Comptes Rendus
The search for manganese incorporation in MoSe2 monolayer epitaxially grown on graphene
Comptes Rendus. Physique, Recent advances in 2D material physics, Volume 22 (2021) no. S4, pp. 5-21.

The introduction of magnetism in two-dimensional (2D) materials represents an intense field of research nowadays and the quest to reach above-room-temperature ordering temperatures is still underway. Intrinsic ferromagnetism was discovered in 2017 in CrI3 and Cr2Ge2Te6 in the monolayer form with low Curie temperatures. An alternative method to introduce magnetism into conventional 2D materials is substitutional doping with magnetic impurities similarly to three-dimensional diluted magnetic semiconductors. The case of Mn-doped transition metal dichalcogenide (MoS2, MoSe2, WS2, WSe2) monolayers is very interesting because combining out-of-plane ferromagnetism and valley contrast leads to ferrovalley materials. In this work, we focus on the incorporation of Mn in MoSe2 by molecular beam epitaxy on graphene which has been rarely addressed up to now. By using a multiscale characterization approach, we demonstrate that Mn atoms are incorporated into the MoSe2 monolayer up to 5 atomic percent. However, when incorporated into the film, Mn atoms tend to diffuse to the grain edges forming undefined MoxMnySez phase at grain boundaries after completion of the MoSe2 monolayer. This segregation leaves the crystalline and electronic structure of MoSe2 unmodified. Above 5%, the saturation of Mn content in MoSe2 leads to the formation of epitaxial MnSe clusters.

Première publication :
Publié le :
DOI : 10.5802/crphys.69
Keywords: 2D materials, Magnetic doping, Molecular beam epitaxy, Transmission electron microscopy, Scanning tunneling microscopy, Momentum resolved photoemission electron microscopy

Maxime Gay 1 ; Minh-Tuan Dau 2 ; Céline Vergnaud 2 ; Alain Marty 2 ; Frédéric Bonell 2 ; Hervé Boukari 3 ; Colin Paillet 1 ; Bérangère Hyot 1 ; Hanako Okuno 4 ; Pierre Mallet 3 ; Jean-Yves Veuillen 3 ; Olivier Renault 1 ; Matthieu Jamet 2

1 Univ. Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France
2 Univ. Grenoble Alpes, CEA, CNRS, Spintec, F-38000 Grenoble, France
3 Univ. Grenoble Alpes, CNRS, Institut Néel, F-38000 Grenoble, France
4 Univ. Grenoble Alpes, CEA, IRIG-MEM, F-38000 Grenoble, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2021__22_S4_5_0,
     author = {Maxime Gay and Minh-Tuan Dau and C\'eline Vergnaud and Alain Marty and Fr\'ed\'eric Bonell and Herv\'e Boukari and Colin Paillet and B\'erang\`ere Hyot and Hanako Okuno and Pierre Mallet and Jean-Yves Veuillen and Olivier Renault and Matthieu Jamet},
     title = {The search for manganese incorporation {in~MoSe}$_{{2}}$ monolayer epitaxially grown on graphene},
     journal = {Comptes Rendus. Physique},
     pages = {5--21},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {S4},
     year = {2021},
     doi = {10.5802/crphys.69},
     language = {en},
}
TY  - JOUR
AU  - Maxime Gay
AU  - Minh-Tuan Dau
AU  - Céline Vergnaud
AU  - Alain Marty
AU  - Frédéric Bonell
AU  - Hervé Boukari
AU  - Colin Paillet
AU  - Bérangère Hyot
AU  - Hanako Okuno
AU  - Pierre Mallet
AU  - Jean-Yves Veuillen
AU  - Olivier Renault
AU  - Matthieu Jamet
TI  - The search for manganese incorporation in MoSe$_{{2}}$ monolayer epitaxially grown on graphene
JO  - Comptes Rendus. Physique
PY  - 2021
SP  - 5
EP  - 21
VL  - 22
IS  - S4
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.69
LA  - en
ID  - CRPHYS_2021__22_S4_5_0
ER  - 
%0 Journal Article
%A Maxime Gay
%A Minh-Tuan Dau
%A Céline Vergnaud
%A Alain Marty
%A Frédéric Bonell
%A Hervé Boukari
%A Colin Paillet
%A Bérangère Hyot
%A Hanako Okuno
%A Pierre Mallet
%A Jean-Yves Veuillen
%A Olivier Renault
%A Matthieu Jamet
%T The search for manganese incorporation in MoSe$_{{2}}$ monolayer epitaxially grown on graphene
%J Comptes Rendus. Physique
%D 2021
%P 5-21
%V 22
%N S4
%I Académie des sciences, Paris
%R 10.5802/crphys.69
%G en
%F CRPHYS_2021__22_S4_5_0
Maxime Gay; Minh-Tuan Dau; Céline Vergnaud; Alain Marty; Frédéric Bonell; Hervé Boukari; Colin Paillet; Bérangère Hyot; Hanako Okuno; Pierre Mallet; Jean-Yves Veuillen; Olivier Renault; Matthieu Jamet. The search for manganese incorporation in MoSe$_{{2}}$ monolayer epitaxially grown on graphene. Comptes Rendus. Physique, Recent advances in 2D material physics, Volume 22 (2021) no. S4, pp. 5-21. doi : 10.5802/crphys.69. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.69/

[1] S. A. Wolf; D. D. Awschalom; R. A. Buhrman; J. M. Daughton; S. von Molnár; M. L. Roukes; A. Y. Chtchelkanova; D. M. Treger Spintronics: A spin-based electronics vision for the future, Science, Volume 294 (2001), pp. 1488-1495 | DOI

[2] H. Ohno Making nonmagnetic semiconductors ferromagnetic, Science, Volume 281 (1998), pp. 951-958 | DOI

[3] M. Sawicki; D. Chiba; A. Korbecka; Y. Nishitani; J. A. Majewski; F. Matsukura; T. Dietl; H. Ohno Experimental probing of the interplay between ferromagnetism and localization in (Ga, Mn)As, Nat. Phys., Volume 6 (2010), pp. 22-25 | DOI

[4] D. Chiba; M. Sawicki; Y. Nishitani; Y. Nakatani; F. Matsukura; H. Ohno Magnetization vector manipulation by electric fields, Nature, Volume 455 (2008), pp. 515-518 | DOI

[5] L. Chen; S. Yan; P. F. Xu; J. Lu; W. Z. Wang; J. J. Deng; X. Qian; Y. Ji; J. H. Zhaoa Low-temperature magnetotransport behaviors of heavily Mn-doped (Ga, Mn)As films with high ferromagnetic transition temperature, Appl. Phys. Lett., Volume 95 (2009), 182505 | DOI

[6] T. Dietl; K. Sato; T. Fukushima; A. Bonanni; M. Jamet; A. Barski; S. Kuroda; M. Tanaka; P. N. Hai; H. Katayama-Yoshida Spinodal nanodecomposition in semiconductors doped with transition metals, Rev. Mod. Phys., Volume 87 (2015), pp. 1311-1377 | DOI

[7] K. F. Mak; C. Lee; J. Hone; J. Shan; T. F. Heinz Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett., Volume 105 (2010), 136805

[8] B. Radisavljevic; A. Radenovic; J. Brivio; V. Giacometti; A. Kis Single-layer MoS2 transistors, Nat. Nanotechnol., Volume 6 (2011), pp. 147-150 | DOI

[9] H. Ohno; A. Shen; F. Matsukura; A. Oiwa; A. Endo; S. Katsumoto; Y. Iye (Ga, Mn)As: A new diluted magnetic semiconductor based on GaAs, Appl. Phys. Lett., Volume 69 (1996), pp. 363-365 | DOI

[10] A. Koma Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system, Thin Solid Films, Volume 216 (1992), pp. 72-76 | DOI

[11] M. T. Dau; M. Gay; D. D. Felice; C. Vergnaud; A. Marty; C. Beigné; G. Renaud; O. Renault; P. Mallet et al. Beyond van der Waals interaction: The case of MoSe2 epitaxially grown on few-layer graphene, ACS Nano, Volume 12 (2018), pp. 2319-2331 | DOI

[12] M. T. Dau; C. Vergnaud; A. Marty; C. Beigné; S. Gambarelli; V. Maurel; T. Journot; B. Hyot; T. Guillet; B. Grévin; H. Okuno; M. Jamet The valley nernst effect in WSe2, Nat. Commun., Volume 10 (2019), 5796

[13] M. T. Dau; C. Vergnaud; M. Gay; C. J. Alvarez; A. Marty; C. Beigné; D. Jalabert; J.-F. Jacquot; O. Renault; H. Okuno; M. Jamet van der Waals epitaxy of Mn-doped MoSe2 on mica, APL Mater., Volume 7 (2019), 051111

[14] C. Vergnaud; M.-T. Dau; B. Grévin; C. Licitra; A. Marty; H. Okuno; M. Jamet New approach for the molecular beam epitaxy growth of scalable WSe2 monolayers, Nanotechnology, Volume 31 (2020), 255602 | DOI

[15] S. Vishwanath; X. Liu; S. Rouvimov; L. Basile; N. Lu; A. Azcatl; K. Magno; R. M. Wallace; M. Kim; J.-C. Idrobo; J. K. Furdyna; D. Jena; H. G. Xing Controllable growth of layered selenide and telluride heterostructures and superlattices using molecular beam epitaxy, J. Mater. Res., Volume 31 (2016), pp. 900-910 | DOI

[16] Chen M.-W.; D. Ovchinnikov; S. Lazar; M. Pizzochero; M. B. Whitwick; A. Surrente; M. Baranowski; O. L. Sanchez; P. Gillet; P. Plochocka; O. V. Yazyev; A. Kis Highly oriented atomically thin ambipolar MoSe2 grown by molecular beam epitaxy, ACS Nano, Volume 11 (2017), pp. 6355-6361 | DOI

[17] R. Mishra; W. Zhou; S. J. Pennycook; S. T. Pantelides; J.-C. Idrobo Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides, Phys. Rev. B, Volume 88 (2013), 144409 | DOI

[18] J. Wang; F. Sun; S. Yang; Y. Li; C. Zhao; M. Xu; Y. Zhang; H. Zeng Robust ferromagnetism in Mn-doped MoS2 nanostructures, Appl. Phys. Lett., Volume 109 (2016), 092401

[19] K. Zhang; S. Feng; J. Wang; A. Azcatl; N. Lu; R. Addou; N. Wang; C. Zhou; J. Lerach; V. Bojan; M. J. Kim et al. Manganese doping of monolayer MoS2: The substrate is critical, Nano Lett., Volume 15 (2015), pp. 6586-6591 | DOI

[20] C. Vergnaud; M. Gay; C. Alvarez; M.-T. Dau; F. Pierre; D. Jalabert; C. Licitra; A. Marty; C. Beigné; B. Grévin; O. Renault; H. Okuno; M. Jamet Van der Waals solid phase epitaxy to grow large-area manganese-doped MoSe2 few-layers on SiO2/Si, 2D Mater., Volume 6 (2019), 035019 | DOI

[21] C. J. Alvarez; M. T. Dau; A. Marty; C. Vergnaud; H. L. Poche; P. Pochet; M. Jamet; H. Okuno Impact of a van der Waals interface on intrinsic and extrinsic defects in an MoSe2 monolayer, Nanotechnology, Volume 29 (2018), 425706 | DOI

[22] Y. Ma; S. Kolekar; H. C. Diaz; J. Aprojanz; I. Miccoli; C. Tegenkamp; M. Batzill Metallic twin grain boundaries embedded in MoSe2 monolayers grown by molecular beam epitaxy, ACS Nano, Volume 11 (2017), pp. 5130-5139 | DOI

[23] T. L. Quang; V. Cherkez; K. Nogajewski; M. Potemski; M. T. Dau; M. Jamet; P. Mallet; J.-Y. Veuillen Scanning tunneling spectroscopy of van der Waals graphene/semiconductor interfaces: absence of fermi level pinning, 2D Mater., Volume 4 (2017), 035019 | DOI

[24] H. Liu; L. Jiao; F. Yang; Y. Cai; X. Wu; W. Ho; C. Gao; J. Jia; N. Wang; H. Fan; W. Yao; M. Xie Dense network of one-dimensional midgap metallic modes in monolayer MoSe2 and their spatial undulations, Phys. Rev. Lett., Volume 113 (2014), 066105

[25] S. Barja; S. Wickenburg; Z.-F. Liu; Y. Zhang; H. Ryu; M. M. Ugeda; Z. Hussain; Z.-X. Shen; S.-K. Mo; E. Wong et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2, Nat. Phys., Volume 12 (2016), pp. 751-756 | DOI

[26] P. Mallet; F. Chiapello; H. Okuno; H. Boukari; M. Jamet; J.-Y. Veuillen Bound hole states associated to individual vanadium atoms incorporated into monolayer WSe2, Phys. Rev. Lett., Volume 125 (2020), 036802 | DOI

[27] S. Barja; S. Refaely-Abramson; B. Schuler; D. Y. Qiu; A. Pulkin; S. Wickenburg; H. Ryu; M. M. Ugeda; C. Kastl; C. Chen et al. Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides, Nat. Commun., Volume 10 (2019), 3382 | DOI

[28] S. Yoshida; Y. Kobayashi; R. Sakurada; S. Mori; Y. Miyata; H. Mogi; T. Koyama; O. Takeuchi; H. Shigekawa Microscopic basis for the band engineering of Mo1xWxS2-based heterojunction, Sci. Rep., Volume 5 (2015), 14808 | DOI

[29] Y.-H. Chu; L.-H. Wang; S.-Y. Lee; H.-J. Chen; P.-Y. Yang; C. J. Butler; L.-S. Lu; H. Yeh; W.-H. Chang; M.-T. Lin Atomic scale depletion region at one dimensional MoSe2–WSe2 heterointerface, Appl. Phys. Lett., Volume 113 (2018), 241601

[30] A. Ramasubramaniam; D. Naveh Mn-doped monolayer MoS2: An atomically thin dilute magnetic semiconductor, Phys. Rev. B, Volume 87 (2013), 195201 | DOI

[31] Y. C. Cheng; Q. Y. Zhang; U. Schwingenschlogl Valley polarization in magnetically doped single-layer transition-metal dichalcogenides, Phys. Rev. B, Volume 89 (2014), 155409 | DOI

[32] X. Lin; J. Ni Charge and magnetic states of Mn-, Fe-, and Co-doped monolayer MoS2, J. Appl. Phys., Volume 116 (2014), 044311

[33] C. Zhang; A. Johnson; C.-L. Hsu; L.-J. Li; C.-K. Shih Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending, Nano Lett., Volume 14 (2014), pp. 2443-2447 | DOI

[34] L. Quang; K. Nogajewski; M. Potemski; M. T. Dau; M. Jamet; P. Mallet; J.-Y. Veuillen Band-bending induced by charged defects and edges of atomically thin transition metal dichalcogenide films, 2D Mater., Volume 5 (2018), 035034 | DOI

[35] P. Weightman; E. D. Roberts; C. E. Johnson L2,3MM auger processes in selenium, J. Phys. C: Solid State Phys., Volume 4 (1975), 0550

[36] M. C. Biesinger; B. P. Payne; A. P. Grosvenor; M. W. M. Lau; A. R. Gerson; R. S. C. Smart Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci., Volume 257 (2011), pp. 2717-2730 | DOI

[37] J. J. Yeh; I. Lindau Atomic subshell photoionization cross sections and asymmetry parameters: 1Z103, At. Data Nucl. Data Tables, Volume 32 (1985), pp. 1-155 | DOI

[38] M. Escher; N. Weber; M. Merkel; C. Ziethen; P. Bernhard; G. Schönhense; S. Schmidt; F. Forster; F. Reinert; B. Krömker; D. Funnemann NanoESCA: a novel energy filter for imaging X-ray photoemission spectroscopy, J. Phys.: Condens. Matter, Volume 17 (2005), p. S1329-S1338

[39] M. Escher; K. Winkler; O. Renault; N. Barrett Applications of high lateral and energy resolution imaging XPS with a double hemispherical analyser based spectromicroscope, J. Elect. Spectr. Relat. Phenom., Volume 178 (2010), pp. 303-316 | DOI

[40] M. Kan; S. Adhikarib; Q. Sun Ferromagnetism in MnX2 (X = S, Se) monolayers, Phys. Chem. Chem. Phys., Volume 16 (2014), p. 4990 | DOI

[41] D. L. Duong; S.-G. Kim; Y. H. Lee Gate modulation of the long-range magnetic order in a vanadium-doped WSe2 semiconductor, AIP Adv., Volume 10 (2020), 065220 | DOI

[42] Y. T. H. Pham; M. Liu; V. O. Jimenez; Z. Yu; V. Kalappattil; F. Zhang; K. Wang; T. Williams; M. Terrones; M.-H. Phan Tunable ferromagnetism and thermally induced spin flip in vanadium-doped tungsten diselenide monolayers at room temperature, Adv. Mater., Volume 32 (2020), 2003607

[43] S. J. Yun; D. L. Duong; D. M. Ha; K. Singh; T. L. Phan; W. Choi; Y.-M. Kim; Y. H. Lee Ferromagnetic order at room temperature in monolayer WSe2 semiconductor via vanadium dopant, Adv. Sci., Volume 7 (2020), 1903076

Cité par Sources :

Commentaires - Politique