Comptes Rendus
Research article
The outcomes of measurements in the de Broglie–Bohm theory
Comptes Rendus. Physique, Volume 22 (2021) no. 1, pp. 99-116.

Within the de Broglie–Bohm (dBB) theory, the measurement process and the determination of its outcome are usually discussed in terms of the effect of the Bohmian positions of the measured system S. This article shows that the Bohmian positions associated with the measurement apparatus M can actually play a crucial role in the determination of the result of measurement. Indeed, in many cases, the result is practically independent of the initial value of a Bohmian position associated with S, and determined only by those of M. The measurement then does not reveal the value of any pre-existing variable attached to S, but just the initial state of the measurement apparatus. Quantum contextuality then appears with particular clarity as a consequence of the dBB dynamics for entangled systems.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crphys.81
Keywords: quantum measurement, de Broglie–Bohm theory

Geneviève Tastevin 1; Franck Laloë 1

1 Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond 75005 Paris, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2021__22_1_99_0,
     author = {Genevi\`eve Tastevin and Franck Lalo\"e},
     title = {The outcomes of measurements in the de {Broglie{\textendash}Bohm} theory},
     journal = {Comptes Rendus. Physique},
     pages = {99--116},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {1},
     year = {2021},
     doi = {10.5802/crphys.81},
     language = {en},
}
TY  - JOUR
AU  - Geneviève Tastevin
AU  - Franck Laloë
TI  - The outcomes of measurements in the de Broglie–Bohm theory
JO  - Comptes Rendus. Physique
PY  - 2021
SP  - 99
EP  - 116
VL  - 22
IS  - 1
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.81
LA  - en
ID  - CRPHYS_2021__22_1_99_0
ER  - 
%0 Journal Article
%A Geneviève Tastevin
%A Franck Laloë
%T The outcomes of measurements in the de Broglie–Bohm theory
%J Comptes Rendus. Physique
%D 2021
%P 99-116
%V 22
%N 1
%I Académie des sciences, Paris
%R 10.5802/crphys.81
%G en
%F CRPHYS_2021__22_1_99_0
Geneviève Tastevin; Franck Laloë. The outcomes of measurements in the de Broglie–Bohm theory. Comptes Rendus. Physique, Volume 22 (2021) no. 1, pp. 99-116. doi : 10.5802/crphys.81. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.81/

[1] John S. Bell Bertlmann’s socks and the nature of reality, J. Phys. Colloques, Volume 42 (1981) no. C2, pp. 41-62 (this article is reprinted in [3, p. 139–158]) | DOI

[2] John S. Bell On the problem of hidden variables in quantum mechanics, Rev. Mod. Phys., Volume 38 (1966), pp. 447-452 reprinted in Quantum Theory and Measurement, J. A. Wheeler and W. H. Zurek editors, Princeton University Press (1983), pp. 396–402 and in [3, Chapter 1] | DOI | MR | Zbl

[3] John S. Bell Speakable and Unspeakable in Quantum Mechanics, Collected Papers on Quantum Philosophy, Cambridge University Press, 1987 second augmented edition (2004), which contains the complete set of J. Bell’s articles on quantum mechanics | Zbl

[4] Simon Kochen; Ernst P. Specker The problem of hidden variables in quantum mechanics, J. Math. Mech., Volume 17 (1967), pp. 59-87 | MR | Zbl

[5] Louis de Broglie La mécanique ondulatoire et la structure atomique de la matière et du rayonnement, Le Journal de Physique et Le Radium, Volume 8 (1927), pp. 225-241 | DOI | Zbl

[6] Louis de Broglie Tentative d’Interprétation Causale et Non-linéaire de la Mécanique Ondulatoire, VII, Gauthier-Villars, 1956 | Zbl

[7] Louis de Broglie Interpretation of quantum mechanics by the double solution theory, Ann. Fond. Louis Broglie, Volume 12 (1987) no. 4, pp. 399-421

[8] David J. Bohm A suggested interpretation of the quantum theory in terms of hidden variables, Phys. Rev., Volume 85 (1952), p. 166-179, 180–193 | DOI | MR | Zbl

[9] David Z. Albert Quantum mechanics and experience, Harvard University Press, 1992 | MR

[10] Peter R. Holland The Quantum Theory of Motion, Cambridge University Press, 1993 (see in particular § 8.3.4) | DOI

[11] Xavier Oriols; Jordi Mompart Chapter 1: Overview of Bohmian mechanics, Applied Bohmian mechanics. From nanoscale systems to cosmology, Editorial Pan Stanford Publishing, Pte. Ltd., 2012, pp. 15-147 (https://arxiv.org/abs/1206.1084v2) | DOI | Zbl

[12] Detlet Dürr; Sheldon Goldstein; Nino Zanghi Quantum physics without quantum philosophy, Springer, 2013 | Zbl

[13] Michel Gondran; Alexandre Gondran Numerical simulation of the double-slit interference with ultracold atoms, Am. J. Phys., Volume 73 (2005) no. 6, pp. 507-515 | DOI | Zbl

[14] Michel Gondran; Alexandre Gondran Mécanique quantique : et si Einstein et de Broglie avaient aussi raison ?, Editions Matériologiques, 2014 (https://hal-enac.archives-ouvertes.fr/hal-01114015)

[15] Jean Bricmont Making sense of quantum mechanics, Springer, 2016 (see in particular § 5-1) | DOI | Zbl

[16] Jean Bricmont; Sheldon Goldstein; Douglas Hemmick Schrödinger’s paradox and proofs on nonlocality using only perfect correlations, J. Stat. Phys., Volume 180 (2020) no. 1-6, pp. 74-91 | DOI | Zbl

[17] Detlet Dürr; Stefan Teufel Bohmian mechanics. The Physics and Mathematics of Quantum Theory, Springer, 2009 (see in particular § 9.1.) | Zbl

[18] W. Gerlach; O. Stern Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld, Zeitschrift für Physik, Volume 9 (1922) no. 1, pp. 349-352 | DOI

[19] Geneviève Tastevin; Franck Laloë Surrealistic Bohmian trajectories do not occur with macroscopic pointers, Eur. Phys. J. D, Volume 72 (2018), 183 | DOI

[20] David J. Bohm; Basil J. Hiley The undivided Universe, Routledge, London, 1993 | Zbl

[21] Niels Bohr Discussion with Einstein on epistemological problems in atomic physics, Albert Einstein: Philosopher-scientist (Paul A. Schilpp, ed.) (Library of Living Philosophers), Volume 7, Open court, LaSalle, Illinois, 1949, pp. 199-241

[22] Detlet Dürr; Sheldon Goldstein; Nino Zanghi Quantum equilibrium and the origin of absolute uncertainty, J. Stat. Phys., Volume 67 (1992) no. 5-6, pp. 843-905 | DOI | MR | Zbl

[23] Travis Norsen Bohmian conditional wave function (and the status of the quantum state), J. Phys., Conf. Ser., Volume 701 (2015), 012003 | DOI

[24] Michele Correggi; Giovanno Morchio Quantum mechanics and stochastic mechanics for compatible observables at different times, Ann. Phys., Volume 296 (2002) no. 2, pp. 371-389 | DOI | MR | Zbl

[25] Franck Laloë Do we really understand quantum mechanics?, Cambridge University Press, 2012 (§ 6.4) | MR | Zbl

[26] Hrvoje Nikolić Bohmian mechanics for instrumentalists (2019) (https://arxiv.org/abs/1811.11643v3) | Zbl

Cited by Sources:

Comments - Policy