The existence of the Higgs boson was postulated more than 50 years ago, without any indication of its mass. The quest that followed, with several generations of particle physics experiments, culminated with the recent discovery of a new particle with a mass of 125 GeV. At least another half-century will be needed to map the properties of this particle with sufficient precision to understand its deepest origin.
L’existence du boson de Higgs a été postulée il y a plus de 50 ans sans indication d’un ordre de grandeur pour sa masse. La longue recherche qui s’en suivit, impliquant plusieurs générations d’expériences de physique des particules a été enfin couronnée par la découverte récente d’une nouvelle particule de masse de 125 GeV. Il s’en faudra sans doute de cinquante années supplémentaires pour en découvrir les propriétés avec une précision suffisante pour comprendre la profonde origine physique de cette particule.
Mots-clés : Higgs, Découverte, Propriétés, Futur, Collisionneurs, Nouvelle physique
Heather Gray 1; Patrick Janot 2
@article{CRPHYS_2020__21_1_23_0, author = {Heather Gray and Patrick Janot}, title = {Higgs {Physics}}, journal = {Comptes Rendus. Physique}, pages = {23--43}, publisher = {Acad\'emie des sciences, Paris}, volume = {21}, number = {1}, year = {2020}, doi = {10.5802/crphys.8}, language = {en}, }
Heather Gray; Patrick Janot. Higgs Physics. Comptes Rendus. Physique, A perspective of High Energy Physics from precision measurements, Volume 21 (2020) no. 1, pp. 23-43. doi : 10.5802/crphys.8. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.8/
[1] Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett., Volume 13 (1964) no. 9, pp. 321-323 | DOI | MR
[2] Broken symmetries, massless particles and gauge fields, Phys. Lett., Volume 12 (1964) no. 2, pp. 132-133 https://cds.cern.ch/record/641590 | DOI
[3] Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett., Volume 13 (1964), pp. 508-509 | DOI | MR
[4] Global conservation laws and massless particles, Phys. Rev. Lett., Volume 13 (1964) no. 20, pp. 585-587 | DOI
[5] Partial symmetries of weak interactions, Nucl. Phys., Volume 22 (1961) no. 4, pp. 579-588 | DOI
[6] A model of leptons, Phys. Rev. Lett., Volume 19 (1967) no. 21, pp. 1264-1266 | DOI
[7] Weak and Electromagnetic Interactions, Conf. Proc. C, Volume 680519 (1968), pp. 367-377 | DOI
[8] Progress in Gauge Theories, Proceedings, 17th International Conference of High Energy Physics (ICHEP), London, England, July 01–July 10, 1974, 1974, p. III.89 http://inspirehep.net/record/3000/files/c74-07-01-p089.pdf
[9] On the Gaussian peak of the product of decay probabilities of the standard model Higgs boson at a mass m 125 GeV, 2012 (preprint) | arXiv
[10] Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, 2016 (preprint) | arXiv | DOI
[11] Experimental search for a low-mass scalar boson, Phys. Rev. Lett., Volume 33 (1974), pp. 1628-1631 | DOI
[12] Evidence against the existence of a low mass scalar boson from neutron-nucleus scattering, Phys. Lett. B, Volume 57 (1975) no. 3, pp. 270-272 | DOI
[13] Measurement of the decay eee and search for a light Higgs boson, Phys. Lett. B, Volume 222 (1989), pp. 533-537 | DOI
[14] Search for a neutral Higgs particle in the decay sequence and H ee, Phys. Lett. B, Volume 235 (1989) no. 3-4, pp. 356-362 https://cds.cern.ch/record/203195 | DOI
[15] Search for a Neutral Higgs Boson in B Meson Decay, Phys. Rev. D, Volume 40 (1989), pp. 712-720 | DOI
[16] Proc. of the XXIVth Int. Conf. of High Energy Physics, Munich, Germany, August, 1988, 1988
[17] Higgs search at LEP, LEP Physics Workshop Geneva, Switzerland, February 20, 1989, 1989, p. 59
[18] An unambiguous search for a light Higgs boson, Phys. Lett. B, Volume 229 (1989), pp. 150-155 | DOI
[19] A brief history of the LEP collider, Nucl. Phys. B Proc. Suppl., Volume 109 (2002), pp. 17-31 | DOI
[20] The Tevatron energy doubler: a superconducting accelerator, Ann. Rev. Nucl. Part. Sci., Volume 35 (1985), pp. 605-660 | DOI
[21] Searching for Higgs bosons at LEP1 and LEP2, Advanced Series on Directions in High Energy Physics, World Scientific, Dec., 1997, pp. 104-130 | DOI
[22] Search for the standard model Higgs boson at LEP, Phys. Lett. B, Volume 565 (2003), pp. 61-75 | DOI
[23] Update of the global electroweak fit and constraints on two-Higgs-doublet models, Eur. Phys. J. C, Volume 78 (2018), 675 | DOI
[24] Higgs boson studies at the Tevatron, Phys. Rev. D, Volume 88 (2013), 052014 | DOI
[25] The large hadron collider, Ann. Rev. Nucl. Part. Sci., Volume 61 (2011), pp. 435-466 | DOI
[26] Combined search for the Standard Model Higgs boson using up to 4.9 fb of pp collision data at TeV with the ATLAS detector at the LHC, Phys. Lett. B, Volume 710 (2012) no. 1, pp. 49-66 | DOI
[27] Combined results of searches for the standard model Higgs boson in pp collisions at TeV, Phys. Lett. B, Volume 710 (2012), pp. 26-48 | DOI
[28] Status of Standard Model Higgs Searches in ATLAS, 2012 https://indico.cern.ch/event/197461/contributions/1478916/attachments/290953/406671/ATLAS_Higgs-CERN-seminar-2012.pdf (CERN Seminar)
[29] Status of the CMS SM Higgs Search, 2012 https://indico.cern.ch/event/197461/contributions/1478917/attachments/290954/406673/CMS_4July2012_Final.pdf (CERN Seminar)
[30] Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B, Volume 716 (2012) no. 1, pp. 1-29 | DOI
[31] Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B, Volume 716 (2012) no. 1, pp. 30-61 | DOI
[32] Combined Measurement of the Higgs Boson Mass in pp Collisions at and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett., Volume 114 (2015) no. 19, 191803 | DOI
[33] Measurement of the Higgs boson mass in the HZZ4 and H channels with TeV pp collisions using the ATLAS detector, Phys. Lett. B, Volume 784 (2018), pp. 345-366 | DOI
[34] A measurement of the Higgs boson mass in the diphoton decay channel (2019) no. CMS-PAS-HIG-19-004 (Technical report)
[35] Combined measurements of Higgs boson production and decay using up to fb of proton-proton collision data at 13 TeV collected with the ATLAS experiment (2019) (preprint) | arXiv
[36] Inadequacy of zero-width approximation for a light Higgs boson signal, JHEP, Volume 08 (2012), 116
[37] Constraining the Higgs boson width with ZZ production at the LHC, Phys. Rev. D, Volume 88 (2013), 054024 | DOI
[38] Bounding the Higgs width at the LHC using full analytic results for gg ee , JHEP, Volume 04 (2014), 60 | DOI
[39] Bounding the Higgs width at the LHC: complementary results from H WW, Phys. Rev. D, Volume 89 (2014), 053011 | DOI
[40] Test of CP Invariance in vector-boson fusion production of the Higgs boson using the Optimal Observable method in the ditau decay channel with the ATLAS detector, Eur. Phys. J. C, Volume 76 (2016), 658
[41] Constraints on anomalous HVV couplings from the production of Higgs bosons decaying to lepton pairs, Phys. Rev. D, Volume 100 (2019), 112002
[42] Measurements of properties of the Higgs boson in the four-lepton final state in proton-proton collisions at (2019) no. CMS-PAS-HIG-19-001 (preprint) (Technical report)
[43] Measurements of Higgs boson production via gluon fusion and vector boson fusion in the diphoton decay channel at TeV (2019) no. CMS-PAS-HIG-18-029 (preprint) (Technical report)
[44] Observation of tH production, Phys. Rev. Lett., Volume 120 (2018), 231801
[45] Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector, Phys. Lett. B, Volume 784 (2018), pp. 173-191 | DOI
[46] Observation of decays and VH production with the ATLAS detector, Phys. Lett. B, Volume 786 (2018), pp. 59-86 | DOI
[47] Observation of Higgs boson decay to bottom quarks, Phys. Rev. Lett., Volume 121 (2018), 121801
[48] Search for the decay of a Higgs boson in the channel in proton–proton collisions at TeV, JHEP, Volume 11 (2018), 152
[49] Searches for the Z decay mode of the Higgs boson and for new high-mass resonances in pp collisions at TeV with the ATLAS detector, JHEP, Volume 10 (2017), 112
[50] A search for the dimuon decay of the Standard Model Higgs boson in pp collisions at TeV with the ATLAS Detector (2019) no. ATLAS-CONF-2019-028 (Technical report)
[51] Search for the Higgs Boson Decaying to Two Muons in Proton–Proton Collisions at TeV, Phys. Rev. Lett., Volume 122 (2019), 021801
[52] Search for the decay of the Higgs boson to charm quarks with the ATLAS experiment, Phys. Rev. Lett., Volume 120 (2018), 211802
[53] A search for the standard model Higgs boson decaying to charm quarks, JHEP, Volume 03 (2020), 131
[54] Combination of searches for Higgs boson pairs in pp collisions at with the ATLAS detector, Phys. Lett. B, Volume 800 (2020), 135103
[55] Combination of searches for Higgs boson pair production in proton–proton collisions at TeV, Phys. Rev. Lett. (2018) | arXiv
[56] Search for invisible Higgs boson decays in vector boson fusion at TeV with the ATLAS detector, Phys. Lett. B, Volume 793 (2019), pp. 499-519 | DOI
[57] Search for invisible decays of a Higgs boson produced through vector boson fusion in proton–proton collisions at TeV, Phys. Lett. B, Volume 793 (2019), pp. 520-551
[58] ATLAS Collaboration, “HBSM working group hMSSM summary plots”, ATL-PHYS-PUB-2019-034 (2019)
[59] High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report V. 0.1, 2017 https://cds.cern.ch/record/2284929 (CERN Yellow Reports: Monographs, CERN, Geneva) | DOI
[60] HE-LHC: the high-energy large hadron collider volume, Eur. Phys. J. ST, Volume 228 (2019), pp. 1109-1382 | DOI
[61] FCC-hh: the hadron collider, Eur. Phys. J. ST, Volume 228 (2019), pp. 755-1107 | DOI
[62] CEPC Conceptual Design Report: Volume 1 - Accelerator, 2018 (preprint) | arXiv
[63] Report from Working Group 2, CERN Yellow Rep. Monogr., Volume 7 (2019), p. 221
[64] FCC physics opportunities, Eur. Phys. J. C, Volume 79 (2019), 474 | DOI
[65] The Higgs self-coupling at FCC-hh, 3rd FCC Physics and Experiments Workshop, January, 2020, 2020 https://indico.cern.ch/event/838435/contributions/3635737/attachments/1970292/3277240/HH_fccphysicsWS.pdf
[66] FCC physics opportunities, Eur. Phys. J. C, Volume 79 (2019), 474 | DOI
[67] FCC-ee: the lepton collider, Eur. Phys. J. Special Topics, Volume 228 (2019), pp. 261-623 | DOI
[68] FCC-ee: your questions answered, CERN Council Open Symposium on the Update of European Strategy for Particle Physics (EPPSU) Granada, Spain, May 13–16, 2019 (A. Blondel; P. Janot, eds.), 2019
[69] CEPC Conceptual Design Report: Volume 2 - Physics & Detector, 2018 (preprint) | arXiv
[70] Physics case for the international linear collider, 2015 (preprint) | arXiv
[71] Physics case for the 250 GeV stage of the international linear collider, 2017 (preprint) | arXiv
[72] Higgs physics at the CLIC electron–positron linear collider, Eur. Phys. J. C, Volume 77 (2017), 475 | DOI
[73] Physics Briefing Book: Input for the European Strategy for Particle Physics Update 2020, 2019 http://cds.cern.ch/record/2691414 (preprint) | arXiv
[74] A High Luminosity ee Collider in the LHC tunnel to study the Higgs Boson, 2011 (preprint) | arXiv
[75] A possible scheme to obtain ee and ee collisions at energies of hundreds of GeV, Phys. Lett. B, Volume 61 (1976) no. 3, pp. 313-315 | DOI
[76] Muon collider and neutrino factory, ICFA Beam Dynamic Newsletter (2011) no. 55 https://icfa-usa.jlab.org/archive/newsletter/icfa_bd_nl_55.pdf
[77] Muon colliders, Rev. Accelerator Sci. Technol., Volume 07 (2014), pp. 137-159 | DOI
[78] Muon colliders, 2019 (preprint) | arXiv
[79] Higgs physics at the future circular collider, PoS, Volume ICHEP2016 (2017), p. 434 | DOI
[80] Search for a standard model-like Higgs boson in the and ee decay channels at the LHC, Phys. Lett. B, Volume 744 (2015), pp. 184-207 | DOI
[81] Search for the Higgs boson decays H ee and H e in pp collisions at TeV with the ATLAS detector, Phys. Lett. B, Volume 801 (2020), 135148
[82] Higgs boson studies at future particle colliders, JHEP, Volume 01 (2020), 139
[83] An indirect model-dependent probe of the Higgs self-coupling, Phys. Rev. D, Volume 90 (2014), 015001 | DOI
[84] A global view on the Higgs self-coupling at lepton colliders, JHEP, Volume 02 (2018), 178
[85] Constraining the Higgs self couplings at ee colliders, 2018 (preprint) | arXiv | DOI
[86] Higgs boson pair production at colliders: status and perspectives, Double Higgs Production at Colliders Batavia, IL, USA, September 4, 2018–9, 2019 (B. Di Micco; M. Gouzevitch; J. Mazzitelli; C. Vernieri, eds.), 2019 https://lss.fnal.gov/archive/2019/conf/fermilab-conf-19-468-e-t.pdf
[87] Future strategies for the discovery and the precise measurement of the Higgs self coupling, 2018 (preprint) | arXiv
[88] Top-quark electroweak couplings at the FCC-ee, JHEP, Volume 04 (2015), 182
[89] High-energy high-luminosity ee collider using energy-recovery linacs, Phys. Lett. B, Volume 804 (2020), 135394 | DOI
[90] Radiative return for heavy Higgs boson at a muon collider, Phys. Rev. D, Volume 91 (2015), 015008 | DOI
[91] The muon collider as a HA factory, Phys. Lett. B, Volume 728 (2014), pp. 125-130 | DOI
[92] Higgs CP from HA0 decay, Acta Phys. Polon. B, Volume 34 (2003), pp. 4549-4560
[93] Circular and linear ee colliders: another story of complementarity, 2019 (preprint) | arXiv
Cited by Sources:
Comments - Policy