We review the physical mechanisms that allow tuning of absorption and emission characteristics in monolayer semiconductors. We use the model system of transition metal dichalcogenide mono-layers such as MoSe or WSe due to their very efficient light-matter interaction and availability of high quality samples. For monolayers encapsulated in hexagonal boron nitride both homogeneous and inhomogenous contributions to the exciton optical transition linewidth can be tuned opening up pathways for tailoring the reflectivity and absorption in van der Waals heterostructures.
Publié le :
Lei Ren 1 ; Cédric Robert 1 ; Bernhard Urbaszek 1 ; Xavier Marie 1 ; Marina Semina 2 ; Mikhail M. Glazov 2
@article{CRPHYS_2021__22_S4_43_0, author = {Lei Ren and C\'edric Robert and Bernhard Urbaszek and Xavier Marie and Marina Semina and Mikhail M. Glazov}, title = {Tuning absorption and emission in monolayer semiconductors: a brief survey}, journal = {Comptes Rendus. Physique}, pages = {43--52}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {S4}, year = {2021}, doi = {10.5802/crphys.59}, language = {en}, }
TY - JOUR AU - Lei Ren AU - Cédric Robert AU - Bernhard Urbaszek AU - Xavier Marie AU - Marina Semina AU - Mikhail M. Glazov TI - Tuning absorption and emission in monolayer semiconductors: a brief survey JO - Comptes Rendus. Physique PY - 2021 SP - 43 EP - 52 VL - 22 IS - S4 PB - Académie des sciences, Paris DO - 10.5802/crphys.59 LA - en ID - CRPHYS_2021__22_S4_43_0 ER -
%0 Journal Article %A Lei Ren %A Cédric Robert %A Bernhard Urbaszek %A Xavier Marie %A Marina Semina %A Mikhail M. Glazov %T Tuning absorption and emission in monolayer semiconductors: a brief survey %J Comptes Rendus. Physique %D 2021 %P 43-52 %V 22 %N S4 %I Académie des sciences, Paris %R 10.5802/crphys.59 %G en %F CRPHYS_2021__22_S4_43_0
Lei Ren; Cédric Robert; Bernhard Urbaszek; Xavier Marie; Marina Semina; Mikhail M. Glazov. Tuning absorption and emission in monolayer semiconductors: a brief survey. Comptes Rendus. Physique, Volume 22 (2021) no. S4, pp. 43-52. doi : 10.5802/crphys.59. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.59/
[1] The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties, Adv. Phys., Volume 18 (1969) no. 73, pp. 193-335 | DOI
[2] Transition-metal chalcogenides with layer structures and features of the filling of their Brillouin zones, Sov. Phys. Uspekhi, Volume 15 (1973) no. 6, pp. 728-741 | DOI
[3] Atomically thin MoS: a new direct-gap semiconductor, Phys. Rev. Lett., Volume 105 (2010) no. 13, 136805
[4] Colloquium: excitons in atomically thin transition metal dichalcogenides, Rev. Mod. Phys., Volume 90 (2018), 021001 | DOI | MR
[5] et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS, MoSe, WS, and WSe, Phys. Rev. B, Volume 90 (2014) no. 20, 205422
[6] Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe, Phys. Rev. Lett., Volume 120 (2018), 037401 | DOI
[7] et al. Large excitonic reflectivity of monolayer MoSe encapsulated in hexagonal boron nitride, Phys. Rev. Lett., Volume 120 (2018), 037402 | DOI
[8] Strong light–matter coupling in two-dimensional atomic crystals, Nat. Photonics, Volume 9 (2015) no. 1, pp. 30-34 | DOI
[9] et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities, Nat. Commun., Volume 6 (2015) no. 1, pp. 1-7 | DOI
[10] Optical Spectroscopy of Semiconductor Nanostructures, Alpha Science, Harrow, UK, 2005
[11] Two-dimensional semiconductors in the regime of strong light-matter coupling, Nat. Commun., Volume 9 (2018) no. 1, 2695 | DOI
[12] Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides, Phys. Rev. B, Volume 89 (2014) no. 20, 201302 | DOI
[13] et al. Control of the exciton radiative lifetime in van der Waals Heterostructures, Phys. Rev. Lett., Volume 123 (2019), 067401
[14] et al. Dielectric disorder in two-dimensional materials, Nat. Nanotechnol., Volume 14 (2019) no. 9, pp. 832-837 | DOI
[15] Effect of inhomogeneous broadening on optical properties of excitons in quantum wells, Phys. Rev. B, Volume 57 (1998), pp. 4670-4680 | DOI
[16] Optical dephasing of homogeneously broadened two-dimensional exciton transitions in GaAs quantum wells, Phys. Rev. B, Volume 34 (1986), pp. 9027-9030 | DOI
[17] Coherent Optical Interactions in Semiconductors (R. T. Phillips, ed.), Nato Science Series B, Springer, 1994 https://www.springer.com/gp/book/9780306447372 (accessed 22nd February 2021) | DOI
[18] et al. Phonon sidebands in monolayer transition metal dichalcogenides, Phys. Rev. Lett., Volume 119 (2017), 187402 | DOI
[19] et al. Observation of exciton-phonon coupling in MoSe monolayers, Phys. Rev. B, Volume 98 (2018), 035302 | DOI
[20] et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides, Nat. Commun., Volume 6 (2015) no. 1, pp. 1-6 | DOI
[21] et al. Radiatively limited dephasing and exciton dynamics in MoSe monolayers revealed with four-wave mixing microscopy, Nano Lett., Volume 16 (2016) no. 9, pp. 5333-5339 | DOI
[22] Impact of environment on dynamics of exciton complexes in a WS monolayer, 2D Mater., Volume 5 (2018) no. 3, 031007 | DOI
[23] et al. Coherence and density dynamics of excitons in a single-layer MoS reaching the homogeneous limit, ACS Nano, Volume 13 (2019) no. 3, pp. 3500-3511 | DOI
[24] et al. Coherent dynamics and mapping of excitons in single-layer MoSe and WSe at the homogeneous limit, Phys. Rev. Mater., Volume 4 (2020) no. 3, 034001
[25] Encapsulation narrows and preserves the excitonic homogeneous linewidth of exfoliated monolayer MoSe, Phys. Rev. Appl., Volume 14 (2020) no. 2, 021002 | DOI
[26] Carrier and polarization dynamics in monolayer MoS, Phys. Rev. Lett., Volume 112 (2014) no. 4, 047401 | DOI
[27] et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers, Phys. Rev. B, Volume 93 (2016), 205423 | DOI
[28] Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides, Nano Lett., Volume 15 (2015) no. 5, pp. 2794-2800 | DOI
[29] Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS, Phys. Rev. B, Volume 93 (2016), 045407
[30] et al. Excitonic linewidth approaching the homogeneous limit in MoS-based van der Waals Heterostructures, Phys. Rev. X, Volume 7 (2017), 021026
[31] et al. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers, 2D Mater., Volume 4 (2017) no. 3, 031011 | DOI
[32] et al. Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit, Sci. Rep., Volume 7 (2017) no. 1, pp. 1-6 | DOI
[33] Resonant diffraction of electromagnetic waves from solids (a review), Phys. Solid State, Volume 55 (2013) no. 5, pp. 905-923 | DOI
[34] et al. Resonance fluorescence of a single artificial atom, Science, Volume 327 (2010) no. 5967, pp. 840-843 | DOI
[35] et al. Topological photon pairs in a superconducting quantum metamaterial, 2020 (preprint) | arXiv
[36] Polariton resonances for ultrastrong coupling cavity optomechanics in GaAsAlAs multiple quantum wells, Phys. Rev. Lett., Volume 115 (2015), 267402 | DOI
[37] Exciton–polariton light–semiconductor coupling effects, Nat. Photonics, Volume 5 (2011) no. 5, pp. 275-282 | DOI
[38] et al. Controlling excitons in an atomically thin membrane with a mirror, Phys. Rev. Lett., Volume 124 (2020), 027401 | DOI
[39] Coherent feedback control of two-dimensional excitons, Phys. Rev. Res., Volume 2 (2020), 012029 | DOI
[40] et al. Perfect absorption by an atomically thin crystal, Phys. Rev. Appl., Volume 14 (2020), 024009 | DOI
[41] Influence of a dielectric interface on fluorescence decay time, J. Lumin., Volume 1 (1970), pp. 693-701 | DOI
[42] Inhibited spontaneous emission, Phys. Rev. Lett., Volume 47 (1981) no. 4, pp. 233-236 | DOI
[43] Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space, Phys. Rev. Lett., Volume 58 (1987) no. 7, pp. 666-669 | DOI
[44] et al. Engineering radiative coupling of excitons in 2D semiconductors, Optica, Volume 6 (2019) no. 11 (EN), pp. 1443-1448 | DOI
[45] Cooperative Lamb shift in an atomic vapor layer of nanometer thickness, Phys. Rev. Lett., Volume 108 (2012) no. 17, 173601 | DOI
[46] Collective Lamb shift of a nanoscale atomic vapor layer within a sapphire cavity, Phys. Rev. Lett., Volume 120 (2018) no. 24, 243401 | DOI
[47] et al. Near-unity light absorption in a monolayer WS van der Waals heterostructure cavity, Nano Lett., Volume 20 (2020) no. 5, pp. 3545-3552 | DOI
[48] Control of the exciton valley dynamics in van der Waals heterostructures, Phys. Rev. B, Volume 103 (2021), 085302
[49] et al. Nanoantenna-enhanced light–matter interaction in atomically thin WS, ACS Photonics, Volume 2 (2015) no. 9, pp. 1260-1265 | DOI
[50] Dielectric nanoantennas to manipulate solid-state light emission, J. Appl. Phys., Volume 126 (2019) no. 9, 094104 | DOI
[51] et al. Unveiling the optical emission channels of monolayer semiconductors coupled to silicon nanoantennas, ACS Photonics, Volume 7 (2020) no. 11, pp. 3106-3115 | DOI
Cité par Sources :
Commentaires - Politique