Comptes Rendus
Tuning absorption and emission in monolayer semiconductors: a brief survey
Comptes Rendus. Physique, Volume 22 (2021) no. S4, pp. 43-52.

We review the physical mechanisms that allow tuning of absorption and emission characteristics in monolayer semiconductors. We use the model system of transition metal dichalcogenide mono-layers such as MoSe 2 or WSe 2 due to their very efficient light-matter interaction and availability of high quality samples. For monolayers encapsulated in hexagonal boron nitride both homogeneous and inhomogenous contributions to the exciton optical transition linewidth can be tuned opening up pathways for tailoring the reflectivity and absorption in van der Waals heterostructures.

Première publication :
Publié le :
DOI : 10.5802/crphys.59
Mots clés : Transition metal dichalcogenide, Purcell effect, 2D materials, Electrodynamics, Coherent optics

Lei Ren 1 ; Cédric Robert 1 ; Bernhard Urbaszek 1 ; Xavier Marie 1 ; Marina Semina 2 ; Mikhail M. Glazov 2

1 Université de Toulouse, INSA-CNRS-UPS, LPCNO, Toulouse 31077, France
2 Ioffe Institute, 26 Polytechnicheskaya, 194021 St. Petersburg, Russia
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2021__22_S4_43_0,
     author = {Lei Ren and C\'edric Robert and Bernhard Urbaszek and Xavier Marie and Marina Semina and Mikhail M. Glazov},
     title = {Tuning absorption and emission in monolayer semiconductors: a brief survey},
     journal = {Comptes Rendus. Physique},
     pages = {43--52},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {S4},
     year = {2021},
     doi = {10.5802/crphys.59},
     language = {en},
}
TY  - JOUR
AU  - Lei Ren
AU  - Cédric Robert
AU  - Bernhard Urbaszek
AU  - Xavier Marie
AU  - Marina Semina
AU  - Mikhail M. Glazov
TI  - Tuning absorption and emission in monolayer semiconductors: a brief survey
JO  - Comptes Rendus. Physique
PY  - 2021
SP  - 43
EP  - 52
VL  - 22
IS  - S4
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.59
LA  - en
ID  - CRPHYS_2021__22_S4_43_0
ER  - 
%0 Journal Article
%A Lei Ren
%A Cédric Robert
%A Bernhard Urbaszek
%A Xavier Marie
%A Marina Semina
%A Mikhail M. Glazov
%T Tuning absorption and emission in monolayer semiconductors: a brief survey
%J Comptes Rendus. Physique
%D 2021
%P 43-52
%V 22
%N S4
%I Académie des sciences, Paris
%R 10.5802/crphys.59
%G en
%F CRPHYS_2021__22_S4_43_0
Lei Ren; Cédric Robert; Bernhard Urbaszek; Xavier Marie; Marina Semina; Mikhail M. Glazov. Tuning absorption and emission in monolayer semiconductors: a brief survey. Comptes Rendus. Physique, Volume 22 (2021) no. S4, pp. 43-52. doi : 10.5802/crphys.59. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.59/

[1] J. Wilson; A. Yoffe The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties, Adv. Phys., Volume 18 (1969) no. 73, pp. 193-335 | DOI

[2] V. Kalikhman; Y. S. Umanski Transition-metal chalcogenides with layer structures and features of the filling of their Brillouin zones, Sov. Phys. Uspekhi, Volume 15 (1973) no. 6, pp. 728-741 | DOI

[3] K. F. Mak; C. Lee; J. Hone; J. Shan; T. F. Heinz Atomically thin MoS 2 : a new direct-gap semiconductor, Phys. Rev. Lett., Volume 105 (2010) no. 13, 136805

[4] G. Wang; A. Chernikov; M. M. Glazov; T. F. Heinz; X. Marie; T. Amand; B. Urbaszek Colloquium: excitons in atomically thin transition metal dichalcogenides, Rev. Mod. Phys., Volume 90 (2018), 021001 | DOI | MR

[5] Y. Li; A. Chernikov; X. Zhang; A. Rigosi; H. M. Hill; A. M. Van Der Zande; D. A. Chenet et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS 2 , MoSe 2 , WS 2 , and WSe 2 , Phys. Rev. B, Volume 90 (2014) no. 20, 205422

[6] P. Back; S. Zeytinoglu; A. Ijaz; M. Kroner; A. Imamoğlu Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe 2 , Phys. Rev. Lett., Volume 120 (2018), 037401 | DOI

[7] G. Scuri; Y. Zhou; A. A. High; D. S. Wild; C. Shu; K. De Greve et al. Large excitonic reflectivity of monolayer MoSe 2 encapsulated in hexagonal boron nitride, Phys. Rev. Lett., Volume 120 (2018), 037402 | DOI

[8] X. Liu; T. Galfsky; Z. Sun; F. Xia; E.-C. Lin; Y.-H. Lee; S. Kéna-Cohen; V. M. Menon Strong light–matter coupling in two-dimensional atomic crystals, Nat. Photonics, Volume 9 (2015) no. 1, pp. 30-34 | DOI

[9] S. Dufferwiel et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities, Nat. Commun., Volume 6 (2015) no. 1, pp. 1-7 | DOI

[10] E. L. Ivchenko Optical Spectroscopy of Semiconductor Nanostructures, Alpha Science, Harrow, UK, 2005

[11] C. Schneider; M. M. Glazov; T. Korn; S. Höfling; B. Urbaszek Two-dimensional semiconductors in the regime of strong light-matter coupling, Nat. Commun., Volume 9 (2018) no. 1, 2695 | DOI

[12] M. M. Glazov; T. Amand; X. Marie; D. Lagarde; L. Bouet; B. Urbaszek Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides, Phys. Rev. B, Volume 89 (2014) no. 20, 201302 | DOI

[13] H. H. Fang; B. Han; C. Robert; M. A. Semina; D. Lagarde; E. Courtade; T. Taniguchi et al. Control of the exciton radiative lifetime in van der Waals Heterostructures, Phys. Rev. Lett., Volume 123 (2019), 067401

[14] A. Raja et al. Dielectric disorder in two-dimensional materials, Nat. Nanotechnol., Volume 14 (2019) no. 9, pp. 832-837 | DOI

[15] L. C. Andreani; G. Panzarini; A. V. Kavokin; M. R. Vladimirova Effect of inhomogeneous broadening on optical properties of excitons in quantum wells, Phys. Rev. B, Volume 57 (1998), pp. 4670-4680 | DOI

[16] L. Schultheis; A. Honold; J. Kuhl; K. Köhler; C. W. Tu Optical dephasing of homogeneously broadened two-dimensional exciton transitions in GaAs quantum wells, Phys. Rev. B, Volume 34 (1986), pp. 9027-9030 | DOI

[17] Coherent Optical Interactions in Semiconductors (R. T. Phillips, ed.), Nato Science Series B, Springer, 1994 https://www.springer.com/gp/book/9780306447372 (accessed 22nd February 2021) | DOI

[18] D. Christiansen; M. Selig; G. Berghäuser; R. Schmidt; I. Niehues; R. Schneider; A. Arora et al. Phonon sidebands in monolayer transition metal dichalcogenides, Phys. Rev. Lett., Volume 119 (2017), 187402 | DOI

[19] S. Shree; M. Semina; C. Robert; B. Han; T. Amand; A. Balocchi et al. Observation of exciton-phonon coupling in MoSe 2 monolayers, Phys. Rev. B, Volume 98 (2018), 035302 | DOI

[20] G. Moody et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides, Nat. Commun., Volume 6 (2015) no. 1, pp. 1-6 | DOI

[21] T. Jakubczyk; V. Delmonte; M. Koperski; K. Nogajewski; C. Faugeras; W. Langbein et al. Radiatively limited dephasing and exciton dynamics in MoSe 2 monolayers revealed with four-wave mixing microscopy, Nano Lett., Volume 16 (2016) no. 9, pp. 5333-5339 | DOI

[22] T. Jakubczyk; K. Nogajewski; M. R. Molas; M. Bartos; W. Langbein; M. Potemski; J. Kasprzak Impact of environment on dynamics of exciton complexes in a WS 2 monolayer, 2D Mater., Volume 5 (2018) no. 3, 031007 | DOI

[23] T. Jakubczyk et al. Coherence and density dynamics of excitons in a single-layer MoS 2 reaching the homogeneous limit, ACS Nano, Volume 13 (2019) no. 3, pp. 3500-3511 | DOI

[24] C. Boule; D. Vaclavkova; M. Bartos; K. Nogajewski; L. Zdražil; T. Taniguchi et al. Coherent dynamics and mapping of excitons in single-layer MoSe 2 and WSe 2 at the homogeneous limit, Phys. Rev. Mater., Volume 4 (2020) no. 3, 034001

[25] E. W. Martin; J. Horng; H. G. Ruth; E. Paik; M.-H. Wentzel; H. Deng; S. T. Cundiff Encapsulation narrows and preserves the excitonic homogeneous linewidth of exfoliated monolayer MoSe 2 , Phys. Rev. Appl., Volume 14 (2020) no. 2, 021002 | DOI

[26] D. Lagarde; L. Bouet; X. Marie; C. Zhu; B. Liu; T. Amand; P. Tan; B. Urbaszek Carrier and polarization dynamics in monolayer MoS 2 , Phys. Rev. Lett., Volume 112 (2014) no. 4, 047401 | DOI

[27] C. Robert; D. Lagarde; F. Cadiz; G. Wang; B. Lassagne; T. Amand et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers, Phys. Rev. B, Volume 93 (2016), 205423 | DOI

[28] M. Palummo; M. Bernardi; J. C. Grossman Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides, Nano Lett., Volume 15 (2015) no. 5, pp. 2794-2800 | DOI

[29] H. Wang; C. Zhang; W. Chan; C. Manolatou; S. Tiwari; F. Rana Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS 2 , Phys. Rev. B, Volume 93 (2016), 045407

[30] F. Cadiz; E. Courtade; C. Robert; G. Wang; Y. Shen; H. Cai; T. Taniguchi; K. Watanabe et al. Excitonic linewidth approaching the homogeneous limit in MoS 2 -based van der Waals Heterostructures, Phys. Rev. X, Volume 7 (2017), 021026

[31] O. A. Ajayi et al. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers, 2D Mater., Volume 4 (2017) no. 3, 031011 | DOI

[32] J. Wierzbowski et al. Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit, Sci. Rep., Volume 7 (2017) no. 1, pp. 1-6 | DOI

[33] E. L. Ivchenko; A. N. Poddubny Resonant diffraction of electromagnetic waves from solids (a review), Phys. Solid State, Volume 55 (2013) no. 5, pp. 905-923 | DOI

[34] O. Astafiev; A. M. Zagoskin; A. A. Abdumalikov; Y. A. Pashkin et al. Resonance fluorescence of a single artificial atom, Science, Volume 327 (2010) no. 5967, pp. 840-843 | DOI

[35] I. S. Besedin; M. A. Gorlach; N. N. Abramov; I. Tsitsilin; I. N. Moskalenko; A. A. Dobronosova et al. Topological photon pairs in a superconducting quantum metamaterial, 2020 (preprint) | arXiv

[36] B. Jusserand; A. N. Poddubny; A. V. Poshakinskiy; A. Fainstein; A. Lemaitre Polariton resonances for ultrastrong coupling cavity optomechanics in GaAs/AlAs multiple quantum wells, Phys. Rev. Lett., Volume 115 (2015), 267402 | DOI

[37] H. Gibbs; G. Khitrova; S. W. Koch Exciton–polariton light–semiconductor coupling effects, Nat. Photonics, Volume 5 (2011) no. 5, pp. 275-282 | DOI

[38] Y. Zhou; G. Scuri; J. Sung; R. J. Gelly; D. S. Wild; K. De Greve; A. Y. Joe et al. Controlling excitons in an atomically thin membrane with a mirror, Phys. Rev. Lett., Volume 124 (2020), 027401 | DOI

[39] C. Rogers; D. Gray; N. Bogdanowicz; T. Taniguchi; K. Watanabe; H. Mabuchi Coherent feedback control of two-dimensional excitons, Phys. Rev. Res., Volume 2 (2020), 012029 | DOI

[40] J. Horng; E. W. Martin; Y.-H. Chou; E. Courtade; T.-C. Chang; C.-Y. Hsu; M.-H. Wentzel et al. Perfect absorption by an atomically thin crystal, Phys. Rev. Appl., Volume 14 (2020), 024009 | DOI

[41] K. Drexhage Influence of a dielectric interface on fluorescence decay time, J. Lumin., Volume 1 (1970), pp. 693-701 | DOI

[42] D. Kleppner Inhibited spontaneous emission, Phys. Rev. Lett., Volume 47 (1981) no. 4, pp. 233-236 | DOI

[43] W. Jhe; A. Anderson; E. Hinds; D. Meschede; L. Moi; S. Haroche Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space, Phys. Rev. Lett., Volume 58 (1987) no. 7, pp. 666-669 | DOI

[44] J. Horng; Y.-H. Chou; Y.-H. Chou; T.-C. Chang; C.-Y. Hsu; T.-C. Lu; H. Deng et al. Engineering radiative coupling of excitons in 2D semiconductors, Optica, Volume 6 (2019) no. 11 (EN), pp. 1443-1448 | DOI

[45] J. Keaveney; A. Sargsyan; U. Krohn; I. G. Hughes; D. Sarkisyan; C. S. Adams Cooperative Lamb shift in an atomic vapor layer of nanometer thickness, Phys. Rev. Lett., Volume 108 (2012) no. 17, 173601 | DOI

[46] T. Peyrot; Y. Sortais; A. Browaeys; A. Sargsyan; D. Sarkisyan; J. Keaveney; I. Hughes; C. S. Adams Collective Lamb shift of a nanoscale atomic vapor layer within a sapphire cavity, Phys. Rev. Lett., Volume 120 (2018) no. 24, 243401 | DOI

[47] I. Epstein et al. Near-unity light absorption in a monolayer WS 2 van der Waals heterostructure cavity, Nano Lett., Volume 20 (2020) no. 5, pp. 3545-3552 | DOI

[48] A. I. Prazdnichnykh; M. M. Glazov; L. Ren; C. Robert; B. Urbaszek; X. Marie Control of the exciton valley dynamics in van der Waals heterostructures, Phys. Rev. B, Volume 103 (2021), 085302

[49] J. Kern et al. Nanoantenna-enhanced light–matter interaction in atomically thin WS 2 , ACS Photonics, Volume 2 (2015) no. 9, pp. 1260-1265 | DOI

[50] S. Bidault; M. Mivelle; N. Bonod Dielectric nanoantennas to manipulate solid-state light emission, J. Appl. Phys., Volume 126 (2019) no. 9, 094104 | DOI

[51] J.-M. Poumirol; I. Paradisanos; S. Shree; G. Agez; X. Marie; C. Robert; N. Mallet; P. R. Wiecha et al. Unveiling the optical emission channels of monolayer semiconductors coupled to silicon nanoantennas, ACS Photonics, Volume 7 (2020) no. 11, pp. 3106-3115 | DOI

Cité par Sources :

Commentaires - Politique