Comptes Rendus
W ± and Z 0 boson physics
[La physique des bosons W ± et Z 0 ]
Comptes Rendus. Physique, Volume 21 (2020) no. 1, pp. 9-22.

Les mesures de précision effectuées sur les bosons W ± et Z 0 aux collisionneurs e + e - et hadroniques ont permis de tester le Modèle Standard en tant que théorie quantique des champs, c’est-à-dire incluant des corrections quantiques d’ordre élevé. L’accord entre ces mesures et le Modèle Standard contraint fortement les scenarii de nouvelle physique. Des collaborations étroites entre expérimentateurs et théoriciens ainsi qu’entre expérimentateurs des différentes expériences, telles que celles engagées dans les années 1990, sont indispensables pour atteindre une grande precision. Un excellent contrôle des incertitudes systématiques expérimentales ainsi qu’une détermination de l’énergie des faisceaux et de leur intensité avec un niveau de précision qui n’avait encore jamais été atteint ont été indispensables pour un grand nombre de ces mesures. De futurs accélérateurs sont actuellement proposés afin d’accroître encore la précision de ces tests du Modèle Standard.

Precision measurements of the weak bosons (Z 0 and W ± ) at e + e - and hadron colliders have allowed the Standard Model to be tested as a quantum field theory, requiring the inclusion of higher order quantum loop corrections. The agreement of these measurements with the Standard Model puts strong constrains on New Physics scenarios. To achieve such precision, a close collaboration between experimenters and theorists, as well as between experimenters in different collaborations was pioneered in the 90s. A superb control of the experimental systematic uncertainties as well as an unprecedented level of precision on the collider beam energy and intensity was required in many of these measurements. New accelerators are proposed in the future that could improve these tests of the Standard Model even further.

Publié le :
DOI : 10.5802/crphys.7
Keywords: Large hadron collider, $Z^0$, $W^{\pm }$
Mot clés : Grand collisionneur de hadrons, $Z^0$, $W^{\pm }$
Frederic Teubert 1 ; Pippa Wells 1

1 European Organization for Nuclear Research (CERN), Geneva, Switzerland
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2020__21_1_9_0,
     author = {Frederic Teubert and Pippa Wells},
     title = {$W^{\pm }$ and $Z^0$ boson physics},
     journal = {Comptes Rendus. Physique},
     pages = {9--22},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {21},
     number = {1},
     year = {2020},
     doi = {10.5802/crphys.7},
     language = {en},
}
TY  - JOUR
AU  - Frederic Teubert
AU  - Pippa Wells
TI  - $W^{\pm }$ and $Z^0$ boson physics
JO  - Comptes Rendus. Physique
PY  - 2020
SP  - 9
EP  - 22
VL  - 21
IS  - 1
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.7
LA  - en
ID  - CRPHYS_2020__21_1_9_0
ER  - 
%0 Journal Article
%A Frederic Teubert
%A Pippa Wells
%T $W^{\pm }$ and $Z^0$ boson physics
%J Comptes Rendus. Physique
%D 2020
%P 9-22
%V 21
%N 1
%I Académie des sciences, Paris
%R 10.5802/crphys.7
%G en
%F CRPHYS_2020__21_1_9_0
Frederic Teubert; Pippa Wells. $W^{\pm }$ and $Z^0$ boson physics. Comptes Rendus. Physique, Volume 21 (2020) no. 1, pp. 9-22. doi : 10.5802/crphys.7. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.7/

[1] E. Fermi Attempt at a theory of β-rays, Il Nuovo Cimento, Volume 11 (1934), p. 1

[2] E. Fermi Attempt at a theory of β-rays. 1., Z. Phys., Volume 88 (1934), pp. 161-177 | DOI

[3] S. L. Glashow Partial-symmetries of weak interactions, Nuclear Phys., Volume 22 (1961), pp. 579-588 | DOI

[4] S. Weinberg A model of leptons, Phys. Rev. Lett., Volume 19 (1967), pp. 1264-1266 | DOI

[5] A. Salam Proc. 8th Nobel Symp., 1968, p. 367

[6] F. J. Hasert Search for elastic ν μ electron scattering, Phys. Lett. B, Volume 46 (1973), pp. 121-124 [5.11(1973)] | DOI

[7] F. J. Hasert Observation of neutrino like interactions without muon or electron in the Gargamelle neutrino experiment, Phys. Lett. B, Volume 46 (1973), pp. 138-140 [5.15(1973)] | DOI

[8] C. Rubbia; P. McIntyre; D. Cline Producing Massive Neutral Intermediate Vector Bosons with Existing Accelerators, Vieweg+Teubner Verlag, Wiesbaden, 1977, pp. 683-687

[9] G. Arnison Experimental observation of isolated large transverse energy electrons with associated missing energy at s = 540 Gev, Phys. Lett. B, Volume 122 (1983) no. 1, pp. 103-116 | DOI

[10] M. Banner Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the cern pp collider, Phys. Lett. B, Volume 122 (1983) no. 5, pp. 476-485 | DOI

[11] G. Arnison Experimental observation of lepton pairs of invariant mass around 95-GeV/c**2 at the CERN SPS collider, Phys. Lett. B, Volume 126 (1983), pp. 398-410 [7.55(1983)] | DOI

[12] P. Bagnaia Evidence for Z 0 e + e - at the CERN anti-p p collider, Phys. Lett. B, Volume 129 (1983), pp. 130-140 [7.69(1983)] | DOI

[13] R. Assmann Calibration of center-of-mass energies at LEP-1 for precise measurements of Z properties, Eur. Phys. J. C, Volume 6 (1999), pp. 187-223 | DOI

[14] R. Assmann Calibration of centre-of-mass energies at LEP 2 for a precise measurement of the W boson mass, Eur. Phys. J. C, Volume 39 (2005), pp. 253-292

[15] Precision electroweak measurements on the Z resonance, Phys. Rep., Volume 427 (2006) no. 5-6, pp. 257-454 | DOI

[16] Electroweak measurements in electron-positron collisions at W-Boson-pair energies at LEP, Phys. Rep., Volume 532 (2013) no. 4, pp. 119-244 | DOI

[17] T. A. Aaltonen Combination of CDF and D0 W-Boson mass measurements, Phys. Rev. D, Volume 88 (2013) no. 5, 052018

[18] M. Tanabashi Review of particle physics, Phys. Rev. D, Volume 98 (2018), 030001 | DOI

[19] Measurement of the W-boson mass in pp collisions at s=7 TeV with the ATLAS detector, Eur. Phys. J. C, Volume 78 (2018) no. 2, 110 [Erratum: Eur. Phys. J. C78 (2018) no. 11, 898]

[20] Measurement of the weak mixing angle using the forward-backward asymmetry of Drell-Yan events in pp collisions at 8 TeV, Eur. Phys. J. C, Volume 78 (2018) no. 9, 701

[21] (ATLAS Collaboration, “Measurement of the effective leptonic weak mixing angle using electron and muon pairs from Z-boson decay in the ATLAS experiment at s=8 TeV”. Technical Report ATLAS-CONF-2018-037, CERN, Geneva, Jul 2018)

[22] H. Baer The international linear collider technical design report - volume 2: Physics, 2013 (preprint) | arXiv

[23] A. Abada Fcc-ee: the lepton collider, Eur. Phys. J. Spec. Topics, Volume 228 (2019) no. 2, pp. 261-623 | DOI

[24] The CEPC Study Group CEPC conceptual design report: volume 1 - accelerator, 2018 (preprint) | arXiv

[25] P. Janot Direct measurement of α qed (mz 2 ) at the fcc-ee, J. High Energy Phys., Volume 2016 (2016) no. 2 | DOI

[26] A. Irles; R. Pöschl; F. Richard; H. Yamamoto Complementarity between ILC250 and ILC-GigaZ, 2019 (preprint) | arXiv

[27] A. Abada Fcc physics opportunities, Eur. Phys. J. C, Volume 79 (2019) no. 6, 474 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

The number of neutrinos and the Z line shape

Alain Blondel

C. R. Phys (2002)


André Lagarrigue: From cosmic rays to the discovery of the weak neutral currents

Michel Davier

C. R. Phys (2019)


Top quark physics at the LHC

Frédéric Déliot; Petra Van Mulders

C. R. Phys (2020)