Comptes Rendus
Research article
Polarizing Šolc filters: a pedagogical derivation in the complex plane
Comptes Rendus. Physique, Volume 22 (2021) no. 1, pp. 89-97.

For the theoretical study of Šolc filters, used in particular in solar observatories or coronagraphs, we use the complex plane representation of polarization, which had apparently never been done before in this context. This avoids the cumbersome matrix calculus, for the two models of basic Šolc filters. That technique seems promising for further studies on the important question of the apodisation of these filters.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crphys.83
Keywords: Polarization, Birefringent filters, Šolc filters, Apodisation, Complex representation (of polarization), Malus’ law (in complex representation)

Luc Dettwiller 1

1 Higher education section of Lycée Blaise Pascal, 36 avenue Carnot, 63037 Clermont-Ferrand Cedex, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2021__22_1_89_0,
     author = {Luc Dettwiller},
     title = {Polarizing {\v{S}olc} filters: a pedagogical derivation in the complex plane},
     journal = {Comptes Rendus. Physique},
     pages = {89--97},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {1},
     year = {2021},
     doi = {10.5802/crphys.83},
     language = {en},
}
TY  - JOUR
AU  - Luc Dettwiller
TI  - Polarizing Šolc filters: a pedagogical derivation in the complex plane
JO  - Comptes Rendus. Physique
PY  - 2021
SP  - 89
EP  - 97
VL  - 22
IS  - 1
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.83
LA  - en
ID  - CRPHYS_2021__22_1_89_0
ER  - 
%0 Journal Article
%A Luc Dettwiller
%T Polarizing Šolc filters: a pedagogical derivation in the complex plane
%J Comptes Rendus. Physique
%D 2021
%P 89-97
%V 22
%N 1
%I Académie des sciences, Paris
%R 10.5802/crphys.83
%G en
%F CRPHYS_2021__22_1_89_0
Luc Dettwiller. Polarizing Šolc filters: a pedagogical derivation in the complex plane. Comptes Rendus. Physique, Volume 22 (2021) no. 1, pp. 89-97. doi : 10.5802/crphys.83. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.83/

[1] B. Lyot Un monochromateur à grand champ utilisant les interférences en lumière polarisée, C. R. Acad. Sci. (Paris), Volume 197 (1933), pp. 1593-1595

[2] W. H. Steel; R. N. Smartt; R. G. Giovanelli A 1/8 Å birefringent filter for solar reserach, Aust. J. Phys., Volume 14 (1961), pp. 201-211 | DOI

[3] A. Gorman; D. W. Fletcher-Holmes; A. R. Harvey Generalization of the Lyot filter and its application to snapshot spectral imaging, Opt. Express, Volume 18 (2010), pp. 5602-5608 | DOI

[4] M. F. Huang; J. Chen; K. M. Feng; C. C. Wei; C. Y. Lai; T. Y. Lin; S. Chi 210-km bidirectional transmission system with a novel fourport interleaver to facilitate unidirectional amplification, IEEE Photon. Technol. Lett., Volume 18 (2006), pp. 172-174 | DOI

[5] K. E. Zoiros; C. O’Riordan; M. J. Connelly Semiconductor optical amplifier pattern effect suppression using Lyot filter, Electron. Lett., Volume 45 (2009), pp. 1187-1189 | DOI

[6] K. Ölgören; F. Ö. Ilday All-fiber all-normal dispersion laser with a fiber-based Lyot filter, Opt. Lett., Volume 35 (2010), pp. 1296-1298 | DOI

[7] R. V. Drobyshev; I. A. Lobach; S. I. Kablukov Narrow-linewidth self-sweeping fiber laser with scanning range control by a tunable Lyot filter, Laser Phys., Volume 29 (2019), 105104 | DOI

[8] B. Huang; X. Shu; Y. Du Intensity modulated torsion sensor based on optical fiber reflective Lyot filter, Opt. Express, Volume 25 (2017), pp. 5081-5090 | DOI

[9] I. Šolc Novy typ dvojljmneho filtru, Česk. Časopis. Fys., Volume 3 (1953), pp. 366-376

[10] P. Jacquinot; B. Roizen-Dossier Apodisation, Progress in Optics (E. Wolf, ed.), Volume 3, Elsevier, Amsterdam, 1964, pp. 29-186 | DOI | Zbl

[11] I. Šolc Retezove dvojlomne filtry, Česk. Časopis. Fys., Volume 10 (1960), pp. 16-34

[12] R. C. Jones A new calculus for the treatment of optical systems – I. Description and discussion of the calculus, J. Opt. Soc. Am., Volume 31 (1941), pp. 488-493 | DOI | Zbl

[13] R. C. Jones A new calculus for the treatment of optical systems – II. Proof of three general equivalence theorems, J. Opt. Soc. Am., Volume 31 (1941), pp. 493-499 | Zbl

[14] R. C. Jones A new calculus for the treatment of optical systems – III. The Sohncke theory of optical activity, J. Opt. Soc. Am., Volume 31 (1941), pp. 500-503 | DOI | Zbl

[15] H.-Y. Hsü; M. Richartz; Y.-K. Liang A generalized intensity formula for a system of retardation plates, J. Opt. Soc. Am., Volume 37 (1947), pp. 99-106 | DOI

[16] J. W. Evans Solc birefringent filter, J. Opt. Soc. Am., Volume 48 (1958), pp. 142-145 | DOI

[17] B. Valníček Šolc birefringent filter composed of a large number of plates, Bull. Astr. Inst. Czechosl., Volume 11 (1960), pp. 162-164

[18] J. W. Evans A birefringent monochromator for isolating high orders in grating spectra, Appl. Opt., Volume 2 (1963), pp. 193-197 | DOI

[19] K. Fredga Rocket spetroheliograph for the Mg II line at 2802.7 Å, Appl. Opt., Volume 8 (1969), pp. 333-343

[20] T. Berger; J. Mudge; B. Holmes; P. Searcy; J.-P. Wuelser; J. Lemen; A. Title Design and fabrication of the near-ultraviolet birefringent Šolc filter for the NASA IRIS solar physics mission, Current Developments in Lens Design and Optical Engineering XIII (Proceedings of SPIE), Volume 8486, SPIE, Bellingham, 2012 | DOI

[21] W. J. Carlsen; C. F. Buhrer Flat passband birefringent wavelength-division multiplexers, Electron. Lett., Volume 23 (1987), pp. 106-107 | DOI

[22] E. Ertekin; A. Lakhtakia Sculptured thin film Šolc filters for optical sensing of gas concentration, Eur. Phys. J. Appl. Phys., Volume 5 (1999), pp. 45-50 | DOI

[23] K. Okamoto; J. Noda; H. Miazawa Fiber-optic Šolc filter for use in Raman amplification of light, Electron. Lett., Volume 21 (1985), pp. 90-91 | DOI

[24] E. O. Ammann; I. C. Chang Optical network synthesis using birefringent crystals. II. Synthesis of networks containing one crystal, optical compensator, and polarizer per stage, J. Opt. Soc. Am., Volume 55 (1965), pp. 835-841 | DOI

[25] E. O. Ammann Synthesis of optical birefringent networks, Progress in Optics (E. Wolf, ed.), Volume 9, Elsevier, Amsterdam, 1971, pp. 123-177 | DOI

[26] S. Huard Polarisation de la lumière, Masson, Paris, 1994

[27] C. Brosseau Fundamentals of Polarized Light – A Statistical Optics Approach, Wiley Interscience, New York, 1998

[28] R. M. A. Azzam; N. M. Bashara Ellipsometry and Polarized Light, North Holland Publishing Co., Amsterdam, 1977

[29] I. Šolc Koincidencni dvojlomny filtru, Česk. Časopis. Fys., Volume 4 (1954), pp. 607-608

[30] M. Françon Séparation des radiations par les filtres optiques, Masson, Paris, 1984 (Ch. 6)

[31] L. Dettwiller Filtres de Šolc, Bull. Un. Prof. Phys. Chim., Volume 114 (2020), pp. 681-700

[32] R. Couty; J. Ezra Analyse, t. 1, Armand Colin, Paris, 1967 (see p. 37)

[33] L. Dettwiller Apodisation in Šolc filters: treatment in the complex plane, 2021 (https://hal-sfo.ccsd.cnrs.fr/sfo-03270417)

[34] I. Šolc Birefringent chain filters, J. Opt. Soc. Am., Volume 55 (1965), pp. 621-625 | DOI

[35] K. Fredga; J. A. Högbom A versatile birefringent filter, Solar Phys., Volume 20 (1971), pp. 204-227 | DOI

[36] V. A. Kucherov A simple way for Šolc filter synthesis, Kinemat. Phys. Celest. Bodies, Volume 12 (1996), pp. 59-70

Cited by Sources:

Comments - Policy