We present here a small review on our exhaustive theoretical study of point defects in a MoS monolayer. Using Density Functional Theory (DFT), we characterize structurally and electronically different kinds of defects based on S and Mo vacancies, as well as their antisites. In combination with a Keldysh–Green formalism, we model the corresponding Scanning Tunneling Microscopy (STM) images. Also, we determine the forces to be compared with Atomic Force Microscopy (AFM) measurements, and explore the possibilities of molecular adsorption. Our method, as a support to experimental measurements allows to clearly discriminate the different types of defects. Finally, we present very recent results on lateral conductance calculations of defective MoS nanoribbons. All these findings pave the way to novel applications in nanoelectronics or gas sensors, and show the need to further explore these new systems.
Nous présentons ici une mini-revue de nos différents travaux sur l’étude théorique des défauts dans une monocouche de MoS. En utilisant la Théorie de la Fonctionnelle de la Densité (DFT), nous avons caractérisé structurellement et électroniquement différents types de défauts à partir de lacunes de S et Mo, ainsi que leurs antisites. En combinaison avec un formalisme de Green–Keldysh, nous avons simulé les images de microscopie à effet tunnel (STM) correspondantes. Egalement, nous avons déterminé les forces, afin d’interpréter les expériences de microscopie à force atomique (AFM). Nous avons également étudié l’adsorption de molécules sur ces défauts. Finalement, nous présentons de récents résultats sur le calcul de conductance latérale dans des nano-rubans de MoS avec défauts. Ces travaux ouvrent la voie à de nouvelles applications en nanoélectronique ou pour les capteurs de gaz, et soulignent la nécessité d’explorer plus avant ces nouveaux systèmes.
Published online:
Mot clés : Structure électronique, Défauts, MoS$_{{2}}$, DFT, STM/AFM, Adsorption moléculaire
César González 1, 2; Yannick J. Dappe 3
@article{CRPHYS_2021__22_S4_23_0, author = {C\'esar Gonz\'alez and Yannick J. Dappe}, title = {Theoretical approach to point defects in a single transition metal dichalcogenide monolayer: conductance and force calculations in {MoS}$_{{2}}$}, journal = {Comptes Rendus. Physique}, pages = {23--41}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {S4}, year = {2021}, doi = {10.5802/crphys.72}, language = {en}, }
TY - JOUR AU - César González AU - Yannick J. Dappe TI - Theoretical approach to point defects in a single transition metal dichalcogenide monolayer: conductance and force calculations in MoS$_{{2}}$ JO - Comptes Rendus. Physique PY - 2021 SP - 23 EP - 41 VL - 22 IS - S4 PB - Académie des sciences, Paris DO - 10.5802/crphys.72 LA - en ID - CRPHYS_2021__22_S4_23_0 ER -
%0 Journal Article %A César González %A Yannick J. Dappe %T Theoretical approach to point defects in a single transition metal dichalcogenide monolayer: conductance and force calculations in MoS$_{{2}}$ %J Comptes Rendus. Physique %D 2021 %P 23-41 %V 22 %N S4 %I Académie des sciences, Paris %R 10.5802/crphys.72 %G en %F CRPHYS_2021__22_S4_23_0
César González; Yannick J. Dappe. Theoretical approach to point defects in a single transition metal dichalcogenide monolayer: conductance and force calculations in MoS$_{{2}}$. Comptes Rendus. Physique, Volume 22 (2021) no. S4, pp. 23-41. doi : 10.5802/crphys.72. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.72/
[1] Electric field effect in atomically thin carbon films, Science, Volume 306 (2004) no. 5696, pp. 666-669 | DOI
[2] Graphene on Rh(111): scanning tunneling and atomic force microscopies studies, Appl. Phys. Lett., Volume 100 (2012) no. 24, 241606
[3] Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene monolayers, Nano Lett., Volume 9 (2009) no. 12, pp. 4446-4451 | DOI
[4] The electronic properties of graphene, Rev. Mod. Phys., Volume 81 (2009), pp. 109-162 | DOI
[5] Effects of hexagonal boron nitride encapsulation on the electronic structure of few-layer MoS, J. Phys. Chem. C, Volume 123 (2019) no. 23, pp. 14797-14802 | DOI
[6] Hysteresis-free hexagonal boron nitride encapsulated 2D semiconductor transistors, NMOS and CMOS inverters, Adv. Electron. Mater., Volume 5 (2019) no. 2, 1800419
[7] 2D transition metal dichalcogenides, Nat. Rev. Mater., Volume 2 (2017), 17033 | DOI
[8] A review of molybdenum disulfide (MoS) based photodetectors: from ultra-broadband, self-powered to flexible devices, RSC Adv., Volume 10 (2020), pp. 30529-30602 | DOI
[9] Conductive atomic force microscopy of semiconducting transition metal dichalcogenides and heterostructures, Nanomaterials, Volume 10 (2020) no. 4, 803 | DOI
[10] Two-dimensional MoS: properties, preparation, and applications, J. Materiomics, Volume 1 (2015) no. 1, pp. 33-44 | DOI
[11] Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling, Science, Volume 360 (2018) no. 6394, pp. 1218-1222 | DOI
[12] Measurement of lateral and interfacial thermal conductivity of single- and bilayer MoS and MoSe using refined optothermal Raman technique, ACS Appl. Mater. Interfaces, Volume 7 (2015) no. 46, pp. 25923-25929 | DOI
[13] Strong interfacial interactions induced a large reduction in lateral thermal conductivity of transition-metal dichalcogenide superlattices, RSC Adv., Volume 9 (2019), pp. 1387-1393 | DOI
[14] Van der waals heterostructures, Nature, Volume 499 (2013) no. 7459, pp. 419-425 | DOI
[15] Van der Waals heterostructures for optoelectronics: progress and prospects, Appl. Mater. Today, Volume 16 (2019), pp. 435-455 | DOI
[16] Devices and applications of van der Waals heterostructures, J. Semicond., Volume 38 (2017) no. 3, 031005
[17] et al. One-dimensional van der waals heterostructures, Science, Volume 367 (2020) no. 6477, pp. 537-542 | DOI
[18] Stability and electronic structures of native defects in single-layer MoS, Phys. Rev. B, Volume 89 (2014), 205417
[19] Intrinsic structural defects in monolayer molybdenum disulfide, Nano Lett., Volume 13 (2013) no. 6, pp. 2615-2622 | DOI
[20] et al. Exploring atomic defects in molybdenum disulphide monolayers, Nat. Commun., Volume 6 (2015) no. 1, 6293 | DOI
[21] Unusual reactivity of MoS nanosheets, Nanoscale, Volume 8 (2016), pp. 10282-10290 | DOI
[22] Degradation behaviors and mechanisms of MoS crystals relevant to bioabsorbable electronics, NPG Asia Mater., Volume 10 (2018) no. 8, pp. 810-820 | DOI
[23] Atomic adsorption of Sn on mechanically cleaved WS2 surface at room temperature, Surf. Sci., Volume 701 (2020), 121685 | DOI
[24] Structure and electronic properties of in situ synthesized single-layer MoS on a gold surface, ACS Nano, Volume 8 (2014) no. 7, pp. 6788-6796 | DOI
[25] Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers, Nanotechnology, Volume 25 (2014) no. 37, 375703
[26] Electronic states of sulfur vacancies formed on a MoS2 surface, Japanese J. Appl. Phys., Volume 49 (2010) no. 8, 08LB01 | DOI
[27] Selective adsorption of thiol molecules at sulfur vacancies on MoS (0001), followed by vacancy repair via sâc dissociation, J. Phys. Chem. C, Volume 116 (2012) no. 42, pp. 22411-22416 | DOI
[28] Native defects in bulk and monolayer MoS from first principles, Phys. Rev. B, Volume 91 (2015), 125304
[29] Low temperature nanoscale electronic transport on the MoS surface, Appl. Phys. Lett., Volume 103 (2013) no. 8, 083106 | DOI
[30] Gas adsorption on MoS monolayer from first-principles calculations, Chem. Phys. Lett., Volume 595-596 (2014), pp. 35-42 | DOI
[31] Direct versus indirect band gap emission and exciton-exciton annihilation in atomically thin molybdenum ditelluride (MoTe), Phys. Rev. B, Volume 94 (2016), 085429 | DOI
[32] Theoretical characterisation of point defects on a MoS2 monolayer by scanning tunnelling microscopy, Nanotechnology, Volume 27 (2016) no. 10, 105702 | DOI
[33] et al. Advances and applications in the FIREBALL ab initio tight-binding molecular-dynamics formalism, Phys. Status Solidi (b), Volume 248 (2011) no. 9, pp. 1989-2007 | DOI
[34] Multicenter approach to the exchange-correlation interactions in ab initio tight-binding methods, Phys. Rev. B, Volume 71 (2005), 235101 | DOI
[35] Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems, Phys. Rev. B, Volume 40 (1989), pp. 3979-3995 | DOI
[36] Simplified method for calculating the energy of weakly interacting fragments, Phys. Rev. B, Volume 31 (1985), pp. 1770-1779 | DOI
[37] Tight-binding models and density-functional theory, Phys. Rev. B, Volume 39 (1989), pp. 12520-12536 | DOI
[38] Optimized atomic-like orbitals for first-principles tight-binding molecular dynamics, Comput. Mater. Sci., Volume 39 (2007) no. 4, pp. 759-766 | DOI
[39] Theoretical study of carbon-based tips for scanning tunnelling microscopy, Nanotechnology, Volume 27 (2016) no. 10, 105201 | DOI
[40] WSXM: A software for scanning probe microscopy and a tool for nanotechnology, Rev. Sci. Instrum., Volume 78 (2007) no. 1, 013705 | DOI
[41] Helium bubble clustering in copper from first principles, Model. Simul. Mater. Sci. Eng., Volume 22 (2014) no. 3, 035019 | DOI
[42] Ab initio molecular dynamics for liquid metals, Phys. Rev. B, Volume 47 (1993), pp. 558-561 | DOI
[43] Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, Volume 54 (1996), pp. 11169-11186 | DOI
[44] From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, Volume 59 (1999), pp. 1758-1775 | DOI
[45] Reactivity enhancement and fingerprints of point defects on a MoS monolayer assessed by ab initio atomic force microscopy, J. Phys. Chem. C, Volume 120 (2016) no. 30, pp. 17115-17126 | DOI
[46] Adsorption of small inorganic molecules on a defective MoS monolayer, Phys. Chem. Chem. Phys., Volume 19 (2017), pp. 9485-9499 | DOI
[47] et al. Weakly trapped, charged, and free excitons in single-layer MoS in the presence of defects, strain, and charged impurities, ACS Nano, Volume 11 (2017) no. 11, pp. 11206-11216 | DOI
[48] et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2, Nature Phys., Volume 12 (2016) no. 8, pp. 751-756 | DOI
[49] Remarkably high thermal-driven MoS grain boundary migration mobility and its implications on defect healing, Nanoscale, Volume 12 (2020), pp. 17746-17753 | DOI
[50] Forces and currents in carbon nanostructures: are we imaging atoms?, Phys. Rev. Lett., Volume 106 (2011), 176101 | DOI
[51] Atomic force microscopy as a tool for atom manipulation, Nat. Nanotechnol., Volume 4 (2009) no. 12, pp. 803-810 | DOI
[52] Complex patterning by vertical interchange atom manipulation using atomic force microscopy, Science, Volume 322 (2008) no. 5900, pp. 413-417 | DOI
[53] Adsorption of common solvent molecules on graphene and MoS from first-principles, J. Chem. Phys., Volume 149 (2018) no. 9, 094702
[54] Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., Volume 7 (2012) no. 11, pp. 699-712 | DOI
[55] Large current modulation and spin-dependent tunneling of vertical graphene/MoS heterostructures, ACS Nano, Volume 7 (2013) no. 8, pp. 7021-7027 | DOI
[56] Theoretical insights into CO adsorption by MoS nanomaterials, J. Phys. Chem. C, Volume 123 (2019) no. 43, pp. 26338-26350 | DOI
[57] Molecular detection on a defective MoS monolayer by simultaneous conductance and force simulations, Phys. Rev. B, Volume 95 (2017), 214105 | DOI
Cited by Sources:
Comments - Policy