton dynamics in a 2D semiconductor heterostructure, Science, Volume 351 (2016), pp. 688-691 | DOI

[23] K. L. Seyler; P. Rivera; H. Yu; N. P. Wilson; E. L. Ray; D. G. Mandrus; J. Yan; W. Yao; X. Xu Signatures of moiré-trapped valley excitons in MoSe 2 /WSe 2 heterobilayers, Nature, Volume 567 (2019), pp. 66-70 | DOI

[24] K. Tran; G. Moody; F. Wu; X. Lu; J. Choi; K. Kim; A. Rai; D. A. Sanchez; J. Quan; A. Singh et al. Evidence for moiré excitons in van der Waals heterostructures, Nature, Volume 567 (2019) no. 7746, pp. 71-75 | DOI

[25] C. Jin; E. C. Regan; A. Yan; M. I. B. Utama; D. Wang; S. Zhao; Y. Qin; S. Yang; Z. Zheng; S. Shi et al. Observation of moiré excitons in WSe 2 /WS 2 heterostructure superlattices, Nature, Volume 567 (2019) no. 7746, pp. 76-80 | DOI

[26] C. Jin; E. Y. Ma; O. Karni; E. C. Regan; F. Wang; T. F. Heinz Ultrafast dynamics in van der Waals heterostructures, Nat. Nanotechnol., Volume 13 (2018), pp. 994-1003 | DOI

[27] P. Rivera; H. Yu; K. L. Seyler; N. P. Wilson; W. Yao; X. Xu Interlayer valley excitons in heterobilayers of transition metal dichalcogenides, Nat. Nanotechnol., Volume 13 (2018), pp. 1004-1015 | DOI

[28] D. Unuchek; A. Ciarrocchi; A. Avsar; K. Watanabe; T. Taniguchi; A. Kis Room-temperature electrical control of exciton flux in a van der Waals heterostructure, Nature, Volume 560 (2018), pp. 340-344 | DOI

[29] A. Ciarrocchi; D. Unuchek; A. Avsar; K. Watanabe; T. Taniguchi; A. Kis Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures, Nat. Photon., Volume 13 (2019), pp. 131-136 | DOI

[30] E. M. Alexeev; D. A. Ruiz-Tijerina; M. Danovich; M. J. Hamer; D. J. Terry; P. K. Nayak; S. Ahn; S. Pak; J. Lee; J. I. Sohn et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures, Nature, Volume 567 (2019), pp. 81-86 | DOI

[31] H. Yu; G.-B. Liu; J. Tang; X. Xu; W. Yao Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices, Sci. Adv., Volume 3 (2017), e1701696

[32] Y. Wang; Z. Wang; W. Yao; G.-B. Liu; H. Yu Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides, Phys. Rev. B, Volume 95 (2017), 115429

[33] C. Zhang; C.-P. Chuu; X. Ren; M.-Y. Li; L.-J. Li; C. Jin; M.-Y. Chou; C.-K. Shih Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS 2 /WSe 2 hetero-bilayers, Sci. Adv., Volume 3 (2017), e1601459 | DOI

[34] H. Yu; G.-B. Liu; W. Yao Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers, 2D Mater., Volume 5 (2018), 035021

[35] F. Wu; T. Lovorn; A. MacDonald Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers, Phys. Rev. B, Volume 97 (2018), 035306

[36] X. Zou; Y. Liu; B. I. Yakobson Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles, Nano Lett., Volume 13 (2012), pp. 253-258 | DOI

[37] A. M. Van Der Zande; P. Y. Huang; D. A. Chenet; T. C. Berkelbach; Y. You; G.-H. Lee; T. F. Heinz; D. R. Reichman; D. A. Muller; J. C. Hone Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide, Nat. Mater., Volume 12 (2013), pp. 554-561 | DOI

[38] W. Zhou; X. Zou; S. Najmaei; Z. Liu; Y. Shi; J. Kong; J. Lou; P. M. Ajayan; B. I. Yakobson; J.-C. Idrobo Intrinsic structural defects in monolayer molybdenum disulfide, Nano Lett., Volume 13 (2013), pp. 2615-2622 | DOI

[39] D. Le; T. S. Rahman Joined edges in MoS 2 : metallic and half-metallic wires, J. Phys.: Condens. Matter, Volume 25 (2013), 312201

[40] H. Liu; L. Jiao; F. Yang; Y. Cai; X. Wu; W. Ho; C. Gao; J. Jia; N. Wang; H. Fan et al. Dense network of one-dimensional midgap metallic modes in monolayer MoSe 2 and their spatial undulations, Phys. Rev. Lett., Volume 113 (2014), 066105

[41] O. Lehtinen; H.-P. Komsa; A. Pulkin; M. B. Whitwick; M.-W. Chen; T. Lehnert; M. J. Mohn; O. V. Yazyev; A. Kis; U. Kaiser et al. Atomic scale microstructure and properties of Se-deficient two-dimensional MoSe 2 , ACS Nano, Volume 9 (2015), pp. 3274-3283 | DOI

[42] J. Lin; S. T. Pantelides; W. Zhou Vacancy-induced formation and growth of inversion domains in transition-metal dichalcogenide monolayer, ACS Nano, Volume 9 (2015), pp. 5189-5197 | DOI

[43] Y.-C. Lin; T. Björkman; H.-P. Komsa; P.-Y. Teng; C.-H. Yeh; F.-S. Huang; K.-H. Lin; J. Jadczak; Y.-S. Huang; P.-W. Chiu et al. Three-fold rotational defects in two-dimensional transition metal dichalcogenides, Nat. Commun., Volume 6 (2015), 6736

[44] S. Barja; S. Wickenburg; Z.-F. Liu; Y. Zhang; H. Ryu; M. M. Ugeda; Z. Hussain; Z.-X. Shen; S.-K. Mo; E. Wong et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe 2 , Nat. Phys., Volume 12 (2016), pp. 751-756 | DOI

[45] Y. Ma; S. Kolekar; H. Coy Diaz; J. Aprojanz; I. Miccoli; C. Tegenkamp; M. Batzill Metallic twin grain boundaries embedded in MoSe 2 monolayers grown by molecular beam epitaxy, ACS Nano, Volume 11 (2017), pp. 5130-65139 | DOI

[46] H.-P. Komsa; A. V. Krasheninnikov Engineering the electronic properties of two-dimensional transition metal dichalcogenides by introducing mirror twin boundaries, Adv. Electron. Mater., Volume 3 (2017), 1600468

[47] P. Moon; M. Koshino Electronic properties of graphene/hexagonal-boron-nitride moiré superlattice, Phys. Rev. B, Volume 90 (2014), 155406 | DOI

[48] W. Yao; S. A. Yang; Q. Niu Edge states in graphene: From gapped flat-band to gapless chiral modes, Phys. Rev. Lett., Volume 102 (2009), 096801

Cité par Sources :

Commentaires - Politique