Comptes Rendus
Discontinuous yielding of pristine micro-crystals
Comptes Rendus. Physique, Volume 22 (2021) no. S3, pp. 201-248.

We study the mechanical response of a dislocation-free 2D crystal under homogenous shear using a new mesoscopic approach to crystal plasticity, a Landau-type theory, accounting for the global invariance of the energy in the space of strain tensors while operating with an infinite number of equivalent energy wells. The advantage of this approach is that it eliminates arbitrariness in dealing with topological transitions involved, for instance, in nucleation and annihilation of dislocations. We use discontinuous yielding of pristine micro-crystals as a benchmark problem for the new theory and show that the nature of the catastrophic instability, which in this setting inevitably follows the standard affine response, depends not only on lattice symmetry but also on the orientation of the crystal in the loading device. The ensuing dislocation avalanche involves cooperative dislocation nucleation, resulting in the formation of complex microstructures controlled by a nontrivial self-induced coupling between different plastic mechanisms.

Première publication :
Publié le :
DOI : 10.5802/crphys.77
Mots clés : Plasticity, Dislocations, Landau theory, Nucleation, Pattern formation, Brittleness
Oguz Umut Salman 1 ; Roberta Baggio 1 ; Brigitte Bacroix 1 ; Giovanni Zanzotto 2 ; Nikolai Gorbushin 3 ; Lev Truskinovsky 3

1 CNRS, LSPM UPR3407, Université Sorbonne Paris Nord, Villetaneuse, 93430, France
2 DPG, Université di Padova, Via Venezia 8, 35131 Padova, Italy
3 PMMH, CNRS-UMR 7636, ESPCI PSL, F-75005 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2021__22_S3_201_0,
     author = {Oguz Umut Salman and Roberta Baggio and Brigitte Bacroix and Giovanni Zanzotto and Nikolai Gorbushin and Lev Truskinovsky},
     title = {Discontinuous yielding of pristine micro-crystals},
     journal = {Comptes Rendus. Physique},
     pages = {201--248},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {S3},
     year = {2021},
     doi = {10.5802/crphys.77},
     language = {en},
}
TY  - JOUR
AU  - Oguz Umut Salman
AU  - Roberta Baggio
AU  - Brigitte Bacroix
AU  - Giovanni Zanzotto
AU  - Nikolai Gorbushin
AU  - Lev Truskinovsky
TI  - Discontinuous yielding of pristine micro-crystals
JO  - Comptes Rendus. Physique
PY  - 2021
SP  - 201
EP  - 248
VL  - 22
IS  - S3
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.77
LA  - en
ID  - CRPHYS_2021__22_S3_201_0
ER  - 
%0 Journal Article
%A Oguz Umut Salman
%A Roberta Baggio
%A Brigitte Bacroix
%A Giovanni Zanzotto
%A Nikolai Gorbushin
%A Lev Truskinovsky
%T Discontinuous yielding of pristine micro-crystals
%J Comptes Rendus. Physique
%D 2021
%P 201-248
%V 22
%N S3
%I Académie des sciences, Paris
%R 10.5802/crphys.77
%G en
%F CRPHYS_2021__22_S3_201_0
Oguz Umut Salman; Roberta Baggio; Brigitte Bacroix; Giovanni Zanzotto; Nikolai Gorbushin; Lev Truskinovsky. Discontinuous yielding of pristine micro-crystals. Comptes Rendus. Physique, Volume 22 (2021) no. S3, pp. 201-248. doi : 10.5802/crphys.77. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.77/

[1] S.-W. Lee; S. M. Han; W. D. Nix Uniaxial compression of fcc Au nanopillars on an MgO substrate: The effects of prestraining and annealing, Acta Mater., Volume 57 (2009) no. 15, pp. 4404-4415 | DOI

[2] R. Li; H. Kang; Z. Chen; G. Fan; C. Zou; W. Wang; S. Zhang; Y. Lu et al. A promising structure for fabricating high strength and high electrical conductivity copper alloys, Sci. Rep., Volume 6 (2016), 20799

[3] K. Lu Stabilizing nanostructures in metals using grain and twin boundary architectures, Nat. Rev. Mater., Volume 1 (2016) no. 5, 16019

[4] T. A. Schaedler; A. J. Jacobsen; A. Torrents; A. E. Sorensen; J. Lian; J. R. Greer; L. Valdevit; W. B. Carter Ultralight metallic microlattices, Science, Volume 334 (2011) no. 6058, pp. 962-965 | DOI

[5] D. Mordehai; S.-W. Lee; B. Backes; D. J. Srolovitz; W. D. Nix; E. Rabkin Size effect in compression of single-crystal gold microparticles, Acta Mater., Volume 13 (2011) no. 59, pp. 5202-5215 | DOI

[6] R. Maaß; L. Meza; B. Gan; S. Tin; J. R. Greer Ultrahigh strength of dislocation-free Ni 3 Al nanocubes, Small, Volume 8 (2012) no. 12, pp. 1869-1875 | DOI

[7] W.-Z. Han; L. Huang; S. Ogata; H. Kimizuka; Z.-C. Yang; C. Weinberger; Q.-J. Li; B.-Y. Liu et al. From “smaller is stronger” to “size-independent strength plateau”: Towards measuring the ideal strength of iron, Adv. Mater., Volume 27 (2015) no. 22, pp. 3385-3390 | DOI

[8] S. Papanikolaou; Y. Cui; N. Ghoniem Avalanches and plastic flow in crystal plasticity: An overview, Model. Simul. Mater. Sci. Eng., Volume 26 (2017) no. 1, 013001 | DOI

[9] R. Maaß; P. M. Derlet Micro-plasticity and recent insights from intermittent and small-scale plasticity, Acta Mater., Volume 143 (2018), pp. 338-363 | DOI

[10] W. D. Nix; H. Gao Indentation size effects in crystalline materials: A law for strain gradient plasticity, J. Mech. Phys. Solids, Volume 46 (1998) no. 3, pp. 411-425 | DOI | Zbl

[11] M. D. Uchic; D. M. Dimiduk; J. N. Florando; W. D. Nix Sample dimensions influence strength and crystal plasticity, Science, Volume 305 (2004) no. 5686, pp. 986-989 | DOI

[12] J. R. Greer; W. C. Oliver; W. D. Nix Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients, Acta Mater., Volume 53 (2005) no. 6, pp. 1821-1830 | DOI

[13] D. M. Dimiduk; C. Woodward; R. Lesar; M. D. Uchic Scale-free intermittent flow in crystal plasticity, Science, Volume 312 (2006) no. 5777, pp. 1188-1190 | DOI

[14] H. Bei; S. Shim; G. M. Pharr; E. P. George Effects of pre-strain on the compressive stress–strain response of Mo-alloy single-crystal micropillars, Acta Mater., Volume 56 (2008) no. 17, pp. 4762-4770 | DOI

[15] D. Chrobak; N. Tymiak; A. Beaber; O. Ugurlu; W. W. Gerberich; R. Nowak Deconfinement leads to changes in the nanoscale plasticity of silicon, Nat. Nanotechnol., Volume 6 (2011) no. 8, pp. 480-484 | DOI

[16] Z.-J. Wang; Z.-W. Shan; J. Li; J. Sun; E. Ma Pristine-to-pristine regime of plastic deformation in submicron-sized single crystal gold particles, Acta Mater., Volume 60 (2012) no. 3, pp. 1368-1377 | DOI

[17] Y. Cui; G. Po; N. Ghoniem Influence of loading control on strain bursts and dislocation avalanches at the nanometer and micrometer scale, Phys. Rev. B, Volume 95 (2017) no. 6, 064103

[18] F. F. Csikor; C. Motz; D. Weygand; M. Zaiser; S. Zapperi Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale, Science, Volume 318 (2007) no. 5848, pp. 251-254 | DOI

[19] A. A. Benzerga Micro-pillar plasticity: 2.5D mesoscopic simulations, J. Mech. Phys. Solids, Volume 57 (2009) no. 9, pp. 1459-1469 | DOI | Zbl

[20] M. D. Uchic; P. A. Shade; D. M. Dimiduk Plasticity of micrometer-scale single crystals in compression, Annu. Rev. Mater. Res., Volume 39 (2009) no. 1, pp. 361-386 | DOI

[21] A. S. Argon Strain avalanches in plasticity, Philos. Mag., Volume 93 (2013) no. 28–30, pp. 3795-3808 | DOI

[22] P. Zhang; O. U. Salman; J.-Y. Zhang; G. Liu; J. Weiss; L. Truskinovsky; J. Sun Taming intermittent plasticity at small scales, Acta Mater., Volume 128 (2017), pp. 351-364 | DOI

[23] J. R. Greer; J. T. M. De Hosson Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect, Prog. Mater. Sci., Volume 56 (2011) no. 6, pp. 654-724 | DOI

[24] S. S. Brenner Tensile strength of whiskers, J. Appl. Phys., Volume 27 (1956) no. 12, pp. 1484-1491 | DOI

[25] S. S. Brenner Growth and properties of “whiskers”, Science, Volume 128 (1958) no. 3324, pp. 569-575

[26] A. Sharma; J. Hickman; N. Gazit; E. Rabkin; Y. Mishin Nickel nanoparticles set a new record of strength, Nat. Commun., Volume 9 (2018) no. 1, 4102 | DOI

[27] D. Mordehai; O. David; R. Kositski Nucleation-controlled plasticity of metallic nanowires and nanoparticles, Adv. Mater., Volume 30 (2018) no. 41, 1706710 | DOI

[28] E. T. Lilleodden; W. D. Nix Microstructural length-scale effects in the nanoindentation behavior of thin gold films, Acta Mater., Volume 54 (2006) no. 6, pp. 1583-1593 | DOI

[29] S. G. Corcoran; R. J. Colton; E. T. Lilleodden; W. W. Gerberich Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals, Phys. Rev. B, Volume 55 (1997) no. 24, p. R16057-R16060 | DOI

[30] R. Maaß; P. M. Derlet; J. R. Greer Small-scale plasticity: Insights into dislocation avalanche velocities, Scr. Mater., Volume 69 (2013) no. 8, pp. 586-589 | DOI

[31] S. Lee; A. Vaid; J. Im; B. Kim; A. Prakash; J. Guénolé; D. Kiener; E. Bitzek; S. H. Oh In-situ observation of the initiation of plasticity by nucleation of prismatic dislocation loops, Nat. Commun., Volume 11 (2020) no. 1, 2367

[32] Y. He; L. Zhong; F. Fan; C. Wang; T. Zhu; S. X. Mao In situ observation of shear-driven amorphization in silicon crystals, Nat. Nanotechnol., Volume 11 (2016) no. 10, pp. 866-871 | DOI

[33] A. Merabet; M. Texier; C. Tromas; S. Brochard; L. Pizzagalli; L. Thilly et al. Low-temperature intrinsic plasticity in silicon at small scales, Acta Mater., Volume 161 (2018), pp. 54-60 | DOI

[34] C. Chisholm; H. Bei; M. B. Lowry; J. Oh; S. A. Syed Asif; O. L. Warren; Z. W. Shan; E. P. George; A. M. Minor Dislocation starvation and exhaustion hardening in Mo alloy nanofibers, Acta Mater., Volume 60 (2012) no. 5, pp. 2258-2264 | DOI

[35] G. Ziegenhain; H. M. Urbassek; A. Hartmaier Influence of crystal anisotropy on elastic deformation and onset of plasticity in nanoindentation: A simulational study, J. Appl. Phys., Volume 107 (2010) no. 6, 061807 | DOI

[36] M. Bagheripoor; R. Klassen Effect of crystal orientation on the size effects of nano-scale fcc metals, Mater. Sci. Technol., Volume 36 (2020) no. 17, pp. 1829-1850 | DOI

[37] M. Bagheripoor; R. Klassen The effect of crystal anisotropy and pre-existing defects on the incipient plasticity of FCC single crystals during nanoindentation, Mech. Mater., Volume 143 (2020), 103311 | DOI

[38] O. U. Salman; L. Truskinovsky Minimal integer automaton behind crystal plasticity, Phys. Rev. Lett., Volume 106 (2011) no. 17, 175503 | DOI

[39] O. U. Salman; L. Truskinovsky On the critical nature of plastic flow: One and two dimensional models, Int. J. Eng. Sci., Volume 59 (2012), pp. 219-254 | DOI

[40] R. Baggio; E. Arbib; P. Biscari; S. Conti; L. Truskinovsky; G. Zanzotto; O. U. Salman Landau-type theory of planar crystal plasticity, Phys. Rev. Lett., Volume 123 (2019) no. 20, 205501 | DOI

[41] W. T. Read Jr; H. Brooks Dislocations in crystals, Phys. Today, Volume 8 (1955) no. 2, pp. 17-18 | DOI

[42] A. H. Cottrell Commentary. A brief view of work hardening, Dislocations in Solids (F. R. N. Nabarro; M. S. Duesbery, eds.), Volume 11, Elsevier, Amsterdam, Netherlands, 2002, p. vii-xvii | DOI

[43] L. Kubin Dislocations, Mesoscale Simulations and Plastic Flow, 5, Oxford University Press, Oxford, UK, 2013 | DOI

[44] K. Differt; U. Esmann; H. Mughrabi A model of extrusions and intrusions in fatigued metals II. Surface roughening by random irreversible slip, Philos. Mag. A, Volume 54 (1986) no. 2, pp. 237-258 | DOI

[45] S. D. Antolovich; R. W. Armstrong Plastic strain localization in metals: Origins and consequences, Prog. Mater. Sci., Volume 59 (2014), pp. 1-160 | DOI

[46] J. Weiss; W. Ben Rhouma; S. Deschanel; L. Truskinovsky Plastic intermittency during cyclic loading: From dislocation patterning to microcrack initiation, Phys. Rev. Mater., Volume 3 (2019) no. 2, 023603

[47] R. Madec; B. Devincre; L. P. Kubin From dislocation junctions to forest hardening, Phys. Rev. Lett., Volume 89 (2002) no. 25, 255508 | DOI

[48] J. P. Sethna; M. K. Bierbaum; K. A. Dahmen; C. P. Goodrich et al. Deformation of crystals: Connections with statistical physics, Annu. Rev. Mater. Res., Volume 47 (2017) no. 1, pp. 217-246 | DOI

[49] D. Gómez-García; B. Devincre; L. P. Kubin Dislocation patterns and the similitude principle: 2.5D mesoscale simulations, Phys. Rev. Lett., Volume 96 (2006) no. 12, 125503 | DOI

[50] Y. S. Chen; W. Choi; S. Papanikolaou; J. P. Sethna Bending crystals: Emergence of fractal dislocation structures, Phys. Rev. Lett., Volume 105 (2010) no. 10, 105501

[51] P. Li; S. X. Li; Z. G. Wang; Z. F. Zhang Fundamental factors on formation mechanism of dislocation arrangements in cyclically deformed fcc single crystals, Prog. Mater. Sci., Volume 56 (2011) no. 3, pp. 328-377 | DOI

[52] T. Takeuchi Work hardening of copper single crystals with multiple glide orientations, Trans. Jpn. Inst. Met., Volume 16 (1975) no. 10, pp. 629-640 | DOI

[53] C. S. Han; H. Gao; Y. Huang; W. D. Nix Mechanism-based strain gradient crystal plasticity—I. Theory, J. Mech. Phys. Solids, Volume 53 (2005) no. 5, pp. 1188-1203 | DOI | MR | Zbl

[54] M. E. Gurtin; L. Anand Thermodynamics applied to gradient theories involving the accumulated plastic strain: The theories of Aifantis and Fleck and Hutchinson and their generalization, J. Mech. Phys. Solids, Volume 57 (2009) no. 3, pp. 405-421 | DOI | MR | Zbl

[55] F. Roters; P. Eisenlohr; L. Hantcherli; D. D. Tjahjanto; T. R. Bieler; D. Raabe Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications, Acta Mater., Volume 58 (2010) no. 4, pp. 1152-1211 | DOI

[56] C. Miehe; J. Schotte Crystal plasticity and evolution of polycrystalline microstructure, Encyclopedia of Computational Mechanics (E. Stein; R. de Borst; T. J. R. Hughes, eds.), John Wiley & Sons, Chichester, UK, 2018, pp. 1-23

[57] S. Forest; J. R. Mayeur; D. L. McDowell Micromorphic Crystal Plasticity, Springer International Publishing, Cham, 2019, pp. 643-686

[58] O. U. Salman; I. R. Ionescu Tempering the mechanical response of FCC micro-pillars: An Eulerian plasticity approach, Mech. Res. Commun. (2021), 103665 | DOI

[59] J. Weiss; W. B. Rhouma; T. Richeton; S. Dechanel; F. Louchet; L. Truskinovsky From mild to wild fluctuations in crystal plasticity, Phys. Rev. Lett., Volume 114 (2015) no. 10, 105504 | DOI

[60] M. Zaiser; P. Moretti; H. Chu Stochastic crystal plasticity models with internal variables: Application to slip channel formation in irradiated metals, Adv. Eng. Mater., Volume 22 (2019) no. 9, 1901208 | DOI

[61] P. Franciosi The concepts of latent hardening and strain hardening in metallic single crystals, Acta Metall., Volume 33 (1985) no. 9, pp. 1601-1612 | DOI

[62] M. Zhang; J. Zhang; D. L. McDowell Microstructure-based crystal plasticity modeling of cyclic deformation of Ti–6Al–4V, Int. J. Plast., Volume 23 (2007) no. 8, pp. 1328-1348 | DOI | Zbl

[63] S. Forest; K. Ammar; B. Appolaire; V. d. Rancourt; S. Wulfinghoff Generalized continua and phase-field models: Application to crystal plasticity, Mesoscale Models: From Micro-Physics to Macro-Interpretation (S. Mesarovic; S. Forest; H. Zbib, eds.), Springer International Publishing, Cham, 2019, pp. 299-344 | DOI

[64] A. Marano; L. Gélébart; S. Forest Intragranular localization induced by softening crystal plasticity: Analysis of slip and kink bands localization modes from high resolution FFT-simulations results, Acta Mater., Volume 175 (2019), pp. 262-275 | DOI

[65] Y. Lu; J. Song; J. Y. Huang; J. Lou Surface dislocation nucleation mediated deformation and ultrahigh strength in sub-10-nm gold nanowires, Nano Res., Volume 4 (2011) no. 12, pp. 1261-1267 | DOI

[66] I. Issa; J. Amodeo; J. Réthoré; L. Joly-Pottuz; C. Esnouf; J. Morthomas; M. Perez; J. Chevalier; K. Masenelli-Varlot In situ investigation of MgO nanocube deformation at room temperature, Acta Mater., Volume 86 (2015), pp. 295-304 | DOI

[67] Y. Hu; L. Shu; Q. Yang; W. Guo; P. K. Liaw; K. A. Dahmen; J.-M. Zuo Dislocation avalanche mechanism in slowly compressed high entropy alloy nanopillars, Commun. Phys., Volume 1 (2018) no. 1, pp. 1-8

[68] P. Zhang; O. U. Salman; J. Weiss; L. Truskinovsky Variety of scaling behaviors in nanocrystalline plasticity, Phys. Rev. E, Volume 102 (2020), 023006 | DOI

[69] E. Bittencourt Interpretation of the size effects in micropillar compression by a strain gradient crystal plasticity theory, Int. J. Plast., Volume 116 (2019), pp. 280-296 | DOI

[70] Z. W. Shan; R. K. Mishra; S. A. Syed Asif; O. L. Warren; A. M. Minor Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals, Nat. Mater., Volume 7 (2008) no. 2, pp. 115-119 | DOI

[71] S. I. Rao; D. M. Dimiduk; T. A. Parthasarathy; M. D. Uchic; M. Tang; C. Woodward Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations, Acta Mater., Volume 56 (2008) no. 13, pp. 3245-3259 | DOI

[72] C. R. Weinberger; W. Cai Surface-controlled dislocation multiplication in metal micropillars, Proc. Natl Acad. Sci. USA, Volume 105 (2008) no. 38, pp. 14304-14307 | DOI

[73] M. Bagheripoor; R. Klassen Length scale plasticity: A review from the perspective of dislocation nucleation, Rev. Adv. Mater. Sci., Volume 56 (2018) no. 1, pp. 21-61 | DOI

[74] D. Mordehai; M. Kazakevich; D. J. Srolovitz; E. Rabkin Nanoindentation size effect in single-crystal nanoparticles and thin films: A comparative experimental and simulation study, Acta Mater., Volume 59 (2011) no. 6, pp. 2309-2321 | DOI

[75] I. Plans; A. Carpio; L. L. Bonilla Homogeneous nucleation of dislocations as bifurcations in a periodized discrete elasticity model, Europhys. Lett., Volume 81 (2007) no. 3, 36001 | DOI

[76] R. E. Miller; D. Rodney On the nonlocal nature of dislocation nucleation during nanoindentation, J. Mech. Phys. Solids, Volume 56 (2008) no. 4, pp. 1203-1223 | DOI | Zbl

[77] A. Garg; C. E. Maloney Universal scaling laws for homogeneous dislocation nucleation during nano-indentation, J. Mech. Phys. Solids, Volume 95 (2016), pp. 742-754 | DOI

[78] D. Kiener; A. M. Minor Source-controlled yield and hardening of Cu(100) studied by in situ transmission electron microscopy, Acta Mater., Volume 59 (2011) no. 4, pp. 1328-1337 | DOI

[79] S. H. Oh; M. Legros; D. Kiener; G. Dehm In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal, Nat. Mater., Volume 8 (2009) no. 2, pp. 95-100 | DOI

[80] S.-W. Lee; S. Aubry; W. D. Nix; W. Cai Dislocation junctions and jogs in a free-standing FCC thin film, Model. Simul. Mater. Sci. Eng., Volume 19 (2011) no. 2, 025002

[81] K. S. Ng; A. H. W. Ngan Effects of trapping dislocations within small crystals on their deformation behavior, Acta Mater., Volume 57 (2009) no. 16, pp. 4902-4910 | DOI

[82] M. C. Miguel; A. Vespignani; S. Zapperi; J. Weiss; J. R. Grasso Intermittent dislocation flow in viscoplastic deformation, Nature, Volume 410 (2001) no. 6829, pp. 667-671 | DOI

[83] M. Koslowski; R. Lesar; R. Thomson Avalanches and scaling in plastic deformation, Phys. Rev. Lett., Volume 93 (2004) no. 12, 125502 | DOI

[84] M. D. Uchic; P. A. Shade; D. M. Dimiduk Micro-compression testing of FCC metals: A selected overview of experiments and simulations, J. Miner., Volume 61 (2009) no. 3, pp. 36-41

[85] L. X. Li; Y. Lou; L. B. Yang; D. S. Peng; K. P. Rao Flow stress behavior and deformation characteristics of Ti-3Al-5V-5Mo compressed at elevated temperatures, Mater. Des., Volume 23 (2002) no. 5, pp. 451-457 | DOI

[86] Q. Ruan; M. Yang; W. Liu; A. Godfrey Plastic yielding and tensile strength of near-micrometer grain size pure iron, Mater. Sci. Eng. A, Volume 744 (2019), pp. 764-772 | DOI

[87] L. Truskinovsky; A. Vainchtein The origin of nucleation peak in transformational plasticity, J. Mech. Phys. Solids, Volume 52 (2004) no. 6, pp. 1421-1446 | DOI | MR | Zbl

[88] H. Zheng; A. Cao; C. R. Weinberger; J. Y. Huang; K. Du; J. Wang; Y. Ma; Y. Xia; S. X. Mao Discrete plasticity in sub-10-nm-sized gold crystals, Nat. Commun., Volume 1 (2010) no. 1, 144 | DOI

[89] J. Wang; Y. Wang; W. Cai; J. Li; Z. Zhang; S. X. Mao Discrete shear band plasticity through dislocation activities in body-centered cubic tungsten nanowires, Sci. Rep., Volume 8 (2018) no. 1, p. 4574 | DOI

[90] A. Parakh; S. Lee; K. A. Harkins; M. T. Kiani; D. Doan; M. Kunz; A. Doran et al. Nucleation of dislocations in 3.9 nm nanocrystals at high pressure, Phys. Rev. Lett., Volume 124 (2020) no. 10, 106104 | DOI

[91] S. Xia; A. El-Azab Computational modelling of mesoscale dislocation patterning and plastic deformation of single crystals, Model. Simul. Mater. Sci. Eng., Volume 23 (2015) no. 5, 055009

[92] E. Clouet; D. Caillard; N. Chaari; F. Onimus; D. Rodney Dislocation locking versus easy glide in titanium and zirconium, Nat. Mater., Volume 14 (2015) no. 9, pp. 931-936 | DOI

[93] M. Salvalaglio; A. Voigt; K. R. Elder Closing the gap between atomic-scale lattice deformations and continuum elasticity, NPJ Comput. Mater., Volume 5 (2019) no. 1, 48 | DOI

[94] E. van der Giessen; P. A. Schultz; N. Bertin; V. V. Bulatov; W. Cai; G. Csányi; S. M. Foiles; M. G. D. Geers; C. González; M. Hütter et al. Roadmap on multiscale materials modeling, Model. Simul. Mater. Sci. Eng., Volume 28 (2020) no. 4, 043001

[95] N. Bertin; R. B. Sills; W. Cai Frontiers in the simulation of dislocations, Annu. Rev. Mater. Res., Volume 50 (2020) no. 1, pp. 437-464 | DOI

[96] T. Niiyama; T. Shimokawa Atomistic mechanisms of intermittent plasticity in metals: Dislocation avalanches and defect cluster pinning, Phys. Rev. E, Volume 91 (2015) no. 2, 022401 | DOI

[97] L. A. Zepeda-Ruiz; A. Stukowski; T. Oppelstrup; V. V. Bulatov Probing the limits of metal plasticity with molecular dynamics simulations, Nature, Volume 550 (2017) no. 7677, pp. 492-495 | DOI

[98] M. Salvalaglio; L. Angheluta; Z.-F. Huang; A. Voigt; K. R. Elder; J. Viñals A coarse-grained phase-field crystal model of plastic motion, J. Mech. Phys. Solids, Volume 137 (2020), 103856 | DOI | MR

[99] P. Y. Chan; G. Tsekenis; J. Dantzig; K. A. Dahmen; N. Goldenfeld Plasticity and dislocation dynamics in a phase field crystal model, Phys. Rev. Lett., Volume 105 (2010) no. 1, 015502

[100] A. Finel; D. Rodney Phase field methods and dislocations, Influences of Interface and Dislocation Behavior on Microstructure Evolution, MRS Proceedings (M. Aindow; M. Asta; M. Glazov; D. Medlin; A. Rollet; M. Zaiser, eds.), Volume 652, Cambridge University Press, Cambridge, UK, 2000

[101] M. Koslowski; A. M. Cuitiño; M. Ortiz A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals, J. Mech. Phys. Solids, Volume 50 (2002) no. 12, pp. 2597-2635 | DOI | MR | Zbl

[102] A. Hunter; I. J. Beyerlein; T. C. Germann; M. Koslowski Influence of the stacking fault energy surface on partial dislocations in fcc metals with a three-dimensional phase field dislocations dynamics model, Phys. Rev. B, Volume 84 (2011) no. 14, 144108 | DOI

[103] A. Vattré; B. Devincre; F. Feyel; R. Gatti; S. Groh; O. Jamond; A. Roos Modelling crystal plasticity by 3D dislocation dynamics and the finite element method: The discrete-continuous model revisited, J. Mech. Phys. Solids, Volume 63 (2014), pp. 491-505 | DOI | MR

[104] P. D. Ispánovity; L. Laurson; M. Zaiser; I. Groma; S. Zapperi; M. J. Alava Avalanches in 2D dislocation systems: plastic yielding is not depinning, Phys. Rev. Lett., Volume 112 (2014) no. 23, 235501 | DOI

[105] J. A. El-Awady; H. Fan; A. M. Hussein Advances in discrete dislocation dynamics modeling of size-affected plasticity, Multiscale Materials Modeling for Nanomechanics (C. R. Weinberger; G. J. Tucker, eds.), Springer International Publishing, Cham, 2016, pp. 337-371 | DOI

[106] N. Bertin; S. Aubry; A. Arsenlis; W. Cai GPU-accelerated dislocation dynamics using subcycling time-integration, Model. Simul. Mater. Sci. Eng., Volume 27 (2019) no. 7, 075014 | DOI

[107] S. N. Varadhan; A. J. Beaudoin; A. Acharya; C. Fressengeas Dislocation transport using an explicit Galerkin/least-squares formulation, Model. Simul. Mater. Sci. Eng., Volume 14 (2006) no. 7, pp. 1245-1270 | DOI

[108] T. Hochrainer; S. Sandfeld; M. Zaiser; P. Gumbsch Continuum dislocation dynamics: Towards a physical theory of crystal plasticity, J. Mech. Phys. Solids, Volume 63 (2014), pp. 167-178 | DOI

[109] A. El-Azab; G. Po Continuum dislocation dynamics: Classical theory and contemporary models, Handbook of Materials Modeling: Methods: Theory and Modeling (W. Andreoni; S. Yip, eds.), Springer International Publishing, Cham, 2020, pp. 1583-1607 | DOI

[110] V. B. Shenoy; R. Miller; E. b. Tadmor; D. Rodney; R. Phillips; M. Ortiz An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method, J. Mech. Phys. Solids, Volume 47 (1999) no. 3, pp. 611-642 | DOI | MR | Zbl

[111] R. E. Miller; E. B. Tadmor The quasicontinuum method: Overview, applications and current directions, J. Comput.-Aided Mater. Design, Volume 9 (2002) no. 3, pp. 203-239 | DOI

[112] W. Cia; J. Li; S. Yip 1.09 Molecular Dynamics, Comprehensive Nuclear Materials (R. J. M. Konings, ed.), Elsevier, Waltham, MA, USA, 2012, pp. 249-265

[113] J. A. Zimmerman; C. L. Kelchner; P. A. Klein; J. C. Hamilton; S. M. Foiles Surface step effects on nanoindentation, Phys. Rev. Lett., Volume 87 (2001) no. 16, 165507 | DOI

[114] J. A. Zimmerman; D. J. Bammann; H. Gao Deformation gradients for continuum mechanical analysis of atomistic simulations, Int. J. Solids Struct., Volume 46 (2009) no. 2, pp. 238-253 | DOI | Zbl

[115] L. A. Zepeda-Ruiz; A. Stukowski; T. Oppelstrup; N. Bertin; N. R. Barton; R. Freitas; V. V. Bulatov Atomistic insights into metal hardening, Nat. Mater., Volume 20 (2021) no. 3, pp. 315-320 | DOI

[116] H. Lim; C. C. Battaile; C. R. Weinberger Simulating dislocation plasticity in bcc metals by integrating fundamental concepts with macroscale models, Integrated Computational Materials Engineering (ICME) for Metals: Concepts and Case Studies, John Wiley & Sons, New Jersey, USA, 2018, pp. 71-106 | DOI

[117] K. R. Elder; M. Katakowski; M. Haataja; M. Grant Modeling elasticity in crystal growth, Phys. Rev. Lett., Volume 88 (2002) no. 24, 245701

[118] A. Skaugen; L. Angheluta; J. Viñals Separation of elastic and plastic timescales in a phase field crystal model, Phys. Rev. Lett., Volume 121 (2018) no. 25, 255501 | DOI

[119] L. P. Kubin; G. Canova The modelling of dislocation patterns, Scr. Met. Mater., Volume 27 (1992) no. 8, pp. 957-962 | DOI

[120] B. Devincre; V. Pontikis; Y. Brechet; G. Canova; M. Condat; L. Kubin Three-dimensional simulations of plastic flow in crystals, Microscopic Simulations of Complex Hydrodynamic Phenomena (M. Mareschal; B. L. Holian, eds.), Springer US, Boston, MA, 1992, pp. 413-423 | DOI

[121] O. Cazacu Multiscale Modeling of Heterogenous Materials: From Microstructure to Macro-Scale Properties, John Wiley & Sons, London, UK, 2013

[122] G. Po; M. Lazar; D. Seif; N. Ghoniem Singularity-free dislocation dynamics with strain gradient elasticity, J. Mech. Phys. Solids, Volume 68 (2014), pp. 161-178 | DOI | MR | Zbl

[123] J. Wang; I. J. Beyerlein; C. N. Tomé Reactions of lattice dislocations with grain boundaries in Mg: Implications on the micro scale from atomic-scale calculations, Int. J. Plast., Volume 56 (2014), pp. 156-172 | DOI

[124] P.-A. Geslin; R. Gatti; B. Devincre; D. Rodney Implementation of the nudged elastic band method in a dislocation dynamics formalism: Application to dislocation nucleation, J. Mech. Phys. Solids, Volume 108 (2017), pp. 49-67 | DOI | MR

[125] A. A. Kohnert; L. Capolungo Spectral discrete dislocation dynamics with anisotropic short range interactions, Comput. Mater. Sci., Volume 189 (2021), 110243 | DOI

[126] W. Cai; A. Arsenlis; C. R. Weinberger; V. V. Bulatov A non-singular continuum theory of dislocations, J. Mech. Phys. Solids, Volume 54 (2006) no. 3, pp. 561-587 | DOI | MR | Zbl

[127] O. Dmitrieva; J. V. Svirina; E. Demir; D. Raabe Investigation of the internal substructure of microbands in a deformed copper single crystal: Experiments and dislocation dynamics simulation, Model. Simul. Mater. Sci. Eng., Volume 18 (2010) no. 8, 085011 | DOI

[128] K. Starkey; G. Winther; A. El-Azab Theoretical development of continuum dislocation dynamics for finite-deformation crystal plasticity at the mesoscale, J. Mech. Phys. Solids, Volume 139 (2020), 103926 | DOI | MR

[129] A. Acharya; A. Roy Size effects and idealized dislocation microstructure at small scales: Predictions of a phenomenological model of mesoscopic field dislocation mechanics: Part I, J. Mech. Phys. Solids, Volume 54 (2006), pp. 1687-1710 | DOI | Zbl

[130] S. Sandfeld; M. Zaiser Pattern formation in a minimal model of continuum dislocation plasticity, Model. Simul. Mater. Sci. Eng., Volume 23 (2015) no. 6, 065005 | DOI

[131] P.-L. Valdenaire; Y. Le Bouar; B. Appolaire; A. Finel Density-based crystal plasticity: From the discrete to the continuum, Phys. Rev. B, Volume 93 (2016) no. 21, 214111

[132] E. B. Tadmor; M. Ortiz; R. Phillips Quasicontinuum analysis of defects in solids, Philos. Mag. A, Volume 73 (1996) no. 6, pp. 1529-1563 | DOI

[133] M. Dobson; R. S. Elliott; M. Luskin; E. B. Tadmor A multilattice quasicontinuum for phase transforming materials: Cascading Cauchy–Born kinematics, J. Comput.-Aided Mater. Design, Volume 14 (2007) no. 1, pp. 219-237 | DOI

[134] V. Sorkin; R. S. Elliott; E. B. Tadmor A local quasicontinuum method for 3D multilattice crystalline materials: Application to shape-memory alloys, Model. Simul. Mater. Sci. Eng., Volume 22 (2014) no. 5, 055001 | DOI

[135] D. M. Kochmann; J. S. Amelang The quasicontinuum method: Theory and applications, Multiscale Materials Modeling for Nanomechanics (C. R. Weinberger; G. J. Tucker, eds.), Springer International Publishing, Cham, 2016, pp. 159-193 | DOI

[136] E. B. Tadmor; R. E. Miller Modeling Materials: Continuum, Atomistic and Multiscale Techniques, Cambridge University Press, Cambridge, UK, 2011 | DOI | Zbl

[137] D. Rodney; R. Phillips Structure and strength of dislocation junctions: An atomic level analysis, Phys. Rev. Lett., Volume 82 (1999) no. 8, pp. 1704-1707 | DOI

[138] J. Knap; M. Ortiz Effect of indenter-radius size on Au(001) nanoindentation, Phys. Rev. Lett., Volume 90 (2003) no. 22, 226102 | DOI

[139] W. Yu; Z. Wang; S. Shen Edge dislocations interacting with a Σ11 symmetrical grain boundary in copper upon mixed loading: A quasicontinuum method study, Comput. Mater. Sci., Volume 137 (2017), pp. 162-170 | DOI

[140] J. Jin; P. Yang; J. Cao; S. Li; Q. Peng Quasicontinuum simulation of the effect of lotus-type nanocavity on the onset plasticity of single crystal Al during nanoindentation, Nanomaterials (Basel), Volume 8 (2018) no. 10, 778

[141] K. J. Van Vliet; J. Li; T. Zhu; S. Yip; S. Suresh Quantifying the early stages of plasticity through nanoscale experiments and simulations, Phys. Rev. B, Volume 67 (2003) no. 10, 104105 | DOI

[142] T. Zhu; J. Li; K. J. Van Vliet; S. Ogata; S. Yip; S. Suresh Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper, J. Mech. Phys. Solids, Volume 52 (2004) no. 3, pp. 691-724 | DOI | Zbl

[143] J. L. Ericksen On the Cauchy–Born rule, Math. Mech. Solids, Volume 13 (2008) no. 3–4, pp. 199-220 | DOI | MR | Zbl

[144] P. M. Weinan Cauchy–Born rule and the stability of crystalline solids: Static problems, Arch. Rat. Mech. Anal., Volume 183 (2007) no. 2, pp. 241-297 | MR | Zbl

[145] P. Steinmann; A. Elizondo; R. Sunyk Studies of validity of the Cauchy–Born rule by direct comparison of continuum and atomistic modelling, Model. Simul. Mater. Sci. Eng., Volume 15 (2006) no. 1, p. S271-S281 | DOI

[146] P. Podio-Guidugli On (Andersen–) Parrinello–Rahman molecular dynamics, the related metadynamics, and the use of the Cauchy–Born rule, J. Elast., Volume 100 (2010) no. 1–2, pp. 145-153 | DOI | Zbl

[147] D. Rodney; Y. Le Bouar; A. Finel Phase field methods and dislocations, Acta Mater., Volume 51 (2003) no. 1, pp. 17-30 | DOI

[148] I. J. Beyerlein; A. Hunter Understanding dislocation mechanics at the mesoscale using phase field dislocation dynamics, Philos. Trans. A Math. Phys. Eng. Sci., Volume 374 (2016) no. 2066, 20150166 | MR | Zbl

[149] A. Ruffini; Y. Le Bouar; A. Finel Three-dimensional phase-field model of dislocations for a heterogeneous face-centered cubic crystal, J. Mech. Phys. Solids, Volume 105 (2017), pp. 95-115 | DOI | MR

[150] L.-Q. Chen Phase-field models for microstructure evolution, Annu. Rev. Mater. Res., Volume 32 (2002) no. 1, pp. 113-140 | DOI

[151] O. U. Salman Modeling of spatio-temporal dynamics and patterning mechanisms of martensites by phase-field and Lagrangian methods, Ph. D. Thesis, Université Pierre et Marie Curie (2009)

[152] A. Finel; Y. Le Bouar; A. Gaubert; U. Salman Phase field methods: Microstructures, mechanical properties and complexity, C. R. Phys., Volume 11 (2010) no. 3, pp. 245-256 | DOI

[153] O. U. Salman; A. Finel; R. Delville; D. Schryvers The role of phase compatibility in martensite, J. Appl. Phys., Volume 111 (2012) no. 10, 103517 | DOI

[154] O. Shchyglo; U. Salman; A. Finel Martensitic phase transformations in Ni–Ti-based shape memory alloys: The Landau theory, Acta Mater., Volume 60 (2012) no. 19, pp. 6784-6792 | DOI

[155] O. U. Salman; B. Muite; A. Finel Origin of stabilization of macrotwin boundaries in martensites, Eur. Phys. J. B, Volume 92 (2019) no. 1, p. 20 | DOI | MR

[156] Y. M. Jin; A. G. Khachaturyan Phase field microelasticity theory of dislocation dynamics in a polycrystal: Model and three-dimensional simulations, Philos. Mag. Lett., Volume 81 (2001) no. 9, pp. 607-616 | DOI

[157] S. Zheng; D. Zheng; Y. Ni; L. He Improved phase field model of dislocation intersections, NPJ Comput. Mater., Volume 4 (2018) no. 1, 20 | DOI

[158] S. Y. Hu; L. Q. Chen Solute segregation and coherent nucleation and growth near a dislocation—a phase-field model integrating defect and phase microstructures, Acta Mater., Volume 49 (2001) no. 3, pp. 463-472

[159] M.-A. Louchez; L. Thuinet; R. Besson; A. Legris Microscopic phase-field modeling of hcp|fcc interfaces, Comput. Mater. Sci., Volume 132 (2017), pp. 62-73 | DOI

[160] D. Qiu; P. Zhao; C. Shen; W. Lu; D. Zhang; M. Mrovec; Y. Wang Predicting grain boundary structure and energy in BCC metals by integrated atomistic and phase-field modeling, Acta Mater., Volume 164 (2019), pp. 799-809 | DOI

[161] P. Biscari; M. F. Urbano; A. Zanzottera; G. Zanzotto Intermittency in crystal plasticity informed by lattice symmetry, J. Elast., Volume 123 (2016) no. 1, pp. 85-96 | DOI | MR | Zbl

[162] M. Javanbakht; V. I. Levitas Phase field approach to dislocation evolution at large strains: Computational aspects, Int. J. Solids Struct., Volume 82 (2016), pp. 95-110 | DOI

[163] S. Xu; J. R. Mianroodi; A. Hunter; I. J. Beyerlein; B. Svendsen Phase-field-based calculations of the disregistry fields of static extended dislocations in FCC metals, Phil. Mag., Volume 99 (2019) no. 11, pp. 1400-1428 | DOI

[164] Y. Li; S. Hu; X. Sun; M. Stan A review: Applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials, NPJ Comput. Mater., Volume 3 (2017) no. 1, 16

[165] A. I. Landau Application of a model of interacting atomic chains for the description of edge dislocations, Phys. Stat. Sol. (b), Volume 183 (1994) no. 2, pp. 407-417 | DOI

[166] A. Carpio; L. L. Bonilla Edge dislocations in crystal structures considered as traveling waves in discrete models, Phys. Rev. Lett., Volume 90 (2003) no. 13, 135502 | DOI

[167] J. Frenkel; T. Kontorova On the theory of plastic deformation and twinning, Izv. Akad. Nauk Ser. Fiz., Volume 1 (1939), pp. 137-149 | MR | Zbl

[168] R. Peierls The size of a dislocation, Proc. Phys. Soc. Lond., Volume 52 (1940) no. 1, pp. 34-37 | DOI

[169] F. R. N. Nabarro Dislocations in a simple cubic lattice, Proc. Phys. Soc. Lond., Volume 59 (2002) no. 2, pp. 256-272 | DOI

[170] A. S. Kovalev; A. D. Kondratyuk; A. M. Kosevich; A. I. Landau Theoretical description of the crowdion in an anisotropic crystal based on the Frenkel–Kontorova model including and elastic three-dimensional medium, Phys. Stat. Sol. (b), Volume 177 (1993) no. 1, pp. 117-127 | DOI

[171] P. S. Lomdahl; D. J. Srolovitz Dislocation generation in the two-dimensional Frenkel–Kontorova model at high stresses, Phys. Rev. Lett., Volume 57 (1986) no. 21, pp. 2702-2705 | DOI

[172] D. Srolovitz; P. Lomdahl Dislocation dynamics in the 2-d Frenkel–Kontorova model, Physica D, Volume 23 (1986) no. 1–3, pp. 402-412 | DOI

[173] L. L. Bonilla; A. Carpio; I. Plans Dislocations in cubic crystals described by discrete models, Physica A, Volume 376 (2007), pp. 361-377 | DOI

[174] P.-A. Geslin; B. Appolaire; A. Finel Investigation of coherency loss by prismatic punching with a nonlinear elastic model, Acta Mater., Volume 71 (2014), pp. 80-88 | DOI

[175] V. V. Bulatov; A. S. Argon A stochastic model for continuum elasto-plastic behavior. I. Numerical approach and strain localization, Model. Simul. Mater. Sci. Eng., Volume 2 (1994) no. 2, pp. 167-184 | DOI

[176] A. Minami; A. Onuki Nonlinear elasticity theory of dislocation formation and composition change in binary alloys in three dimensions, Acta Mater., Volume 55 (2007) no. 7, pp. 2375-2384 | DOI

[177] A. Onuki Plastic flow in two-dimensional solids, Phys. Rev. E, Volume 68 (2003) no. 6 Pt 1, 061502

[178] A. Carpio; L. L. Bonilla Discrete models of dislocations and their motion in cubic crystals, Phys. Rev. B, Volume 71 (2005) no. 13, 134105 | DOI

[179] E. Kaxiras; L. L. Boyer Energetics of large lattice strains: Application to silicon, Phys. Rev. B, Volume 50 (1994) no. 3, pp. 1535-1540 | DOI

[180] S. Conti; G. Zanzotto A variational model for reconstructive phase transformations in crystals, and their relation to dislocations and plasticity, Arch. Ration. Mech. Anal., Volume 173 (2004) no. 1, pp. 69-88 | DOI | MR | Zbl

[181] J. L. Ericksen Nonlinear elasticity of diatomic crystals, Int. J. Solids Struct., Volume 6 (1970) no. 7, pp. 951-957 | DOI

[182] J. L. Ericksen Loading devices and stability of equilibrium, Nonlinear Elasticity (R. W. Dickey, ed.), Academic Press, New York, USA, 1973, pp. 161-173 | Zbl

[183] J. L. Ericksen Special topics in elastostatics, Advances in Applied Mechanics (C.-S. Yih, ed.), Volume 17, Elsevier, 1977, pp. 189-244 | DOI | Zbl

[184] J. L. Ericksen Some phase transitions in crystals, Arch. Ration. Mech. Anal., Volume 73 (1980) no. 2, pp. 99-124 | DOI | MR | Zbl

[185] G. P. Parry On the elasticity of monatomic crystals, Math. Proc. Camb. Philos. Soc., Volume 80 (1976) no. 1, pp. 189-211 | DOI | Zbl

[186] I. Folkins Functions of two-dimensional Bravais lattices, J. Math. Phys., Volume 32 (1991) no. 7, pp. 1965-1969 | DOI | MR | Zbl

[187] G. P. Parry Low-dimensional lattice groups for the continuum mechanics of phase transitions in crystals, Arch. Rat. Mech. Anal., Volume 145 (1998) no. 1, pp. 1-22 | DOI | MR | Zbl

[188] M. Pitteri; G. Zanzotto Continuum Models for Phase Transitions and Twinning in Crystals, Chapman and Hall/CRC, London, UK, 2002 | DOI | Zbl

[189] G. Puglisi; L. Truskinovsky Thermodynamics of rate-independent plasticity, J. Mech. Phys. Solids, Volume 53 (2005) no. 3, pp. 655-679 | DOI | MR | Zbl

[190] A. Mielke; L. Truskinovsky From discrete visco-elasticity to continuum rate-independent plasticity: Rigorous results, Arch. Rat. Mech. Anal., Volume 203 (2011) no. 2, pp. 577-619 | DOI | MR | Zbl

[191] I. Fonseca Variational methods for elastic crystals, Arch. Ration. Mech. Anal., Volume 97 (1987) no. 3, pp. 189-220 | DOI | MR | Zbl

[192] G. R. Bhimanapati; Z. Lin; V. Meunier; Y. Jung; J. Cha; S. Das; D. Xiao et al. Recent advances in two-dimensional materials beyond graphene, ACS Nano, Volume 9 (2015) no. 12, pp. 11509-11539 | DOI

[193] J. Chen; G. Schusteritsch; C. J. Pickard; C. G. Salzmann; A. Michaelides Two dimensional ice from first principles: Structures and phase transitions, Phys. Rev. Lett., Volume 116 (2016) no. 2, 025501 | DOI

[194] V. V. Hoang; N. T. Hieu Formation of two-dimensional crystals with square lattice structure from the liquid state, J. Phys. Chem. C, Volume 120 (2016) no. 32, pp. 18340-18347 | DOI

[195] K. Zhang; Y. Feng; F. Wang; Z. Yang; J. Wang Two dimensional hexagonal boron nitride (2D-hBN): Synthesis, properties and applications, J. Mater. Chem., Volume 5 (2017) no. 46, pp. 11992-12022

[196] D. Akinwande; C. J. Brennan; J. S. Bunch; P. Egberts; J. R. Felts; H. Gao; R. Huang et al. A review on mechanics and mechanical properties of 2D materials—Graphene and beyond, Extreme Mech. Lett., Volume 13 (2017), pp. 42-77 | DOI

[197] Y. Chen; Z. Fan; Z. Zhang; W. Niu; C. Li; N. Yang; B. Chen; H. Zhang Two-dimensional metal nanomaterials: Synthesis, properties, and applications, Chem. Rev., Volume 118 (2018) no. 13, pp. 6409-6455 | DOI

[198] N. P. Kryuchkov; S. O. Yurchenko; Y. D. Fomin; E. N. Tsiok; V. N. Ryzhov Complex crystalline structures in a two-dimensional core-softened system, Soft Matt., Volume 14 (2018) no. 11, pp. 2152-2162 | DOI

[199] V. Van Hoang; N. H. Giang Compression-induced square-triangle solid–solid phase transition in 2D simple monatomic system, Phys. E, Volume 113 (2019), pp. 35-42 | DOI

[200] R. Ma; D. Cao; C. Zhu; Y. Tian; J. Peng; J. Guo; J. Chen et al. Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice, Nature, Volume 577 (2020) no. 7788, pp. 60-63 | DOI

[201] C. Cayron The transformation matrices (distortion, orientation, correspondence), their continuous forms and their variants, Acta Crystallogr. A Found. Adv., Volume 75 (2019) no. Pt 3, pp. 411-437 | DOI | MR

[202] Y. Gao A Cayley graph description of the symmetry breaking associated with deformation and structural phase transitions in metallic materials, Materialia, Volume 9 (2020), 100588

[203] Y. Gao; Y. Zhang; Y. Wang Determination of twinning path from broken symmetry: A revisit to deformation twinning in bcc metals, Acta Mater., Volume 196 (2020), pp. 280-294 | DOI

[204] Y. Gao; T. Yu; Y. Wang Phase transformation graph and transformation pathway engineering for shape memory alloys, Shape Mem. Superelast., Volume 6 (2020) no. 1, pp. 115-130 | DOI

[205] V. I. Marconi; E. A. Jagla Diffuse interface approach to brittle fracture, Phys. Rev. E, Volume 71 (2005) no. 3 Pt 2A, 036110

[206] P. Engel Geometric Crystallography: An Axiomatic Introduction to Crystallography, Springer, Netherlands, 1986 | DOI | Zbl

[207] Theil Friesecke Validity and failure of the Cauchy–Born hypothesis in a two-dimensional mass-spring lattice, J. Nonlinear Sci., Volume 12 (2002) no. 5, pp. 445-478 | DOI | MR | Zbl

[208] M. Ortiz; E. a. Repetto Nonconvex energy minimization and dislocation structures in ductile single crystals, J. Mech. Phys. Solids, Volume 47 (1999) no. 2, pp. 397-462 | DOI | MR | Zbl

[209] R. Baggio Théorie de la Plasticité Cristalline Tenant Compte de la Symétrie GL(2,Z), Ph. D. Thesis, Université Sorbonne, Paris Nord, France (2019)

[210] R. W. Grosse-Kunstleve; N. K. Sauter; P. D. Adams Numerically stable algorithms for the computation of reduced unit cells, Acta Crystallogr. A, Volume 60 (2004) no. 1, pp. 1-6 | DOI

[211] L. C. Andrews; H. J. Bernstein; N. K. Sauter A space for lattice representation and clustering, Acta Crystallogr. A Found. Adv., Volume 75 (2019) no. Pt 3, pp. 593-599 | DOI

[212] S. Bochkanov; V. Bystritsky Alglib, 2013 (available from: https://www.alglib.net/)

[213] C. Sanderson; R. Curtin Armadillo: A template-based C++ library for linear algebra, J. Open Source Softw., Volume 1 (2016) no. 2, 26 | DOI

[214] M. Fishman; S. R. White; E. M. Stoudenmire The ITensor software library for tensor network calculations (2020) (https://arxiv.org/abs/2007.14822)

[215] R. Ogden Non-Linear Elastic Deformations, John Wiley and Sons, New York, USA, 1984 | Zbl

[216] Y. Grabovsky; L. Truskinovsky Normality condition in elasticity, J. Nonlinear Sci., Volume 24 (2014) no. 6, pp. 1125-1146 | DOI | MR | Zbl

[217] J. Merodio; R. W. Ogden Material instabilities in fiber-reinforced nonlinearly elasti solids under plane deformation, Arch. Mech., Volume 54 (2002) no. 5–6, pp. 525-552 | Zbl

[218] S. Kumar; D. M. Parks On the hyperelastic softening and elastic instabilities in graphene, Proc. R. Soc. A, Volume 471 (2015) no. 2173, 20140567 | DOI

[219] R. Hill Acceleration waves in solids, J. Mech. Phys. Solids, Volume 10 (1962) no. 1, pp. 1-16 | DOI | MR | Zbl

[220] J. R. Rice Localization of plastic deformation (1976) (Technical report)

[221] R. Ogden Non-Linear Elastic Deformations, Ellis Horwood, Chichester, 1984 | Zbl

[222] P. M. Anderson; J. P. Hirth; J. Lothe Theory of Dislocations, Cambridge University Press, Cambridge, UK, 2017 | Zbl

[223] Y. Zhong; T. Zhu Simulating nanoindentation and predicting dislocation nucleation using interatomic potential finite element method, Comput. Methods Appl. Mech. Eng., Volume 197 (2008) no. 41, pp. 3174-3181 | DOI | Zbl

[224] D. Bigoni Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability, Cambridge University Press, Cambridge, UK, 2012 | DOI | Zbl

[225] A. Onuki; A. Furukawa; A. Minami Sheared solid materials, Pramana, Volume 64 (2005) no. 5, pp. 661-677 | DOI

[226] C. Sanderson; R. Curtin A user-friendly hybrid sparse matrix class in C++, Mathematical Software — ICMS 2018, Springer International Publishing, South Bend, IN, USA, 2018, pp. 422-430 | Zbl

[227] R. Dasgupta; S. Karmakar; I. Procaccia Universality of the plastic instability in strained amorphous solids, Phys. Rev. Lett., Volume 108 (2012) no. 7, 075701 | DOI

[228] S. Bonfanti; R. Guerra; C. Mondal; I. Procaccia; S. Zapperi Elementary plastic events in amorphous silica, Phys. Rev. E, Volume 100 (2019) no. 6-1, 060602

[229] D. Richard; M. Ozawa; S. Patinet; E. Stanifer; B. Shang et al. Predicting plasticity in disordered solids from structural indicators, Phys. Rev. Mater., Volume 4 (2020), 113609

[230] L. Truskinovsky; A. Vainchtein Quasicontinuum modelling of short-wave instabilities in crystal lattices, Philos. Mag., Volume 85 (2005) no. 33–35, pp. 4055-4065 | DOI

[231] K. Bertoldi; M. C. Boyce Wave propagation and instabilities in monolithic and periodically structured elastomeric materials undergoing large deformations, Phys. Rev. B, Volume 78 (2008) no. 18, 184107 | DOI

[232] N. Hansen; D. Kuhlmann-Wilsdorf Low energy dislocation structures due to unidirectional deformation at low temperatures, Int. J. Green Nanotech. Mater. Sci. Eng., Volume 81 (1986), pp. 141-161

[233] H. Bei; S. Shim; M. K. Miller; G. M. Pharr; E. P. George Effects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal, Appl. Phys. Lett., Volume 91 (2007) no. 11, 111915

[234] N. Friedman; A. T. Jennings; G. Tsekenis; J.-Y. Kim; M. Tao; J. T. Uhl; J. R. Greer; K. A. Dahmen Statistics of dislocation slip avalanches in nanosized single crystals show tuned critical behavior predicted by a simple mean field model, Phys. Rev. Lett., Volume 109 (2012) no. 9, 095507 | DOI

[235] M. Zaiser Statistical aspects of microplasticity: Experiments, discrete dislocation simulations and stochastic continuum models, J. Mech. Behav. Mater., Volume 22 (2013) no. 3–4, pp. 89-100 | DOI

[236] P. M. Derlet; R. Maaß The stress statistics of the first pop-in or discrete plastic event in crystal plasticity, J. Appl. Phys., Volume 120 (2016) no. 22, 225101

[237] Y. Cui; N. Ghoniem Spatio-temporal plastic instabilities at the nano/micro scale, J. Micromech. Mol. Phys., Volume 03 (2018) no. 03n04, 1840006

[238] G. Sparks; Y. Cui; G. Po; Q. Rizzardi; J. Marian; R. Maaß Avalanche statistics and the intermittent-to-smooth transition in microplasticity, Phys. Rev. Mater., Volume 3 (2019) no. 8, 080601

[239] B. Jakobsen; H. F. Poulsen; U. Lienert; J. Almer; S. D. Shastri; H. O. Sørensen; C. Gundlach; W. Pantleon Formation and subdivision of deformation structures during plastic deformation, Science, Volume 312 (2006) no. 5775, pp. 889-892 | DOI

[240] D. Sornette; G. Ouillon Dragon-kings: Mechanisms, statistical methods and empirical evidence, Eur. Phys. J. Spec. Top., Volume 205 (2012) no. 1, pp. 1-26 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Fluctuations in crystalline plasticity

Jérôme Weiss; Peng Zhang; Oğuz Umut Salman; ...

C. R. Phys (2021)


Foreword: Plasticity and Solid State Physics

Samuel Forest; David Rodney

C. R. Phys (2021)


Foreword: Numerical metallurgy and scale transitions

Yves Bréchet

C. R. Phys (2010)