Comptes Rendus
Grain size effects and weakest link theory in 3D crystal plasticity simulations of polycrystals
Comptes Rendus. Physique, Volume 22 (2021) no. S3, pp. 313-330.

The weakest link theory, sometimes proposed to analyze size effects on the plastic behaviour of single crystals, is introduced in 3D numerical simulations of polycrystals. The approach relies on a random distribution of sources in space and strength associated to a crystal plasticity law with constant per layer Critical Resolved Shear Stresses (CRSS). It is able to reproduce: (1) the grain size dependence of the yield stress given by the Hall–Petch law, (2) intense slip band localization patterns as often observed at the grains surface, especially pronounced in quenched or irradiated metals, but difficult to reproduce by numerical simulation.

Online First:
Published online:
DOI: 10.5802/crphys.53
Keywords: Weibull, Weakest link, Crystal plasticity, Size effect, Hall–Petch, Plastic strain localization, FFT
Lionel Gélébart 1

1 Université Paris-Saclay, CEA, Service de Recherches Métallurgiques Appliquées, 91191, Gif-sur-Yvette, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Lionel G\'el\'ebart},
     title = {Grain size effects and weakest link theory {in~3D} crystal plasticity simulations of polycrystals},
     journal = {Comptes Rendus. Physique},
     pages = {313--330},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {S3},
     year = {2021},
     doi = {10.5802/crphys.53},
     language = {en},
AU  - Lionel Gélébart
TI  - Grain size effects and weakest link theory in 3D crystal plasticity simulations of polycrystals
JO  - Comptes Rendus. Physique
PY  - 2021
SP  - 313
EP  - 330
VL  - 22
IS  - S3
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.53
LA  - en
ID  - CRPHYS_2021__22_S3_313_0
ER  - 
%0 Journal Article
%A Lionel Gélébart
%T Grain size effects and weakest link theory in 3D crystal plasticity simulations of polycrystals
%J Comptes Rendus. Physique
%D 2021
%P 313-330
%V 22
%N S3
%I Académie des sciences, Paris
%R 10.5802/crphys.53
%G en
%F CRPHYS_2021__22_S3_313_0
Lionel Gélébart. Grain size effects and weakest link theory in 3D crystal plasticity simulations of polycrystals. Comptes Rendus. Physique, Volume 22 (2021) no. S3, pp. 313-330. doi : 10.5802/crphys.53.

[1] G. Monnet; L. Vincent; L. Gélébart Multiscale modeling of crystal plasticity in reactor pressure vessel steels: Prediction of irradiation hardening, J. Nucl. Mater., Volume 514 (2019), pp. 128-138 | DOI

[2] G. Venkatramani; S. Ghosh; M. Mills A size-dependent crystal plasticity finite-element model for creep and load shedding in polycrystalline titanium alloys, Acta Mater., Volume 55 (2007) no. 11, pp. 3971-3986 | DOI

[3] R. A. Rubio; S. Haouala; J. LLorca Grain boundary strengthening of fcc polycrystals, J. Mater. Res., Volume 34 (2019) no. 13, pp. 2263-2274 | DOI

[4] M. E. Gurtin A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations, J. Mech. Phys. Solids, Volume 50 (2002) no. 1, pp. 5-32 | DOI

[5] A. Acharya; A. Roy Size effects and idealized dislocation microstructure at small scales: Predictions of a phenomenological model of mesoscopic field dislocation mechanics: Part I, J. Mech. Phys. Solids, Volume 54 (2006) no. 8, pp. 1687-1710 | DOI

[6] S. Berbenni; V. Taupin; R. A. Lebensohn A fast fourier transform-based mesoscale field dislocation mechanics study of grain size effects and reversible plasticity in polycrystals, J. Mech. Phys. Solids, Volume 135 (2020), 103808 | DOI

[7] S. Haouala; S. Lucarini; J. LLorca; J. Segurado Simulation of the Hall–Petch effect in fcc polycrystals by means of strain gradient crystal plasticity and fft homogenization, J. Mech. Phys. Solids, Volume 134 (2020), 103755 | DOI

[8] P. Franciosi; L. T. Le; G. Monnet; C. Kahloun; M.-H. Chavanne Investigation of slip system activity in iron at room temperature by sem and afm in-situ tensile and compression tests of iron single crystals, Int. J. Plast., Volume 65 (2015), pp. 226-249 | DOI

[9] F. D. Gioacchino; J. Q. da Fonseca An experimental study of the polycrystalline plasticity of austenitic stainless steel, Int. J. Plast., Volume 74 (2015), pp. 92-109 | DOI

[10] F. Bourdin; J. C. Stinville; M. P. Echlin; P. G. Callahan; W. C. Lenthe; C. J. Torbet; D. Texier; F. Bridier; J. Cormier; P. Villechaise; T. M. Pollock; V. Valle Measurements of plastic localization by heaviside-digital image correlation, Acta Mater., Volume 157 (2018), pp. 307-325 | DOI

[11] A. Marano; L. Gélébart; S. Forest Intragranular localization induced by softening crystal plasticity: Analysis of slip and kink bands localization modes from high resolution fft-simulations results, Acta Mater., Volume 175 (2019), pp. 262-275 | DOI

[12] A. Marano; L. Gélébart Non-linear composite voxels for fft-based explicit modeling of slip bands: Application to basal channeling in irradiated zr alloys, Int. J. Solids Struct., Volume 198 (2020), pp. 110-125 | DOI

[13] A. Patra; D. L. McDowell Crystal plasticity investigation of the microstructural factors influencing dislocation channeling in a model irradiated bcc material, Acta Mater., Volume 110 (2016), pp. 364-376 | DOI

[14] A. Marano Numerical simulation of strain localization in irradiated polycrystals, Ph. D. Thesis, Université PSL, CEA Paris-Saclay & MINES ParisTech (2019)

[15] M. Zhang; F. Bridier; P. Villechaise; J. Mendez; D. L. McDowell Simulation of slip band evolution in duplex ti–6al–4v, Acta Mater., Volume 58 (2010) no. 3, pp. 1087-1096 | DOI

[16] S. Papanikolaou; Y. Cui; N. Ghoniem Avalanches and plastic flow in crystal plasticity: an overview, Model. Simul. Mat. Sci. Eng., Volume 26 (2017) no. 1, 013001 | DOI

[17] P. M. Derlet; R. Maaß A probabilistic explanation for the size-effect in crystal plasticity, Philos. Mag., Volume 95 (2015) no. 16-18, pp. 1829-1844 | DOI

[18] P. S. Phani; K. E. Johanns; E. P. George; G. M. Pharr A simple stochastic model for yielding in specimens with limited number of dislocations, Acta Mater., Volume 61 (2013) no. 7, pp. 2489-2499 | DOI

[19] P. D. Ispánovity; Á. Hegyi; I. Groma; G. Györgyi; K. Ratter; D. Weygand Average yielding and weakest link statistics in micron-scale plasticity, Acta Mater., Volume 61 (2013) no. 16, pp. 6234-6245 | DOI

[20] J. A. El-Awady; M. Wen; N. M. Ghoniem The role of the weakest-link mechanism in controlling the plasticity of micropillars, J. Mech. Phys. Solids, Volume 57 (2009) no. 1, pp. 32-50 | DOI

[21] S. Shao; N. Abdolrahim; D. F. Bahr; G. Lin; H. M. Zbib Stochastic effects in plasticity in small volumes, Int. J. Plast., Volume 52 (2014), pp. 117-132 (In Honor of Hussein Zbib) | DOI

[22] E. Castelier; L. Gélébart; C. Lacour; C. Lantuejoul Three consistent approaches of the multiple cracking process in 1d composites, Compos. Sci. Technol., Volume 70 (2010) no. 15, pp. 2146-2153 | DOI

[23] R. Y. Rubinstein Simulation and the Monte Carlo Method, John Wiley & Sons, Inc., USA, 1981 | DOI

[24] Lionel Gelebart; Julien Derouillat; Nicolas Doucet; Franck Ouaki; Aldo Marano; Jérémy Duverge Amitex_FFTP, 2020 (

[25] M. Schneider; D. Merkert; M. Kabel Fft-based homogenization for microstructures discretized by linear hexahedral elements, Int. J. Numer. Methods Eng., Volume 109 (2017) no. 10, pp. 1461-1489 | DOI

[26] T. Helfer; B. Michel; J.-M. Proix; M. Salvo; J. Sercombe; M. Casella Introducing the open-source mfront code generator: Application to mechanical behaviours and material knowledge management within the pleiades fuel element modelling platform, Comput. Math. Appl., Volume 70 (2015) no. 5, pp. 994-1023 | DOI

[27] Y. Kamimura; K. Edagawa; S. Takeuchi Experimental evaluation of the peierls stresses in a variety of crystals and their relation to the crystal structure, Acta Mater., Volume 61 (2013) no. 1, pp. 294-309 | DOI

[28] J. Senger; D. Weygand; C. Motz; P. Gumbsch; O. Kraft Aspect ratio and stochastic effects in the plasticity of uniformly loaded micrometer-sized specimens, Acta Mater., Volume 59 (2011) no. 8, pp. 2937-2947 | DOI

[29] R. J. Asaro; J. R. Rice Strain localization in ductile single crystals, J. Mech. Phys. Solids, Volume 25 (1977) no. 5, pp. 309-338 | DOI

[30] F. Onimus; I. Monnet; J.L. Béchade; C. Prioul; P. Pilvin A statistical tem investigation of dislocation channeling mechanism in neutron irradiated zirconium alloys, J. Nucl. Mater., Volume 328 (2004) no. 2, pp. 165-179 | DOI

Cited by Sources:

Articles of potential interest

A modified FFT-based solver for the mechanical simulation of heterogeneous materials with Dirichlet boundary conditions

Lionel Gélébart

C. R. Méca (2020)

A numerical study of reversible plasticity using continuum dislocation mechanics

Stéphane Berbenni; Ricardo A. Lebensohn

C. R. Phys (2021)

Efficient simulation of single and poly-crystal plasticity based on the pencil glide mechanism

Lu Tuan Le; Kais Ammar; Samuel Forest

C. R. Méca (2020)