For the theoretical study of Šolc filters, used in particular in solar observatories or coronagraphs, we use the complex plane representation of polarization, which had apparently never been done before in this context. This avoids the cumbersome matrix calculus, for the two models of basic Šolc filters. That technique seems promising for further studies on the important question of the apodisation of these filters.
Revised:
Accepted:
Published online:
Luc Dettwiller 1
@article{CRPHYS_2021__22_1_89_0, author = {Luc Dettwiller}, title = {Polarizing {\v{S}olc} filters: a pedagogical derivation in the complex plane}, journal = {Comptes Rendus. Physique}, pages = {89--97}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {1}, year = {2021}, doi = {10.5802/crphys.83}, language = {en}, }
Luc Dettwiller. Polarizing Šolc filters: a pedagogical derivation in the complex plane. Comptes Rendus. Physique, Volume 22 (2021) no. 1, pp. 89-97. doi : 10.5802/crphys.83. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.83/
[1] Un monochromateur à grand champ utilisant les interférences en lumière polarisée, C. R. Acad. Sci. (Paris), Volume 197 (1933), pp. 1593-1595
[2] A 1/8 Å birefringent filter for solar reserach, Aust. J. Phys., Volume 14 (1961), pp. 201-211 | DOI
[3] Generalization of the Lyot filter and its application to snapshot spectral imaging, Opt. Express, Volume 18 (2010), pp. 5602-5608 | DOI
[4] 210-km bidirectional transmission system with a novel fourport interleaver to facilitate unidirectional amplification, IEEE Photon. Technol. Lett., Volume 18 (2006), pp. 172-174 | DOI
[5] Semiconductor optical amplifier pattern effect suppression using Lyot filter, Electron. Lett., Volume 45 (2009), pp. 1187-1189 | DOI
[6] All-fiber all-normal dispersion laser with a fiber-based Lyot filter, Opt. Lett., Volume 35 (2010), pp. 1296-1298 | DOI
[7] Narrow-linewidth self-sweeping fiber laser with scanning range control by a tunable Lyot filter, Laser Phys., Volume 29 (2019), 105104 | DOI
[8] Intensity modulated torsion sensor based on optical fiber reflective Lyot filter, Opt. Express, Volume 25 (2017), pp. 5081-5090 | DOI
[9] Novy typ dvojljmneho filtru, Česk. Časopis. Fys., Volume 3 (1953), pp. 366-376
[10] Apodisation, Progress in Optics (E. Wolf, ed.), Volume 3, Elsevier, Amsterdam, 1964, pp. 29-186 | DOI | Zbl
[11] Retezove dvojlomne filtry, Česk. Časopis. Fys., Volume 10 (1960), pp. 16-34
[12] A new calculus for the treatment of optical systems – I. Description and discussion of the calculus, J. Opt. Soc. Am., Volume 31 (1941), pp. 488-493 | DOI | Zbl
[13] A new calculus for the treatment of optical systems – II. Proof of three general equivalence theorems, J. Opt. Soc. Am., Volume 31 (1941), pp. 493-499 | Zbl
[14] A new calculus for the treatment of optical systems – III. The Sohncke theory of optical activity, J. Opt. Soc. Am., Volume 31 (1941), pp. 500-503 | DOI | Zbl
[15] A generalized intensity formula for a system of retardation plates, J. Opt. Soc. Am., Volume 37 (1947), pp. 99-106 | DOI
[16] Solc birefringent filter, J. Opt. Soc. Am., Volume 48 (1958), pp. 142-145 | DOI
[17] Šolc birefringent filter composed of a large number of plates, Bull. Astr. Inst. Czechosl., Volume 11 (1960), pp. 162-164
[18] A birefringent monochromator for isolating high orders in grating spectra, Appl. Opt., Volume 2 (1963), pp. 193-197 | DOI
[19] Rocket spetroheliograph for the Mg II line at 2802.7 Å, Appl. Opt., Volume 8 (1969), pp. 333-343
[20] Design and fabrication of the near-ultraviolet birefringent Šolc filter for the NASA IRIS solar physics mission, Current Developments in Lens Design and Optical Engineering XIII (Proceedings of SPIE), Volume 8486, SPIE, Bellingham, 2012 | DOI
[21] Flat passband birefringent wavelength-division multiplexers, Electron. Lett., Volume 23 (1987), pp. 106-107 | DOI
[22] Sculptured thin film Šolc filters for optical sensing of gas concentration, Eur. Phys. J. Appl. Phys., Volume 5 (1999), pp. 45-50 | DOI
[23] Fiber-optic Šolc filter for use in Raman amplification of light, Electron. Lett., Volume 21 (1985), pp. 90-91 | DOI
[24] Optical network synthesis using birefringent crystals. II. Synthesis of networks containing one crystal, optical compensator, and polarizer per stage, J. Opt. Soc. Am., Volume 55 (1965), pp. 835-841 | DOI
[25] Synthesis of optical birefringent networks, Progress in Optics (E. Wolf, ed.), Volume 9, Elsevier, Amsterdam, 1971, pp. 123-177 | DOI
[26] Polarisation de la lumière, Masson, Paris, 1994
[27] Fundamentals of Polarized Light – A Statistical Optics Approach, Wiley Interscience, New York, 1998
[28] Ellipsometry and Polarized Light, North Holland Publishing Co., Amsterdam, 1977
[29] Koincidencni dvojlomny filtru, Česk. Časopis. Fys., Volume 4 (1954), pp. 607-608
[30] Séparation des radiations par les filtres optiques, Masson, Paris, 1984 (Ch. 6)
[31] Filtres de Šolc, Bull. Un. Prof. Phys. Chim., Volume 114 (2020), pp. 681-700
[32] Analyse, t. 1, Armand Colin, Paris, 1967 (see p. 37)
[33] Apodisation in Šolc filters: treatment in the complex plane, 2021 (https://hal-sfo.ccsd.cnrs.fr/sfo-03270417)
[34] Birefringent chain filters, J. Opt. Soc. Am., Volume 55 (1965), pp. 621-625 | DOI
[35] A versatile birefringent filter, Solar Phys., Volume 20 (1971), pp. 204-227 | DOI
[36] A simple way for Šolc filter synthesis, Kinemat. Phys. Celest. Bodies, Volume 12 (1996), pp. 59-70
Cited by Sources:
Comments - Policy