We review the physical mechanisms that allow tuning of absorption and emission characteristics in monolayer semiconductors. We use the model system of transition metal dichalcogenide mono-layers such as MoSe
Publié le :
Lei Ren 1 ; Cédric Robert 1 ; Bernhard Urbaszek 1 ; Xavier Marie 1 ; Marina Semina 2 ; Mikhail M. Glazov 2

@article{CRPHYS_2021__22_S4_43_0, author = {Lei Ren and C\'edric Robert and Bernhard Urbaszek and Xavier Marie and Marina Semina and Mikhail M. Glazov}, title = {Tuning absorption and emission in monolayer semiconductors: a brief survey}, journal = {Comptes Rendus. Physique}, pages = {43--52}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {S4}, year = {2021}, doi = {10.5802/crphys.59}, language = {en}, }
TY - JOUR AU - Lei Ren AU - Cédric Robert AU - Bernhard Urbaszek AU - Xavier Marie AU - Marina Semina AU - Mikhail M. Glazov TI - Tuning absorption and emission in monolayer semiconductors: a brief survey JO - Comptes Rendus. Physique PY - 2021 SP - 43 EP - 52 VL - 22 IS - S4 PB - Académie des sciences, Paris DO - 10.5802/crphys.59 LA - en ID - CRPHYS_2021__22_S4_43_0 ER -
%0 Journal Article %A Lei Ren %A Cédric Robert %A Bernhard Urbaszek %A Xavier Marie %A Marina Semina %A Mikhail M. Glazov %T Tuning absorption and emission in monolayer semiconductors: a brief survey %J Comptes Rendus. Physique %D 2021 %P 43-52 %V 22 %N S4 %I Académie des sciences, Paris %R 10.5802/crphys.59 %G en %F CRPHYS_2021__22_S4_43_0
Lei Ren; Cédric Robert; Bernhard Urbaszek; Xavier Marie; Marina Semina; Mikhail M. Glazov. Tuning absorption and emission in monolayer semiconductors: a brief survey. Comptes Rendus. Physique, Recent advances in 2D material physics, Volume 22 (2021) no. S4, pp. 43-52. doi : 10.5802/crphys.59. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.59/
[1] The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties, Adv. Phys., Volume 18 (1969) no. 73, pp. 193-335 | DOI
[2] Transition-metal chalcogenides with layer structures and features of the filling of their Brillouin zones, Sov. Phys. Uspekhi, Volume 15 (1973) no. 6, pp. 728-741 | DOI
[3] Atomically thin MoS
[4] Colloquium: excitons in atomically thin transition metal dichalcogenides, Rev. Mod. Phys., Volume 90 (2018), 021001 | DOI | MR
[5] et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS
[6] Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe
[7] et al. Large excitonic reflectivity of monolayer MoSe
[8] Strong light–matter coupling in two-dimensional atomic crystals, Nat. Photonics, Volume 9 (2015) no. 1, pp. 30-34 | DOI
[9] et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities, Nat. Commun., Volume 6 (2015) no. 1, pp. 1-7 | DOI
[10] Optical Spectroscopy of Semiconductor Nanostructures, Alpha Science, Harrow, UK, 2005
[11] Two-dimensional semiconductors in the regime of strong light-matter coupling, Nat. Commun., Volume 9 (2018) no. 1, 2695 | DOI
[12] Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides, Phys. Rev. B, Volume 89 (2014) no. 20, 201302 | DOI
[13] et al. Control of the exciton radiative lifetime in van der Waals Heterostructures, Phys. Rev. Lett., Volume 123 (2019), 067401
[14] et al. Dielectric disorder in two-dimensional materials, Nat. Nanotechnol., Volume 14 (2019) no. 9, pp. 832-837 | DOI
[15] Effect of inhomogeneous broadening on optical properties of excitons in quantum wells, Phys. Rev. B, Volume 57 (1998), pp. 4670-4680 | DOI
[16] Optical dephasing of homogeneously broadened two-dimensional exciton transitions in GaAs quantum wells, Phys. Rev. B, Volume 34 (1986), pp. 9027-9030 | DOI
[17] Coherent Optical Interactions in Semiconductors (R. T. Phillips, ed.), Nato Science Series B, Springer, 1994 https://www.springer.com/gp/book/9780306447372 (accessed 22nd February 2021) | DOI
[18] et al. Phonon sidebands in monolayer transition metal dichalcogenides, Phys. Rev. Lett., Volume 119 (2017), 187402 | DOI
[19] et al. Observation of exciton-phonon coupling in MoSe
[20] et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides, Nat. Commun., Volume 6 (2015) no. 1, pp. 1-6 | DOI
[21] et al. Radiatively limited dephasing and exciton dynamics in MoSe
[22] Impact of environment on dynamics of exciton complexes in a WS
[23] et al. Coherence and density dynamics of excitons in a single-layer MoS
[24] et al. Coherent dynamics and mapping of excitons in single-layer MoSe
[25] Encapsulation narrows and preserves the excitonic homogeneous linewidth of exfoliated monolayer MoSe
[26] Carrier and polarization dynamics in monolayer MoS
[27] et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers, Phys. Rev. B, Volume 93 (2016), 205423 | DOI
[28] Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides, Nano Lett., Volume 15 (2015) no. 5, pp. 2794-2800 | DOI
[29] Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS
[30] et al. Excitonic linewidth approaching the homogeneous limit in MoS
[31] et al. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers, 2D Mater., Volume 4 (2017) no. 3, 031011 | DOI
[32] et al. Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit, Sci. Rep., Volume 7 (2017) no. 1, pp. 1-6 | DOI
[33] Resonant diffraction of electromagnetic waves from solids (a review), Phys. Solid State, Volume 55 (2013) no. 5, pp. 905-923 | DOI
[34] et al. Resonance fluorescence of a single artificial atom, Science, Volume 327 (2010) no. 5967, pp. 840-843 | DOI
[35] et al. Topological photon pairs in a superconducting quantum metamaterial, 2020 (preprint) | arXiv
[36] Polariton resonances for ultrastrong coupling cavity optomechanics in GaAs
[37] Exciton–polariton light–semiconductor coupling effects, Nat. Photonics, Volume 5 (2011) no. 5, pp. 275-282 | DOI
[38] et al. Controlling excitons in an atomically thin membrane with a mirror, Phys. Rev. Lett., Volume 124 (2020), 027401 | DOI
[39] Coherent feedback control of two-dimensional excitons, Phys. Rev. Res., Volume 2 (2020), 012029 | DOI
[40] et al. Perfect absorption by an atomically thin crystal, Phys. Rev. Appl., Volume 14 (2020), 024009 | DOI
[41] Influence of a dielectric interface on fluorescence decay time, J. Lumin., Volume 1 (1970), pp. 693-701 | DOI
[42] Inhibited spontaneous emission, Phys. Rev. Lett., Volume 47 (1981) no. 4, pp. 233-236 | DOI
[43] Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space, Phys. Rev. Lett., Volume 58 (1987) no. 7, pp. 666-669 | DOI
[44] et al. Engineering radiative coupling of excitons in 2D semiconductors, Optica, Volume 6 (2019) no. 11 (EN), pp. 1443-1448 | DOI
[45] Cooperative Lamb shift in an atomic vapor layer of nanometer thickness, Phys. Rev. Lett., Volume 108 (2012) no. 17, 173601 | DOI
[46] Collective Lamb shift of a nanoscale atomic vapor layer within a sapphire cavity, Phys. Rev. Lett., Volume 120 (2018) no. 24, 243401 | DOI
[47] et al. Near-unity light absorption in a monolayer WS
[48] Control of the exciton valley dynamics in van der Waals heterostructures, Phys. Rev. B, Volume 103 (2021), 085302
[49] et al. Nanoantenna-enhanced light–matter interaction in atomically thin WS
[50] Dielectric nanoantennas to manipulate solid-state light emission, J. Appl. Phys., Volume 126 (2019) no. 9, 094104 | DOI
[51] et al. Unveiling the optical emission channels of monolayer semiconductors coupled to silicon nanoantennas, ACS Photonics, Volume 7 (2020) no. 11, pp. 3106-3115 | DOI
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier