logo CRAS
Comptes Rendus. Physique
The search for manganese incorporation in MoSe 2 monolayer epitaxially grown on graphene
Comptes Rendus. Physique, Online first (2021), pp. 1-17.

Part of the special issue: Recent advances in 2D material physics

The introduction of magnetism in two-dimensional (2D) materials represents an intense field of research nowadays and the quest to reach above-room-temperature ordering temperatures is still underway. Intrinsic ferromagnetism was discovered in 2017 in CrI 3 and Cr 2 Ge 2 Te 6 in the monolayer form with low Curie temperatures. An alternative method to introduce magnetism into conventional 2D materials is substitutional doping with magnetic impurities similarly to three-dimensional diluted magnetic semiconductors. The case of Mn-doped transition metal dichalcogenide (MoS 2 , MoSe 2 , WS 2 , WSe 2 ) monolayers is very interesting because combining out-of-plane ferromagnetism and valley contrast leads to ferrovalley materials. In this work, we focus on the incorporation of Mn in MoSe 2 by molecular beam epitaxy on graphene which has been rarely addressed up to now. By using a multiscale characterization approach, we demonstrate that Mn atoms are incorporated into the MoSe 2 monolayer up to 5 atomic percent. However, when incorporated into the film, Mn atoms tend to diffuse to the grain edges forming undefined Mo x Mn y Se z phase at grain boundaries after completion of the MoSe 2 monolayer. This segregation leaves the crystalline and electronic structure of MoSe 2 unmodified. Above 5%, the saturation of Mn content in MoSe 2 leads to the formation of epitaxial MnSe clusters.

Online First:
DOI: https://doi.org/10.5802/crphys.69
Keywords: 2D materials, Magnetic doping, Molecular beam epitaxy, Transmission electron microscopy, Scanning tunneling microscopy, Momentum resolved photoemission electron microscopy
Maxime Gay 1; Minh-Tuan Dau 2; Céline Vergnaud 2; Alain Marty 2; Frédéric Bonell 2; Hervé Boukari 3; Colin Paillet 1; Bérangère Hyot 1; Hanako Okuno 4; Pierre Mallet 3; Jean-Yves Veuillen 3; Olivier Renault 1; Matthieu Jamet 2

1. Univ. Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France
2. Univ. Grenoble Alpes, CEA, CNRS, Spintec, F-38000 Grenoble, France
3. Univ. Grenoble Alpes, CNRS, Institut Néel, F-38000 Grenoble, France
4. Univ. Grenoble Alpes, CEA, IRIG-MEM, F-38000 Grenoble, France
     author = {Maxime Gay and Minh-Tuan Dau and C\'eline Vergnaud and Alain Marty and Fr\'ed\'eric Bonell and Herv\'e Boukari and Colin Paillet and B\'erang\`ere Hyot and Hanako Okuno and Pierre Mallet and Jean-Yves Veuillen and Olivier Renault and Matthieu Jamet},
     title = {The search for manganese incorporation {in~MoSe}$_{{2}}$ monolayer epitaxially grown on graphene},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2021},
     doi = {10.5802/crphys.69},
     language = {en},
     note = {Online first},
AU  - Maxime Gay
AU  - Minh-Tuan Dau
AU  - Céline Vergnaud
AU  - Alain Marty
AU  - Frédéric Bonell
AU  - Hervé Boukari
AU  - Colin Paillet
AU  - Bérangère Hyot
AU  - Hanako Okuno
AU  - Pierre Mallet
AU  - Jean-Yves Veuillen
AU  - Olivier Renault
AU  - Matthieu Jamet
TI  - The search for manganese incorporation in MoSe$_{{2}}$ monolayer epitaxially grown on graphene
JO  - Comptes Rendus. Physique
PY  - 2021
DA  - 2021///
PB  - Académie des sciences, Paris
N1  - Online first
UR  - https://doi.org/10.5802/crphys.69
DO  - 10.5802/crphys.69
LA  - en
ID  - CRPHYS_2021__22_S4_A2_0
ER  - 
%0 Journal Article
%A Maxime Gay
%A Minh-Tuan Dau
%A Céline Vergnaud
%A Alain Marty
%A Frédéric Bonell
%A Hervé Boukari
%A Colin Paillet
%A Bérangère Hyot
%A Hanako Okuno
%A Pierre Mallet
%A Jean-Yves Veuillen
%A Olivier Renault
%A Matthieu Jamet
%T The search for manganese incorporation in MoSe$_{{2}}$ monolayer epitaxially grown on graphene
%J Comptes Rendus. Physique
%D 2021
%I Académie des sciences, Paris
%Z Online first
%U https://doi.org/10.5802/crphys.69
%R 10.5802/crphys.69
%G en
%F CRPHYS_2021__22_S4_A2_0
Maxime Gay; Minh-Tuan Dau; Céline Vergnaud; Alain Marty; Frédéric Bonell; Hervé Boukari; Colin Paillet; Bérangère Hyot; Hanako Okuno; Pierre Mallet; Jean-Yves Veuillen; Olivier Renault; Matthieu Jamet. The search for manganese incorporation in MoSe$_{{2}}$ monolayer epitaxially grown on graphene. Comptes Rendus. Physique, Online first (2021), pp. 1-17. doi : 10.5802/crphys.69.

[1] S. A. Wolf; D. D. Awschalom; R. A. Buhrman; J. M. Daughton; S. von Molnár; M. L. Roukes; A. Y. Chtchelkanova; D. M. Treger Spintronics: A spin-based electronics vision for the future, Science, Volume 294 (2001), pp. 1488-1495 | Article

[2] H. Ohno Making nonmagnetic semiconductors ferromagnetic, Science, Volume 281 (1998), pp. 951-958 | Article

[3] M. Sawicki; D. Chiba; A. Korbecka; Y. Nishitani; J. A. Majewski; F. Matsukura; T. Dietl; H. Ohno Experimental probing of the interplay between ferromagnetism and localization in (Ga, Mn)As, Nat. Phys., Volume 6 (2010), pp. 22-25 | Article

[4] D. Chiba; M. Sawicki; Y. Nishitani; Y. Nakatani; F. Matsukura; H. Ohno Magnetization vector manipulation by electric fields, Nature, Volume 455 (2008), pp. 515-518 | Article

[5] L. Chen; S. Yan; P. F. Xu; J. Lu; W. Z. Wang; J. J. Deng; X. Qian; Y. Ji; J. H. Zhaoa Low-temperature magnetotransport behaviors of heavily Mn-doped (Ga, Mn)As films with high ferromagnetic transition temperature, Appl. Phys. Lett., Volume 95 (2009), 182505 | Article

[6] T. Dietl; K. Sato; T. Fukushima; A. Bonanni; M. Jamet; A. Barski; S. Kuroda; M. Tanaka; P. N. Hai; H. Katayama-Yoshida Spinodal nanodecomposition in semiconductors doped with transition metals, Rev. Mod. Phys., Volume 87 (2015), pp. 1311-1377 | Article

[7] K. F. Mak; C. Lee; J. Hone; J. Shan; T. F. Heinz Atomically thin MoS 2 : A new direct-gap semiconductor, Phys. Rev. Lett., Volume 105 (2010), 136805

[8] B. Radisavljevic; A. Radenovic; J. Brivio; V. Giacometti; A. Kis Single-layer MoS 2 transistors, Nat. Nanotechnol., Volume 6 (2011), pp. 147-150 | Article

[9] H. Ohno; A. Shen; F. Matsukura; A. Oiwa; A. Endo; S. Katsumoto; Y. Iye (Ga, Mn)As: A new diluted magnetic semiconductor based on GaAs, Appl. Phys. Lett., Volume 69 (1996), pp. 363-365 | Article

[10] A. Koma Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system, Thin Solid Films, Volume 216 (1992), pp. 72-76 | Article

[11] M. T. Dau; M. Gay; D. D. Felice; C. Vergnaud; A. Marty; C. Beigné; G. Renaud; O. Renault; P. Mallet et al. Beyond van der Waals interaction: The case of MoSe 2 epitaxially grown on few-layer graphene, ACS Nano, Volume 12 (2018), pp. 2319-2331 | Article

[12] M. T. Dau; C. Vergnaud; A. Marty; C. Beigné; S. Gambarelli; V. Maurel; T. Journot; B. Hyot; T. Guillet; B. Grévin; H. Okuno; M. Jamet The valley nernst effect in WSe 2 , Nat. Commun., Volume 10 (2019), 5796

[13] M. T. Dau; C. Vergnaud; M. Gay; C. J. Alvarez; A. Marty; C. Beigné; D. Jalabert; J.-F. Jacquot; O. Renault; H. Okuno; M. Jamet van der Waals epitaxy of Mn-doped MoSe 2 on mica, APL Mater., Volume 7 (2019), 051111

[14] C. Vergnaud; M.-T. Dau; B. Grévin; C. Licitra; A. Marty; H. Okuno; M. Jamet New approach for the molecular beam epitaxy growth of scalable WSe 2 monolayers, Nanotechnology, Volume 31 (2020), 255602 | Article

[15] S. Vishwanath; X. Liu; S. Rouvimov; L. Basile; N. Lu; A. Azcatl; K. Magno; R. M. Wallace; M. Kim; J.-C. Idrobo; J. K. Furdyna; D. Jena; H. G. Xing Controllable growth of layered selenide and telluride heterostructures and superlattices using molecular beam epitaxy, J. Mater. Res., Volume 31 (2016), pp. 900-910 | Article

[16] Chen M.-W.; D. Ovchinnikov; S. Lazar; M. Pizzochero; M. B. Whitwick; A. Surrente; M. Baranowski; O. L. Sanchez; P. Gillet; P. Plochocka; O. V. Yazyev; A. Kis Highly oriented atomically thin ambipolar MoSe 2 grown by molecular beam epitaxy, ACS Nano, Volume 11 (2017), pp. 6355-6361 | Article

[17] R. Mishra; W. Zhou; S. J. Pennycook; S. T. Pantelides; J.-C. Idrobo Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides, Phys. Rev. B, Volume 88 (2013), 144409 | Article

[18] J. Wang; F. Sun; S. Yang; Y. Li; C. Zhao; M. Xu; Y. Zhang; H. Zeng Robust ferromagnetism in Mn-doped MoS 2 nanostructures, Appl. Phys. Lett., Volume 109 (2016), 092401

[19] K. Zhang; S. Feng; J. Wang; A. Azcatl; N. Lu; R. Addou; N. Wang; C. Zhou; J. Lerach; V. Bojan; M. J. Kim et al. Manganese doping of monolayer MoS 2 : The substrate is critical, Nano Lett., Volume 15 (2015), pp. 6586-6591 | Article

[20] C. Vergnaud; M. Gay; C. Alvarez; M.-T. Dau; F. Pierre; D. Jalabert; C. Licitra; A. Marty; C. Beigné; B. Grévin; O. Renault; H. Okuno; M. Jamet Van der Waals solid phase epitaxy to grow large-area manganese-doped MoSe 2 few-layers on SiO 2 /Si, 2D Mater., Volume 6 (2019), 035019 | Article

[21] C. J. Alvarez; M. T. Dau; A. Marty; C. Vergnaud; H. L. Poche; P. Pochet; M. Jamet; H. Okuno Impact of a van der Waals interface on intrinsic and extrinsic defects in an MoSe 2 monolayer, Nanotechnology, Volume 29 (2018), 425706 | Article

[22] Y. Ma; S. Kolekar; H. C. Diaz; J. Aprojanz; I. Miccoli; C. Tegenkamp; M. Batzill Metallic twin grain boundaries embedded in MoSe 2 monolayers grown by molecular beam epitaxy, ACS Nano, Volume 11 (2017), pp. 5130-5139 | Article

[23] T. L. Quang; V. Cherkez; K. Nogajewski; M. Potemski; M. T. Dau; M. Jamet; P. Mallet; J.-Y. Veuillen Scanning tunneling spectroscopy of van der Waals graphene/semiconductor interfaces: absence of fermi level pinning, 2D Mater., Volume 4 (2017), 035019 | Article

[24] H. Liu; L. Jiao; F. Yang; Y. Cai; X. Wu; W. Ho; C. Gao; J. Jia; N. Wang; H. Fan; W. Yao; M. Xie Dense network of one-dimensional midgap metallic modes in monolayer MoSe 2 and their spatial undulations, Phys. Rev. Lett., Volume 113 (2014), 066105

[25] S. Barja; S. Wickenburg; Z.-F. Liu; Y. Zhang; H. Ryu; M. M. Ugeda; Z. Hussain; Z.-X. Shen; S.-K. Mo; E. Wong et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe 2 , Nat. Phys., Volume 12 (2016), pp. 751-756 | Article

[26] P. Mallet; F. Chiapello; H. Okuno; H. Boukari; M. Jamet; J.-Y. Veuillen Bound hole states associated to individual vanadium atoms incorporated into monolayer WSe 2 , Phys. Rev. Lett., Volume 125 (2020), 036802 | Article

[27] S. Barja; S. Refaely-Abramson; B. Schuler; D. Y. Qiu; A. Pulkin; S. Wickenburg; H. Ryu; M. M. Ugeda; C. Kastl; C. Chen et al. Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides, Nat. Commun., Volume 10 (2019), 3382 | Article

[28] S. Yoshida; Y. Kobayashi; R. Sakurada; S. Mori; Y. Miyata; H. Mogi; T. Koyama; O. Takeuchi; H. Shigekawa Microscopic basis for the band engineering of Mo 1x W x S 2 -based heterojunction, Sci. Rep., Volume 5 (2015), 14808 | Article

[29] Y.-H. Chu; L.-H. Wang; S.-Y. Lee; H.-J. Chen; P.-Y. Yang; C. J. Butler; L.-S. Lu; H. Yeh; W.-H. Chang; M.-T. Lin Atomic scale depletion region at one dimensional MoSe 2 –WSe 2 heterointerface, Appl. Phys. Lett., Volume 113 (2018), 241601

[30] A. Ramasubramaniam; D. Naveh Mn-doped monolayer MoS 2 : An atomically thin dilute magnetic semiconductor, Phys. Rev. B, Volume 87 (2013), 195201 | Article

[31] Y. C. Cheng; Q. Y. Zhang; U. Schwingenschlogl Valley polarization in magnetically doped single-layer transition-metal dichalcogenides, Phys. Rev. B, Volume 89 (2014), 155409 | Article

[32] X. Lin; J. Ni Charge and magnetic states of Mn-, Fe-, and Co-doped monolayer MoS 2 , J. Appl. Phys., Volume 116 (2014), 044311

[33] C. Zhang; A. Johnson; C.-L. Hsu; L.-J. Li; C.-K. Shih Direct imaging of band profile in single layer MoS 2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending, Nano Lett., Volume 14 (2014), pp. 2443-2447 | Article

[34] L. Quang; K. Nogajewski; M. Potemski; M. T. Dau; M. Jamet; P. Mallet; J.-Y. Veuillen Band-bending induced by charged defects and edges of atomically thin transition metal dichalcogenide films, 2D Mater., Volume 5 (2018), 035034 | Article

[35] P. Weightman; E. D. Roberts; C. E. Johnson L 2,3 MM auger processes in selenium, J. Phys. C: Solid State Phys., Volume 4 (1975), 0550

[36] M. C. Biesinger; B. P. Payne; A. P. Grosvenor; M. W. M. Lau; A. R. Gerson; R. S. C. Smart Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci., Volume 257 (2011), pp. 2717-2730 | Article

[37] J. J. Yeh; I. Lindau Atomic subshell photoionization cross sections and asymmetry parameters: 1Z103, At. Data Nucl. Data Tables, Volume 32 (1985), pp. 1-155 | Article

[38] M. Escher; N. Weber; M. Merkel; C. Ziethen; P. Bernhard; G. Schönhense; S. Schmidt; F. Forster; F. Reinert; B. Krömker; D. Funnemann NanoESCA: a novel energy filter for imaging X-ray photoemission spectroscopy, J. Phys.: Condens. Matter, Volume 17 (2005), p. S1329-S1338

[39] M. Escher; K. Winkler; O. Renault; N. Barrett Applications of high lateral and energy resolution imaging XPS with a double hemispherical analyser based spectromicroscope, J. Elect. Spectr. Relat. Phenom., Volume 178 (2010), pp. 303-316 | Article

[40] M. Kan; S. Adhikarib; Q. Sun Ferromagnetism in MnX 2 (X = S, Se) monolayers, Phys. Chem. Chem. Phys., Volume 16 (2014), p. 4990 | Article

[41] D. L. Duong; S.-G. Kim; Y. H. Lee Gate modulation of the long-range magnetic order in a vanadium-doped WSe 2 semiconductor, AIP Adv., Volume 10 (2020), 065220 | Article

[42] Y. T. H. Pham; M. Liu; V. O. Jimenez; Z. Yu; V. Kalappattil; F. Zhang; K. Wang; T. Williams; M. Terrones; M.-H. Phan Tunable ferromagnetism and thermally induced spin flip in vanadium-doped tungsten diselenide monolayers at room temperature, Adv. Mater., Volume 32 (2020), 2003607

[43] S. J. Yun; D. L. Duong; D. M. Ha; K. Singh; T. L. Phan; W. Choi; Y.-M. Kim; Y. H. Lee Ferromagnetic order at room temperature in monolayer WSe 2 semiconductor via vanadium dopant, Adv. Sci., Volume 7 (2020), 1903076

Cited by Sources: