[Fluctuations plastiques dans les matériaux cristallins]
Malgré une étude précurseur de Becker et Orowan en 1932 sur le Zinc, l’analyse des fluctuations dans la dynamique de la déformation plastique des matériaux cristallins a été pendant longtemps négligée, probablement du fait que dans la plupart des matériaux métalliques d’intérêt industriel ces fluctuations sont indétectables en termes de comportement mécanique aux échelles macroscopiques. La situation a changé drastiquement il y a une vingtaine d’années lorsque, d’une part, l’enregistrement des signatures acoustiques des avalanches de dislocations dans certains matériaux hexagonaux a montré que ces dernières pouvaient être distribuées en loi de puissance, suggérant une dynamique critique, et d’autre part il a été observé que la plasticité des systèmes de taille micro- et nano-métrique devenait intermittente pour la plupart des matériaux non-alliés. Dans cet article, nous discutons, sur la base de récents travaux et dans le cadre de la physique statistique, de la nature et des propriétés statistiques et d’échelle de ces fluctuations plastiques en fonction de la symétrie cristalline, de la taille du système considéré, ainsi que du désordre interne, qu’il soit émergent (structures de dislocations) ou ajusté par des techniques d’alliage. On met ainsi en lumière des effets de taille très prononcés sur la stochasticité de la déformation plastique, un rapport d’échelle entre la taille finie du système et une échelle interne jouant un rôle majeur pour expliquer ces transitions de comportement. On discute également le lien avec d’autres effets d’échelle, sur le seuil d’écoulement plastique ou la nature des mécanismes de durcissement, et on montre comment les techniques d’alliage peuvent réduire ces instabilités plastiques. Ceci ouvre la voie vers une métallurgie et des pratiques d’ingénierie aux échelles sous-microniques tenant compte du caractère stochastique intrinsèque de la plasticité à ces échelles, et tentant de le supprimer ou de l’atténuer.
Recently acoustic signature of dislocation avalanches in HCP materials was found to be long tailed in size and energy, suggesting critical dynamics. Moreover, the intermittent plastic response was found to be generic for micro- and nano-sized systems independently of their crystallographic symmetry. These rather remarkable discoveries are reviewed in this paper in the perspective of the recent studies performed in our group. We discuss the physical origin and the scaling properties of plastic fluctuations and address the nature of their dependence on crystalline symmetry, system size, and disorder content. A particular emphasis is placed on the formation of dislocation structures, and on our ability to temper plastic fluctuations by alloying. We also discuss the “smaller is wilder” size effect that culminates in a paradoxical crack-free brittle behavior of very small, initially dislocation free crystals. We argue that the implied transition between different rheological behaviors is regulated by the ratio of length scales , where is the system size and is the internal length. We link this size effect with size dependence of strength (“smaller is stronger”) and the size-induced switch between different hardening mechanisms. We show that the task of taming the intermittency of plastic flow at ultra-small scales can be accomplished by generating tailored quenched disorder which allows one to control micro- and nano-forming and opens new perspectives in micro-metallurgy and structural engineering of miniature load-carrying elements. These insights were beyond the reach of conventional theoretical approaches that do not explicitly account for the stochastic nature of collective dislocation dynamics.
Publié le :
Mot clés : Plasticité, Dislocations, Physique statistique, Avalanches, Phénomènes critiques
Jérôme Weiss 1 ; Peng Zhang 2 ; Oğuz Umut Salman 3 ; Gang Liu 2 ; Lev Truskinovsky 4
@article{CRPHYS_2021__22_S3_163_0, author = {J\'er\^ome Weiss and Peng Zhang and O\u{g}uz Umut Salman and Gang Liu and Lev Truskinovsky}, title = {Fluctuations in crystalline plasticity}, journal = {Comptes Rendus. Physique}, pages = {163--199}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {S3}, year = {2021}, doi = {10.5802/crphys.51}, language = {en}, }
TY - JOUR AU - Jérôme Weiss AU - Peng Zhang AU - Oğuz Umut Salman AU - Gang Liu AU - Lev Truskinovsky TI - Fluctuations in crystalline plasticity JO - Comptes Rendus. Physique PY - 2021 SP - 163 EP - 199 VL - 22 IS - S3 PB - Académie des sciences, Paris DO - 10.5802/crphys.51 LA - en ID - CRPHYS_2021__22_S3_163_0 ER -
Jérôme Weiss; Peng Zhang; Oğuz Umut Salman; Gang Liu; Lev Truskinovsky. Fluctuations in crystalline plasticity. Comptes Rendus. Physique, Volume 22 (2021) no. S3, pp. 163-199. doi : 10.5802/crphys.51. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.51/
[1] Sudden expansion of zinc crystals, Z. Phys., Volume 79 (1932), pp. 566-572
[2] Acoustic emission in single crystals of ice, J. Phys. Chem. B, Volume 101 (1997) no. 32, pp. 6113-6117 | DOI
[3] Intermittent dislocation flow in viscoplastic deformation, Nature, Volume 410 (2001) no. 6829, pp. 667-671 | DOI
[4] Scale-free intermittent flow in crystal plasticity, Science, Volume 312 (2006) no. 5777, pp. 1188-1190 | DOI
[5] Statistics of dislocation slip avalanches in nanosized single crystals show tuned critical behavior predicted by a simple mean field model, Phys. Rev. Lett., Volume 109 (2012) no. 9, 095507 | DOI
[6] Zur kristallplastizität. I, Z. Phys., Volume 89 (1934) no. 9–10, pp. 605-613
[7] Zur kristallplastizität. II, Z. Phys., Volume 89 (1934) no. 9–10, pp. 614-633
[8] Zur kristallplastizität. III, Z. Phys., Volume 89 (1934) no. 9–10, pp. 634-659
[9] Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte, Z. Phys., Volume 89 (1934) no. 9–10, pp. 660-664
[10] The mechanism of plastic deformation of crystals. Part I.—Theoretical, Proc. R. Soc. Lond. A, Volume 145 (1934) no. 855, pp. 362-387
[11] Probleme der Spannungsverteilung in ebenen Systemen einfach gelöst mit Hilfe der Airyschen Function, Z. Math. Phys., Volume 52 (1905), pp. 348-383
[12] Sur l’équilibre des corps élastiques multiplement connexes, Ann. Sci. Éc. Norm. Supér., Volume 24 (1907), pp. 401-517 | DOI
[13] A brief history of dislocation theory, Metall. Trans. A, Volume 16 (1985) no. 12, pp. 2085-2090 | DOI
[14] Dislocations in seismology, Dislocations Solids, Volume 3 (1980), pp. 251-339
[15] -limit of a phase-field model of dislocations, SIAM J. Math. Anal., Volume 36 (2005) no. 6, pp. 1943-1964 | DOI
[16] Discrete crystal elasticity and discrete dislocations in crystals, Arch. Ration. Mech. Anal., Volume 178 (2005) no. 2, pp. 149-226 | DOI
[17] Some geometrical relations in dislocated crystals, Acta Metall., Volume 1 (1953) no. 2, pp. 153-162 | DOI
[18] Allgemeine kontinuumstheorie der versetzungen und eigenspannungen, Arch. Ration. Mech. Anal., Volume 4 (1959) no. 1, 273 | DOI
[19] Strain gradient plasticity, Adv. Appl. Mech., Volume 33 (1997), pp. 295-361
[20] Lattice incompatibility and a gradient theory of crystal plasticity, J. Mech. Phys. Solids, Volume 48 (2000) no. 8, pp. 1565-1595 | DOI
[21] A model of crystal plasticity based on the theory of continuously distributed dislocations, J. Mech. Phys. Solids, Volume 49 (2001) no. 4, pp. 761-784 | DOI
[22] An elasto-plastic theory of dislocation and disclination fields, Int. J. Solids Struct., Volume 48 (2011) no. 25–26, pp. 3499-3509 | DOI
[23] Density-based crystal plasticity: From the discrete to the continuum, Phys. Rev. B, Volume 93 (2016) no. 21, 214111
[24] Dislocation microstructures and plastic flow: A 3D simulation, Solid State Phenomena, Volume 23, Trans. Tech. Publ., 1992, pp. 455-472 | DOI
[25] Dislocations, Mesoscale Simulations and Plastic Flow, 5, Oxford University Press, 2013 | DOI
[26] Molecular dynamics simulation of screw dislocations interacting with interstitial frank loops in a model FCC crystal, Acta Mater., Volume 52 (2004) no. 3, pp. 607-614 | DOI
[27] Probing the limits of metal plasticity with molecular dynamics simulations, Nature, Volume 550 (2017) no. 7677, pp. 492-495 | DOI
[28] Simulation of dislocation patterns in multislip, Scr. Mater., Volume 47 (2002) no. 10, pp. 689-695 | DOI
[29] Collective behaviour of dislocations in plasticity, Dislocations in Solids, Volume 11 (2002), pp. 101-192 | DOI
[30] Fractal dislocation patterning during plastic deformation, Phys. Rev. Lett., Volume 81 (1998) no. 12, pp. 2470-2473 | DOI
[31] Low energy dislocation structures produced by cyclic deformation, Mater. Sci. Eng., Volume 81 (1986), pp. 433-450 | DOI
[32] Scaling laws for dislocation microstructures in monotonic and cyclic deformation of fcc metals, Prog. Mater. Sci., Volume 56 (2011) no. 6, pp. 725-784 | DOI
[33] Ice: The paradigm of wild plasticity, Philos. Trans. R. Soc. Lond. A, Volume 377 (2019) no. 2146, 20180260
[34] Fundamental differences in mechanical behavior between two types of crystals at the nanoscale, Phys. Rev. Lett., Volume 100 (2008) no. 15, 155502 | DOI
[35] Stochastic nature of plasticity of aluminum micro-pillars, Acta Mater., Volume 56 (2008) no. 8, pp. 1712-1720 | DOI
[36] Dislocation avalanches strain bursts and the problem of plastic forming at the micrometer scale, Science, Volume 318 (2007) no. 5848, pp. 251-254 | DOI
[37] Strategies to approach stabilized plasticity in metals with diminutive volume: A brief review, Crystals, Volume 6 (2016) no. 8, 92
[38] Fluctuation phenomena in crystal plasticity—a continuum model, J. Stat. Mech.: Therory Exp., Volume 2005 (2005) no. 08, P08004
[39] Statistical aspects of microplasticity: Experiments, discrete dislocation simulations and stochastic continuum models, J. Mech. Behav. Mater., Volume 22 (2013) no. 3–4, pp. 89-100 | DOI
[40] Computational modelling of mesoscale dislocation patterning and plastic deformation of single crystals, Modell. Simul. Mater. Sci. Eng., Volume 23 (2015) no. 5, 055009
[42] Statistics of the catastrophic slip events in the Portevin–Le Châtelier effect, Phys. Rev. Lett., Volume 74 (1995) no. 23, p. 4758 | DOI
[43] Crossover from chaotic to self-organized critical dynamics in jerky flow of single crystals, Phys. Rev. E, Volume 60 (1999) no. 5, pp. 5455-5462
[44] The hidden order behind jerky flow, Acta Mater., Volume 50 (2002) no. 11, pp. 2813-2824 | DOI
[45] Current theoretical approaches to collective behavior of dislocations, Phys. Rep., Volume 440 (2007) no. 4–6, pp. 113-259 | DOI
[46] Thermalization of a driven bi-stable FPU chain, Contin. Mech. Thermodyn., Volume 22 (2010) no. 6, pp. 679-698 | DOI
[47] Beyond classical thermodynamics: Dislocation-mediated plasticity, J. Mech. Phys. Solids, Volume 129 (2019), pp. 83-118 | DOI
[48] Thermodynamic theory of dislocation-mediated plasticity, Acta Mater., Volume 58 (2010) no. 10, pp. 3718-3732 | DOI
[49] Statistical thermodynamics of dislocations in solids (2020) (https://arxiv.org/abs/2003.03209)
[50] Avalanches in 2D dislocation systems: Plastic yielding is not depinning, Phys. Rev. Lett., Volume 112 (2014) no. 23, 235501 | DOI
[51] Universality class of nanocrystal plasticity: Localization and self-organization in discrete dislocation dynamics, Phys. Rev. Lett., Volume 122 (2019) no. 17, 178001 | DOI
[52] Scale invariance in plastic flow of crystalline solids, Adv. Phys., Volume 55 (2006) no. 1–2, pp. 185-245 | DOI
[53] Plasticity of micrometer-scale single crystals in compression, Annu. Rev. Mater. Res., Volume 39 (2009), pp. 361-386 | DOI
[54] Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect, Prog. Mater. Sci., Volume 56 (2011) no. 6, pp. 654-724 | DOI
[55] Avalanches and plastic flow in crystal plasticity: An overview, Model. Simul. Mat. Sci. Eng., Volume 26 (2017) no. 1, 013001 | DOI
[56] Micro-plasticity and recent insights from intermittent and small-scale plasticity, Acta Mater., Volume 143 (2018), pp. 338-363 | DOI
[57] Spatio-temporal plastic instabilities at the nano/micro scale, J. Micromech. Mol. Phys., Volume 3 (2018) no. 03n04, 1840006
[58] et al. Deformation of crystals: Connections with statistical physics, Annu. Rev. Mater. Res., Volume 47 (2017), pp. 217-246 | DOI
[59] Review on superior strength and enhanced ductility of metallic nanomaterials, Prog. Mater. Sci., Volume 94 (2018), pp. 462-540 | DOI
[60] Overview on micro-and nanomechanical testing: New insights in interface plasticity and fracture at small length scales, Acta Mater., Volume 142 (2018), pp. 248-282 | DOI
[61] Statistical theory of dislocation, Mesoscale Models (S. Mesarovic; S. Forest; H. Zbib, eds.) (CISM International Centre for Mechanical Sciences (Courses and Lectures)), Volume 587, Springer, 2019, pp. 87-139 | DOI
[62] From mild to wild fluctuations in crystal plasticity, Phys. Rev. Lett., Volume 114 (2015) no. 10, 105504 | DOI
[63] Quasi-periodic events in crystal plasticity and the self-organized avalanche oscillator, Nature, Volume 490 (2012) no. 7421, pp. 517-521 | DOI
[64] Taming intermittent plasticity at small scales, Acta Mater., Volume 128 (2017), pp. 351-364 | DOI
[65] Slip avalanches in crystal plasticity: Scaling of the avalanche cut-off, J. Stat. Mech.: Theory Exp., Volume 2007 (2007) no. 04, P04013
[66] Plastic intermittency during cyclic loading: From dislocation patterning to microcrack initiation, Phys. Rev. Mater., Volume 3 (2019) no. 2, 023603
[67] Variety of scaling behaviors in nanocrystalline plasticity, Phys. Rev. E, Volume 102 (2020), 023006
[68] Plate-like precipitate effects on plasticity of Al–Cu alloys at micrometer to sub-micrometer scales, Mater. Design, Volume 188 (2020), 108444
[69] Dislocation dynamics during cyclic loading in copper single crystal, Materialia, Volume 8 (2019), 100501
[70] Minimal integer automaton behind crystal plasticity, Phys. Rev. Lett., Volume 106 (2011) no. 17, 175503 | DOI
[71] Millimicroplastic burst phenomena in zinc monocrystals, Acta Metall., Volume 21 (1973) no. 7, pp. 975-989 | DOI
[72] Microplasticity detected by an acoustic technique, Can. J. Phys., Volume 45 (1967) no. 2, pp. 1147-1159 | DOI
[73] Relationship between acoustic emission and dislocation kinetics in crystalline solids, J. Appl. Phys., Volume 42 (1971) no. 12, pp. 4685-4697 | DOI
[74] Dislocation attenuation and acoustic emission during deformation in copper single crystals, Cryst. Lattice Defects, Volume 4 (1973) no. 1, pp. 57-64
[75] The acoustic emission from moving dislocations in aluminium, Phys. Status Solidi (a), Volume 38 (1976) no. 2, pp. 569-576 | DOI
[76] Un modèle de sources ďémission acoustique pour l’analyse de l’émission continue et de l’émission par salves I. Analyse théorique, Philos. Mag. A, Volume 47 (1983) no. 5, pp. 671-687
[77] Rate-controlling processes in the creep of polycrystalline ice, J. Phys. Chem., Volume 87 (1983) no. 21, pp. 4066-4074 | DOI
[78] et al. Universal quake statistics: From compressed nanocrystals to earthquakes, Sci. Rep., Volume 5 (2015), 16493
[79] Crackling noise in disordered materials, Annu. Rev. Condens. Matter Phys., Volume 5 (2014), pp. 233-254 | DOI
[80] Dislocation avalanche correlations, Mater. Sci. Eng. A, Volume 387 (2004), pp. 292-296 | DOI
[81] Three-dimensional mapping of dislocation avalanches: Clustering and space/time coupling, Science, Volume 299 (2003) no. 5603, pp. 89-92 | DOI
[82] On the critical character of plasticity in metallic single crystals, Mater. Sci. Eng. A, Volume 424 (2006) no. 1-2, pp. 190-195 | DOI
[83] Evidence for universal intermittent crystal plasticity from acoustic emission and high-resolution extensometry experiments, Phys. Rev. B, Volume 76 (2007) no. 22, 224110 | DOI
[84] Fine structures of acoustic emission spectra: How to separate dislocation movements and entanglements in 316L stainless steel, Appl. Phys. Lett., Volume 117 (2020) no. 26, 262901 | DOI
[85] Breakdown of avalanche critical behaviour in polycrystalline plasticity, Nat. Mater., Volume 4 (2005) no. 6, pp. 465-469 | DOI
[86] Barrier effect of grain boundaries on the avalanche propagation of polycrystalline plasticity, Phys. Rev. B, Volume 94 (2016) no. 14, 140102 | DOI
[87] Dislocation avalanches: Role of temperature, grain size and strain hardening, Acta Mater., Volume 53 (2005) no. 16, pp. 4463-4471 | DOI
[88] A maximum in the strength of nanocrystalline copper, Science, Volume 301 (2003) no. 5638, pp. 1357-1359 | DOI
[89] Hall–Petch law revisited in terms of collective dislocation dynamics, Phys. Rev. Lett., Volume 97 (2006) no. 7, 075504 | DOI
[90] Sample dimensions influence strength and crystal plasticity, Science, Volume 305 (2004) no. 5686, pp. 986-989 | DOI
[91] Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition, Nano Lett., Volume 9 (2009) no. 8, pp. 3048-3052 | DOI
[92] Nickel nanoparticles set a new record of strength, Nat. Commun., Volume 9 (2018) no. 1, 4102
[93] Nucleation-controlled plasticity of metallic nanowires and nanoparticles, Adv. Mater., Volume 30 (2018) no. 41, 1706710
[94] The scaling exponent in the size effect of small scale plastic deformation, Int. J. Plast., Volume 40 (2013), pp. 152-162 | DOI
[95] Correlation between critical temperature and strength of small-scale bcc pillars, Phys. Rev. Lett., Volume 103 (2009) no. 10, 105501 | DOI
[96] Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples, Scr. Mater., Volume 56 (2007) no. 4, pp. 313-316 | DOI
[97] Nanoscale gold pillars strengthened through dislocation starvation, Phys. Rev. B, Volume 73 (2006) no. 24, 245410 | DOI
[98] Strain bursts in plastically deforming molybdenum micro- and nanopillars, Philos. Mag. A, Volume 88 (2008) no. 30–32, pp. 3861-3874 | DOI
[99] Glassy features of crystal plasticity, Phys. Rev. B, Volume 94 (2016) no. 6, 064101 | DOI
[100] Small-scale plasticity: Insights into dislocation avalanche velocities, Scr. Mater., Volume 69 (2013) no. 8, pp. 586-589 | DOI
[101] Power-law distributions in empirical data, SIAM Rev., Volume 51 (2009) no. 4, pp. 661-703
[102] Dragon-kings: Mechanisms, statistical methods and empirical evidence, Eur. Phys. J.: Spec. Top., Volume 205 (2012) no. 1 | DOI
[103] Size effect in compression of single-crystal gold microparticles, Acta Mater., Volume 59 (2011) no. 13, pp. 5202-5215 | DOI
[104] Ductile versus brittle behaviour of crystals, Philos. Mag. A, Volume 29 (1974) no. 1, pp. 73-97 | DOI
[105] Controlling factors for the brittle-to-ductile transition in tungsten single crystals, Science, Volume 282 (1998) no. 5392, pp. 1293-1295 | DOI
[106] How does radiation damage materials?, Science, Volume 318 (2007) no. 5852, pp. 923-924 | DOI
[107] FIB damage of Cu and possible consequences for miniaturized mechanical tests, Mater. Sci. Eng. A, Volume 459 (2007) no. 1–2, pp. 262-272 | DOI
[108] FIB-induced dislocations in Al submicron pillars: Annihilation by thermal annealing and effects on deformation behavior, Acta Mater., Volume 110 (2016), pp. 283-294 | DOI
[109] Seismology of plastic deformation, Scr. Mater., Volume 54 (2006) no. 5, pp. 747-751 | DOI
[110] Ab initio modeling of dislocation core properties in metals and semiconductors, Acta Mater., Volume 124 (2017), pp. 633-659 | DOI
[111] Temperature-dependent size effects on the strength of Ta and W micropillars, Acta Mater., Volume 103 (2016), pp. 483-494 | DOI
[112] The role of slow screw dislocations in controlling fast strain avalanche dynamics in body-centered cubic metals, Int. J. Plast., Volume 124 (2020), pp. 117-132 | DOI
[113] Avalanche statistics and the intermittent-to-smooth transition in microplasticity, Phys. Rev. Mater., Volume 3 (2019) no. 8, 080601
[114] Temperature insensitivity of the flow stress in body-centered cubic micropillar crystals, Acta Mater., Volume 108 (2016), pp. 128-137 | DOI
[115] Deformation substructure in body-centered cubic metals, Electron Microscopy and Strength of Crystals, Interscience, New York, 1963, pp. 231-300
[116] Scaling properties of dislocation simulations in the similitude regime, Model. Simul. Mat. Sci. Eng., Volume 22 (2014) no. 6, 065012 | DOI
[117] The key role of impurities in ancient Damascus steel blades, JOM, Volume 50 (1998) no. 9, pp. 58-64 | DOI
[118] Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures, Science, Volume 346 (2014) no. 6215, pp. 1352-1356 | DOI
[119] Size effect on the deformation behavior of duralumin micropillars, Scr. Mater., Volume 68 (2013) no. 11, pp. 861-864 | DOI
[120] Strength effects in micropillars of a dispersion strengthened superalloy, Adv. Eng. Mater., Volume 12 (2010) no. 5, pp. 385-388 | DOI
[121] Rotatable precipitates change the scale-free to scale dependent statistics in compressed Ti nano-pillars, Sci. Rep., Volume 9 (2019) no. 1, 3778
[122] Atomic-scale modeling of dislocations and related properties in the hexagonal-close-packed metals, Metall. Mater. Trans. A, Volume 33 (2002) no. 3, pp. 721-733 | DOI
[123] Dislocation locking versus easy glide in titanium and zirconium, Nat. Mater., Volume 14 (2015) no. 9, pp. 931-936 | DOI
[124] Unravelling the physics of size-dependent dislocation-mediated plasticity, Nat. Commun., Volume 6 (2015) no. 1, 5926
[125] Strain hardening and dislocation avalanches in micrometer-sized dimensions, Acta Mater., Volume 91 (2015), pp. 255-266 | DOI
[126] The effect of defects on strength of gold microparticles, Scr. Mater., Volume 171 (2019), pp. 83-86 | DOI
[127] On the critical nature of plastic flow: One and two dimensional models, Int. J. Eng. Sci., Volume 59 (2012), pp. 219-254 | DOI
[128] Landau-type theory of planar crystal plasticity, Phys. Rev. Lett., Volume 123 (2019) no. 20, 205501 | DOI
[129] Thermodynamics of rate-independent plasticity, J. Mech. Phys. Solids, Volume 53 (2005) no. 3, pp. 655-679 | DOI
[130] Elastic consequences of a single plastic event: A step towards the microscopic modeling of the flow of yield stress fluids, Eur. Phys. J. E, Volume 15 (2004) no. 4, pp. 371-381
[131] From depinning transition to plastic yielding of amorphous media: A soft-modes perspective, Phys. Rev. E, Volume 93 (2016) no. 6, 063005
[132] Random critical point separates brittle and ductile yielding transitions in amorphous materials, Proc. Natl Acad. Sci. USA, Volume 115 (2018) no. 26, pp. 6656-6661 | DOI
[133] Mean-field avalanches in jammed spheres, Phys. Rev. E, Volume 95 (2017) no. 2, 022139
[134] Micromechanical model for deformation in solids with universal predictions for stress–strain curves and slip avalanches, Phys. Rev. Lett., Volume 102 (2009) no. 17, 175501 | DOI
[135] Elastoplastic description of sudden failure in athermal amorphous materials during quasistatic loading, Phys. Rev. E, Volume 98 (2018) no. 4, 040901
[136] Fatigue of Materials, Cambridge University Press, 1998 | DOI
[137] Hysteresis, avalanches, and disorder-induced critical scaling: A renormalization-group approach, Phys. Rev. B, Volume 53 (1996) no. 22, pp. 14872-14905 | DOI
[138] Rigidity-controlled crossover: From spinodal to critical failure, Phys. Rev. Lett., Volume 124 (2020) no. 1, 015501
[139] The role of stationarity in magnetic crackling noise, J. Stat. Mech.: Theory Exp., Volume 2006 (2006) no. 01, P01002
[140] Role of fluctuations in the yielding transition of two-dimensional glasses, Phys. Rev. Res., Volume 2 (2020) no. 2, 023203 | DOI
[141] The role of annealing in determining the yielding behavior of glasses under cyclic shear deformation (2019) (https://arxiv.org/abs/1911.12957)
[142] Large deviations of glassy effective potentials, J. Phys. A: Math. Theor., Volume 53 (2020), 485002 | DOI
[143] Rheology of athermal amorphous solids: Revisiting simplified scenarios and the concept of mechanical noise temperature, Europhys. Lett., Volume 107 (2014) no. 4, 44003 | DOI
[144] Universality beyond power laws and the average avalanche shape, Nat. Phys., Volume 7 (2011) no. 4, pp. 316-320 | DOI
[145] Shapes and velocity relaxation of dislocation avalanches in Au and Nb microcrystals, Acta Mater., Volume 152 (2018), pp. 86-95 | DOI
[146] Sample-size effects in the yield behavior of nanocrystalline nickel, Acta Mater., Volume 56 (2008) no. 3, pp. 511-517 | DOI
[147] The stress statistics of the first pop-in or discrete plastic event in crystal plasticity, J. Appl. Phys., Volume 120 (2016) no. 22, 225101 | DOI
[148] (Finite) statistical size effects on compressive strength, Proc. Natl Acad. Sci. USA, Volume 111 (2014) no. 17, pp. 6231-6236 | DOI
Cité par Sources :
Commentaires - Politique